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The Krylov-Safonov theorem

Let u be a solution to

aij(x)∂iju = 0 in B1.

The coefficients aij are not assumed to be any regular, but just to
satisfy the following inequalities pointwise

λI ≤ aij(x) ≤ ΛI.

The u is Hölder continuous in B1/2 with the estimate

‖u‖Cα(B1/2) ≤ C‖u‖L∞(B1) C depends on λ,Λ, and dimension only.

A Harnack inequality also holds.



De Giorgi-Nash-Moser theorem

Let u be a solution to

∂iaij(x)∂ju = 0 in B1.

The coefficients aij are not assumed to be any regular (besides
measurable), but just to satisfy the following inequalities pointwise

λI ≤ aij(x) ≤ ΛI.

The u is Hölder continuous in B1/2 with the estimate

‖u‖Cα(B1/2) ≤ C‖u‖L2(B1), C depends on λ,Λ, and dimension only.

A Harnack inequality also holds.



One application to fully nonlinear equations

Fully nonlinear equation: F (D2u) = 0 in B1.

We assume the uniform ellipticity condition: λI ≤ ∂F
∂Xij

(X ) ≤ ΛI for

any symmetric matrix X . Then the solutions are C 1,α for some
α > 0.

Sketch-proof. The directional derivatives ue , satisfy the linearized
equation

∂F

∂Xij
(D2u(x)) ∂ijue = 0 in B1.

The Krylov-Safonov theorem proves ue ∈ Cα for any direction e.
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The ABP estimate

A crucial tool in the proof of Krylov-Safonov theorem is the
Aleksandrov-Bakelman-Pucci estimate. If we assume

I aij(x)∂iju ≤ f in B1 with λI ≤ aij(x) ≤ ΛI.

I u ≥ 0 on ∂B1.

Then

−min
B1

u ≤ C

(∫
{u=Γ}

f n dx

)1/n

function u

contact set {u = Γ}
convex envelope Γ



Our new result

Theorem (Imbert, S.)

Let u be a solution to

aij(x)∂iju = 0 only where |∇u| ≥ γ in B1.

The coefficients aij are not assumed to be any regular, but just to
satisfy the following inequalities pointwise

λI ≤ aij(x) ≤ ΛI.

Then u is Hölder continuous in B1/2 with the estimate

‖u‖Cα(B1/2) ≤ C

(
λ,Λ, n,

γ

‖u‖L∞(B1)

)
‖u‖L∞(B1).

A Harnack inequality also holds.



Related results

Theorem (Davila, Felmer, Quaas. C.R. 2009)

The equation

F (∇u,D2u) + b · ∇u|∇u|α + cu|u|α = f ,

where |p|αM−(X ) ≤ F (p,X ) ≤ |p|αM+(X ) for α > −1, satisfies
(some variation of) the ABP estimate.

Theorem (Davila, Felmer, Quaas. CVPDE 2010)

The equation

F (∇u,D2u) + b · ∇u|∇u|α + cu|u|α = f ,

where |p|αM−(X ) ≤ F (p,X ) ≤ |p|αM+(X ) for α ∈ (−1, 0), has
Hölder estimates and satisfies the Harnack inequality.



Related results 2

Theorem (Delarue, JDE 2010)

aij(x , u(x),∇u(x))∂iju(x) + F (x , u(x),∇u(x)) = 0 in B1,

where ω(p)λI ≤ aij(x , u, p) ≤ ω(p)ΛI with ω(p) > 1 for p > γ,
plus some assumptions on F . Then there is Hölder estimates and
Harnack inequality.

From his paper: “what is important is that, at any x , all the
eigenvalues of aij behave in the same way”.
The proof is rather involved and based on probabilistic methods
(i.e. I don’t understand the proof).



Related results 3

Theorem (Cyril Imbert, JDE 2011)

Under similar assumption to our main theorem, he obtained that
(some variation of) the Alexandroff-Bakelman-Pucci estimate
holds.

The paper argues that Hölder estimates and a Harnack inequality
would follow. However, there is a critical flaw in that argument.



Other related results.

I Birindelli and Demengel (preprint) obtained a Harnack
inequality for a nonlinear equation in 2D under some
conditions that fit into our framework.

I It could be said that the divergence form version of these
results was developed in a series of papers by DiBenedetto,
Gianazza, Vespri, and others.

I In the opposite case, that the equation is uniformly elliptic for
small values of the gradient (and Hessian), the Harnack
inequality for sufficiently flat solutions was obtained by Ovidiu
Savin (CPDE 2007).

I A related ABP estimate for quasilinear elliptic and parabolic
equations of p-Laplacian type was obtained by Roberto
Argiolas, Fernando Charro and Ireneo Peral in 2011.



General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

osc
BR/2

v ≤ (1− θ) osc
BR

v

and then iterate it to obtain

osc
B

2−k

v ≤ (1− θ)k osc
B1

v

which imples a Cα modulus of continuity for α = log(1−θ)
log(λ) .

oscQR
v

← R →
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Which side improves?

The solution u will be
either above or below its
middle line in half of the
points in B1.

max u

min u

min u+max u
2



Improvement of oscillation from one side

u

{u > M}

u ≥ 1

Lemma

Assume u ≥ 0 and aij(x)∂iju ≤ 0 in
B1. Moreover,

|{u ≥ M} ∩ B1| ≥
1

2
|B1|,

Then u ≥ 1 in B1/2.



A weaker version of the lemma

u
u ≥ 1

{u ≥ M} Lemma

Assume u ≥ 0 and aij(x)∂iju ≤ 0 in
B1. Moreover,

|{u ≥ M} ∩ B1| ≥ (1− δ)|B1|,

Then u ≥ 1 in B1/2.

This weaker version of the lemma + a barrier function + a covering
argument =⇒ The previous (stronger) version of the lemma.



The barrier function

The barrier function ϕ(x) = |x |−p is
a subsolution in B1 \ {0} for p large
enough.

{u ≥ M}

bounded below by the barrier

The barrier is used to
expand the ball where
we get a lower bound.



Growing ink spots and the Lε estimate

The sets Ak := {u ≥ Mk} ∩ B1/2 satisfy the following property.

For any ball B so that
|B ∩ Ak+1| > (1− δ)|B|, then
B ⊂ Ak .

This property implies that |Ak+1| ≤ (1− Cδ)|Ak | (covering
argument). In particular |Ak | < 1

2 |B1/2| for k large.



Growing ink spots and the Lε estimate

The sets Ak := {u ≥ Mk} ∩ B1/2 satisfy the following property.

For any ball B so that
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Ak+1
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This property implies that |Ak+1| ≤ (1− Cδ)|Ak | (covering
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The usual proof of the lemma (as in [CC])

Assume u(x) ≤ 1 at some point x ∈ B1/2.

ϕ Take ϕ : B1 → R to be a smooth
function such that ϕ ≤ 0 on ∂B1 and
ϕ ≥ 2 in B1/2.

Apply the ABP estimate to u − ϕ and obtain

2 ≤ max(ϕ−u) ≤ C

(∫
{u−ϕ=Γ}

|aij(x)∂ijϕ(x)|ndx

)1/n

≤ C |{u ≤ ϕ}|1/n.

This proves the weaker lemma with M = maxϕ.

Inconvenience: the ABP estimate is applied to u − ϕ. It is
important the equation that u − ϕ satisfies.



Variation: Sliding paraboloids from below.

This idea first appeared in the early work of X. Cabre (1997), and
also played an important role in the work of O. Savin (2007).
(also used in a recent paper by S. Armstrong and C. Smart)

The measure of the set of contact
points is bounded below!
The proof is similar to ABP, but it is
more goemetrical, there is no
subtraction and it provides more
flexibility.

The inconvenience is now clearer: the touching point is typically by
the top, where the gradient is small.



Our case: sliding cusps from below.

u

x

y

u(x0) ≤ 1

Let ϕ(x) = −|x |1/2:

Let U = {x : u(x) > M}. For any
x ∈ U, we let ϕ(· − x) + q touch
u from below at the point y ∈ B1.

Observation: u(y) cannot be
large, otherwise it would touch at
x0 before. In particular x 6= y .

Let m(y) := x , and compute Dm, we will get |Dm| ≤ C , which
means that the measure of the set of contact points y is bounded
below.



The computation

We have

∇u(y) = ∇ϕ(y − x),

D2u(y) ≥ D2ϕ(y − x).

From the second inequality and the equation:
|D2u(y)| ≤ C |D2ϕ(y − x)|.
Writing x = m(y) and taking derivatives in the first equality:
D2u(y) = D2ϕ(y − x)(I − Dm).
Thus

|Dm| = |D2ϕ(y − x)−1
(
D2ϕ(y − x)− D2u(y)

)
| ≤ C .

The last computation works magically because of the choice of ϕ
so that all the eigenvalues of D2ϕ are comparable.



Some application

Theorem (Imbert, S.)

If u is a viscosity solution to a fully non linear equation of the form

|∇u|γF (D2u) = f ,

with γ > 0, f bounded, and F uniformly elliptic, then u ∈ C 1,α for
some α > 0.



Something I cannot do

Conjecture

Let u(x , t) be a function such that

ut = aij(x , t)∂iju, wherever |∇u| ≥ γ or |ut| ≥ γ in B1× (−1, 0].

The coefficients aij are only assumed to satisfy

λI ≤ aij(x) ≤ ΛI .

Then u ∈ Cα(B1/2 × [−1/2, 0]), with an estimate

‖u‖Cα(B1/2×[−1/2,0]) ≤ C

(
λ,Λ, n,

γ

‖u‖L∞

)
‖u‖L∞ .
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