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1. Introduction

We consider parabolic integro-differential equations of the following general form

ut + b(t, x) · ∇u+

∫
Rd

(u(x+ y)− u(x)− y · ∇u(x) χB1(y))K(t, x, y) dy = f. (1)

The equations corresponds to generators of discontinuous Levy processes with
drift, but without a diffusion part. The purpose of this article is to discuss the
regularization effect of the integral part of the equation under general conditions on
b and K. We present a Hölder regularity result for the solution u to the equation
(1) for f bounded and under some conditions on b and K which are discussed in
section 3. It is important that there is no smoothness assumption on the kernel
values K(t, x, y) with respect to the variables x and t.

Integro-differential equations are a natural, fractional order, generalization of
classical parabolic equations. Indeed, second order parabolic equations arise as
asymptotic limits of integral equations. In this respect, we can classify regularity
estimates for integral equations in two types. A regularity estimate that is uniform
in the order of the equation (provided only that it is bounded away from zero) can
be passed to the limit to local equations and is thus a generalization of regularity
estimates for second order parabolic equations (for example the results in [9], [10],
[26] and [34]). The term robust is sometimes used for this type of estimates.
In other types of regularity results, the estimates depend on the order of the
equation and blow up as it approaches two. These estimates are the ones which
take advantage of the non local integral structure of the equation. The loss of the
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estimates in the classical limit is certainly an undesirable quality. However, it is
interesting to understand how the non local structure of the equation can be used
to our advantage. In fact, this second type of estimates usually have simpler proofs
even than their classical local counterparts.

In this article, we discuss several results in the area. We also show a proof of
Hölder estimates for solutions to a rather general form of the equation (1). The
proof we show gives an estimate which is not robust. Our methods here depend
strongly on the integral structure of the equation. In exchange, we can analyze a
large class of kernels K and still have a rather short and clean proof. The Hölder
estimates are based on a version of the weak Harnack inequality (Theorem 5.1)
which has interest in itself and is not true for second order parabolic equations in
non divergence form.

The Hölder estimates are closely related with the Harnack inequality. For the
equations we consider in this paper we prove the Hölder estimates but we show
that the Harnack inequality does not hold.

Note that these estimates are a fractional order version of the classical theory for
second order parabolic equations due to Krylov and Safonov [32]. In comparison,
the proofs for second order equations are much more complicated than then proofs
of the non-robust estimates for integral equations. Also, the Harnack inequality
certainly holds in the second order case.

We review related results and a brief history of the subject in section 2. In
the last section we give a quick summary of some of the main applications of the
regularity estimates.

2. A review on regularity results

2.1. Classical results for second order equations. Integro-differential
equations are a natural extension of second order equations of elliptic and parabolic
type. There are two types of regularity results for second order equations, those
which apply to equations in divergence form and those for equations in non diver-
gence form.

The first result for elliptic and parabolic equations with rough coefficients and
without any smallness condition is the classical result of De Giorgi, Nash and Moser
which was obtained in the late 1950’s. This result provides a Hölder estimate for
equations of the form

ut − ∂iaij(x, t)∂ju∂ju = 0.

where the coefficients aij are assumed to satisfy the point-wise bounds

λI ≤ {aij} ≤ ΛI. (2)

No assumption is made in terms of the regularity of aij with respect to either x or
t. The Harnack inequality also holds for this type of equations.

This classical result plays a crucial role in the regularity theory of solutions to
equations in divergence form. It was the key to solve Hilbert’s 19th problem. It is
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essential for all its applications that no regularity assumption on the coefficients is
necessary.

The corresponding result for equations in non divergence form was obtained in
1979 by Krylov and Safonov [33], [32]. It applies to equations of the form

ut − aij(x, t)∂iju = 0,

with identical assumptions on the coefficients aij . Before the result of Krylov and
Safonov, the only regularity results available for equations in non divergence form
applied to either continuous coefficients aij or coefficients with small oscillation
(i.e. |aij − δij | < ε). Note that any of these extra assumptions would allow us to
approximate the equation locally with an equation with constant coefficients. The
result of Krylov and Safonov is more delicate because it deals with a different scale
invariant class of equations.

The Hölder estimate and Harnack inequality by Krylov and Safonov have mul-
tiple applications. It is a central result in the study of regularity of solutions to
fully non linear elliptic equations. These are equations of the form F (D2u) = 0
where F is an arbitrary nonlinear function which satisfies λI ≤ ∂F/∂Xij ≤ ΛI.
The canonical examples of equations of this form come from the study of stochastic
games and are the Bellman equation

ut − sup
r
arij∂iju = 0,

or the Isaacs equation
ut − inf

s
sup
r
arsij ∂iju = 0.

Note that even tough the matrices arij or arsij in these equations may be independent
of x and t, a different one is chosen at every point (x, t) and we have no a priori
estimate on the optimal choice aij(x, t) other than a quantitative point estimate
like (2). That’s why a result like the Hölder estimates by Krylov and Safonov
guarantees some initial regularity for solutions to this kind of problems. More
importantly, the derivative of the solution also satisfies an equation with (a priori)
rough coefficients, which we can use to deduce that the solutions are C1,α both in
space and time. This is the best regularity currently known for the Isaacs equation
and in fact it is known to be optimal in high dimensions [37], [38]. The solutions to
the Isaacs equation in 2D are always C2,α in space. It is still an outstanding open
problem whether singular solutions exists in dimensions 3 or 4. For the Bellman
equation, the solutions are always C2,α in space, and therefore classical, due to the
celebrated theorem proved independently by Evans [22] and Krylov [31].

2.2. Integro-differential equations. Just like in the second order case,
the first regularity results that appear for integro-differential equations were for
equations with a variational structure. They are a fractional order version of
the classical results by De Giorgi Nash and Moser for second order equations in
divergence form. See [30], [1], [5], [26], [23] and [8] among others. In this article
we will concentrate in results of non variational form. There is a good survey on
Hölder estimates for divergence form integro-differential equations in [28].
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The first Hölder estimate, together with a Harnack inequality, was obtained by
Bass and Levin [4] for elliptic integro-differential equations of the form∫

Rd
(u(x+ y)− u(x)− y · ∇u(x)χB1(y))K(x, y) dy = 0,

assuming that K(x, y) = K(x,−y) and

λ

|y|d+α
≤ K(x, y) ≤ Λ

|y|d+α
, (3)

for positive constants λ and Λ uniform in x and y.
Note that there is no regularity assumption of K with respect to x. The

assumption (3) is a uniform ellipticity condition of order α ∈ (0, 2) comparable to
(2) for the second order case.

The result in [4] is obtained using probabilistic techniques and the estimates are
not robust since the constants in the Hölder estimate are not uniformly bounded
as α→ 2.

Just as in the case of Krylov-Safonov theorem for second order equations, this
result applies to a scale invariant class of equations. The assumption (2) which
gives us a pointwise bound for the coefficients aij in the second order case can
be reproduced in the integro-differential case by the assumption (3), but there
are also many other alternatives. For each point x, the possible kernels are non
negative functions (in terms of y) from the full space Rd into R. This is naturally
a much richer class than the coefficients of a second order equation, which is just
a symmetric matrix in Rd×d.

The original result of Bass and Levin was extended to more general classes of
equations in [45], [3], [2] and [41]. The last one was the first one to use purely
analytic methods instead of probabilistic techniques.

The first robust Hölder estimate and Harnack inequality appear in [9] for sym-
metric kernels satisfying the same condition (3). In this paper, the Hölder esti-
mates were used to derive a C1,α estimate for the non local Isaacs equation from
stochastic games driven by Levy processes,

inf
r

sup
s

∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1
(y))Krs(y) dy = 0.

This result was extended to some Isaacs equations with variable coefficients in [11].
Moreover, the integro-differential Bellman equation

inf
r

∫
Rd

(u(x+ y)− u(x)− y · ∇u(x)χB1(y))Kr(y) dy = 0,

has classical solutions in the class Cα+ε if all kernels K satisfy (3) plus some
smoothness condition with respect to y [10].

There is a number of variations of the results mentioned above, including,
among others, generalizations to parabolic equations [35], to non symmetric kernels
[13] and to kernels with logarithmic singularities [27].
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As mentioned above, the condition (3) is a version of uniform ellipticity of
fractional order. However, given that the possible choices of kernel measures are
so rich, there are several possible alternative definitions of uniform ellipticity. It
is not clear at the moment what the optimal condition should be, and there is
probably never going to be one.

In [6] and [39], the lower bound condition in (3) was relaxed. The authors
observed that it is enough to let it hold only in a cone of directions, which can
change from point to point, but must have a uniform width. This is a remarkable
improvement which shows that the previous condition (3) was far from optimal. It
turns out that for this kind of integro-differential equations the Hölder estimates
hold but the Harnack inequality does not. This is also quite remarkable, since
the two properties are closely related to each other, and the Hölder estimates are
often proved as a consequence of the Harnack inequality. Note that actually the
Harnack inequality is claimed to be true in [6], but there are some issues in the
proof and a counterexample was given in [39] using ideas from [7].

In this article we prove a version of the Hölder estimate for parabolic integro-
differential equations. We keep the lower bound of (3) but we relax the upper
bound. For this type of equations we show that the Harnack inequality does not
hold either. We give a rather simple proof at the expense of making the estimate
not robust (that is, the constants blow up as α→ 2).

In a work in progress with Russell Schwab, we are working on a robust estimate
for parabolic equations whose kernels satisfy the same upper bound condition as
in this paper, but whose lower bound only holds in a cone of directions.

Note that a robust estimate like the one in [9] in particular implies the Krylov
Safonov theorem about the regularity of uniformly elliptic second order equations.
We can recognize the main ideas of the proof of Krylov and Safonov in the proof
of the corresponding estimates for integral equations in [9]. In particular, there
is some replacement for the Alexandrov-Bakelman-Pucci estimate. However, a
perfect nonlocal analog for the ABP estimate is unknown. More precisely, the
following is an open problem. Assume∫

Rd
(u(x+ y)− u(x)− y · ∇u(x)χB1

(y))K(x, y) dy = −χA in B1,

u(x) ≤ 0 for all x /∈ B1

Is there an estimate of the form

max
B1

u ≤ µ(|A|),

for any function µ so that µ(m)→ 0 as m→ 0?

Here χA denotes the characteristic function of the set A.

In spite of its apparent simplicity, the estimate above has only been proved for
a very special class of kernels [24].
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3. A class of kernels

In this section, we describe a special set of assumptions that we make on the kernels
for the result that we prove in this article.

The integro-differential equations that we study have an associated order α ∈
(0, 2). The assumptions on the kernel K depend on this value. Typically, we will
look at kernels K such that K(t, x, y) ≈ |y|−d−α, but our assumptions are more
general than that. We assume the following two inequalities.

K(t, x, y) ≥ λ

|y|d+α
, (4)∫

∂Br

K(t, x, y) dS(y) ≤ Λr−1−α for all r > 0. (5)

The estimates (4) and (5) also make sense for some singular jump measures in-
stead of the absolutely continuous measure K(t, x, y) dy. We stick to the absolutely
continuous form only for the sake of clarity.

Note that (5) is more general than the usual assumption K(t, x, y) ≤ Λ|y|−d−α.
In particular (5) allows us to consider kernels containing singular measures. An
extra factor (2− α) would be needed in the right hand side of both (4) and (5) in
order to pass to the limit as α → 2 and recover uniformly parabolic equations in
non divergence form. Since the estimates in this article are not uniform in α, it
makes no difference to have this factor or not for the purposes of our results.

We do not assume that K is symmetric, (i.e. K(t, x, y) 6= K(t, x,−y). Note
that the purpose of the gradient term y · ∇u(x)χB1(x) in the integrand in (1) is
for the integral to be well defined around the origin. When K is symmetric, this
term can be safely ignored by computing the integral in the principal value sense.
For non symmetric kernels K, this term is necessary for the integral to make sense
if α ≥ 1. The choice of the radius of the ball B1 is arbitrary. If we replace B1

with BR for any other value of R, the difference of the integral operators would
be absorbed by the gradient term. This ambiguity in the structure of the integral
operator is inconvenient for the proofs in this article because it depends on scale. In
our proofs we often rescale solutions of the equation and we need our assumptions
to be invariant by this scaling. In order to avoid this ambiguity, we modify the
structure of the equation depending on whether α < 1 or α > 1. We use the
following notation

δyu(x) :=


u(x+ y)− u(x) if α < (0, 1),

u(x+ y)− u(x)− y · ∇u(x)χB1
(y) if α = 1,

u(x+ y)− u(x)− y · ∇u(x) if α ∈ (1, 2),

(6)

In any case, we study an equation of the form

ut + b(t, x) · ∇u+

∫
Rd
δyu(x)K(t, x, y) dy = f (7)

The case α = 1 is special. In this case we need to assume an additional
symmetry assumption in the kernel K. Assuming K(t, x, y) = K(t, x,−y) would
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be enough, but we make a mildly more general assumption∫
∂Br

yK(t, x, y) dS(y) = 0 for every r > 0. (8)

Some symmetry assumption like (8) is required to make the proof using the current
methods. See [14] for a more precise description of assumptions that work in the
elliptic case with α = 1.

These alternative structures for the non symmetric integral operators depending
on the order α were stated in the work of Hongjie Dong and Doyoon Kim for elliptic
nonlocal equations [19] and [20].

The drift term does not contribute to the regularization of the solution. We
need to be able to control it with the integral part. We will assume that b(t, x) is
bounded if α ≥ 1 and that b(t, ·) is uniformly bounded in C1−α if α < 1. For the
right hand side f , we always assume it is a bounded function.

Note that the class of equations of the form (1) is no different from (7). Indeed,
if α < 1 then yK(y) is integrable at the origin. Thus, the integral of y·∇u(x)χB1(y)
is of the form b̃ · ∇u(x) and therefore it is absorbed into the first order term of
(7). In the case α > 1, yK(y) is integrable at infinity. Thus, the integral of
y · ∇u(x)χRd\B1

(y) can also be absorbed in the first order term.

4. Extremal operators and viscosity solutions

Note that the equation (1) does not have a variational form and therefore we cannot
define a weak solution in the sense of distributions. In order to make sense of the
equation in the viscosity sense, we define the extremal Pucci-like operators which
represent the maximum and minimum possible value of the integral term in (7).

Definition 4.1. Let ϕ : Rd → R be bounded in Rd and C1,1 at x. We define
M±α ϕ in the following way.

M+
α ϕ(x) = sup

{∫
Rd
δyϕ(x)K(y) dy : for all K(y) satisfying (5) and (4),

and also (8) if α = 1

}
The extremal operator M−α is defined similarly exchanging the sup with an inf.

We will omit the subscript α whenever this value is clear to avoid notation
clutter.

The operators M+
α and M−α have an explicit formula which is given in the next

lemma.
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Lemma 4.2. Let ϕ : Rd → R be bounded in Rd and C1,1 at x. The operators M+
α

and M−α have the following formula

M+
α ϕ(x) =

∫
Rd
δyϕ(x)

λ

|y|d+α
dy + ωd(Λ− λ)

∫ ∞
0

(
sup
y∈∂Br

δyϕ(x)+

)
r−1−α dr,

M−α ϕ(x) =

∫
Rd
δyϕ(x)

λ

|y|d+α
dy + ωd(λ− Λ)

∫ ∞
0

(
sup
y∈∂Br

δyϕ(x)−

)
r−1−α dr,

where ωd represents the surface area of ∂B1 in Rd.

The proof of the lemma above is a straight forward interpretation of Definition
4.1

The following is a rather simple proposition stating essentially that M±α ϕ is
well defined for ϕ ∈ C2 and has some basic stability properties.

Proposition 4.3. Assume ϕ is a continuous bounded function in Rd so that
ϕ ∈ C2(B2). Then M+

α ϕ and M−α ϕ are continuous in B1. Moreover, if ϕk is a
uniformly bounded sequence of such functions such that ϕk → ϕ locally uniformly
in Rd and ϕk → ϕ in C2(B2), then M±α ϕk →M±α ϕ uniformly in B1.

Proof. Let K(y) be one kernel satisfying (4) and (5). Let Lu be the linear (trans-
lation invariant) operator

Lu(x) :=

∫
Rd
δyu(x)K(y) dy. (9)

If x ∈ B1, then we can estimate δyu(x) with respect to the norms of u. If x ∈ B1

and x+ y ∈ B3/2, we have

|δyu(x)| ≤


|y||∇u|L∞(B2) if α > 1,

|y|2|D2u|L∞(B2)χ|y|<1 if α = 1 and |y| < 1,

2|u|L∞(B3/2)χ|y|<1 if α = 1 and |y| ≥ 1,

|y|2|D2u|L∞(B2) if α > 1.

Also, if x ∈ B1 and x+ y /∈ B3/2,

|δyu(x)| ≤


|u(x+ y)|+ |u|L∞(B1) if α > 1,

|u(x+ y)|+ |u|L∞(B1) + |y||∇u|L∞(B1)χ|y|<1 if α = 1 and |y| < 1,

|u(x+ y)|+ |u|L∞(B1) if α = 1 and |y| ≥ 1,

|u(x+ y)|+ |u|L∞(B1) + |y||∇u|L∞(B1) if α > 1.

All these inequalities, combined with the assumption (5) for K(y) tell us that the
expression in (9) is integrable and

|Lu(x)| ≤ C
(
‖u‖C2(B2) + ‖|x|βu(x)‖L∞(Rd)

)
. (10)
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Here β is any non negative number so that β < α. The constant C depends on λ,
Λ, d, α and β, but not on the particular choice of the kernel K(y). In particular it
also holds for the suppremum and infimum value of Lu(x) for all admissible choices
of K, and that is M+

α u(x) and M−α u(x).
From (10), we see that if ϕn is a uniformly bounded sequence so that ϕn → ϕ

in C2(B2) and locally uniformly in Rd, then Lϕn → Lϕ uniformly in B1 and at a
rate independent of K. In particular M±α ϕn converges to M±α ϕ uniformly in B1,
which proves the second part of the proposition.

Assume now that u ∈ C3(B2)∩C1(Rd), since ∂i[Lu] = L[∂iu], we deduce from
(10) that in this case Lu is Lipschitz continuous in B1.

If ϕ is any bounded continuous function in Rd which is C2 in B2, we can
approximate it with a bounded sequence ϕn ∈ C3(B2) ∩ C1(Rd), which converges
to ϕ in C2(B2) and locally uniformly in Rd. Therefore, Lϕn → Lϕ uniformly in
B1, and therefore Lϕ is continuous in B1.

Note that the fact that u solves an equation of the form (7), for some kernel K
satisfying our assumptions, is equivalent to the fact that u satisfies the following
two inequalities.

ut + b · ∇u−M+
α u ≤ 0, (11)

ut + b · ∇u−M−α u ≥ 0. (12)

Even though we defined M+
α and M−α using kernels which do not depend on

t and x, ultimately the choice of kernel in M±α u(t, x) is different at every point.
Thus, the equations (11) and (12) are equivalent to (7) without any regularity
assumption of K(t, x, y) with respect to t and x.

The advantage of the inequalities (11) and (12) with respect to the equation
(7) is that the former can be defined in the viscosity sense.

Definition 4.4. Assume b and f are continuous in some domain Ω ⊂ R × Rd.
We say that (11) (resp. (12)) holds in Ω if every time there is a function ϕ :
(t0− ε, t0]×Bε(x0) such that ϕ is left differentiable in time and point-wise second
differentiable in space at (t0, x0) and

ϕ(t0, x0) = u(t0, x0),

ϕ ≥ u in (t0 − ε, t0]×Bε(x0) (resp. ≤),

Then, if we construct the function

v(t, x) =

{
ϕ(t, x) if (t, x) ∈ (t− ε, t0]×Bε(x0),

u(t, x) otherwise,

we get

vt(t0, x0) + b(t0, x0) · ∇v(t0, x0)−M+
α v(t0, x0) ≤ f(t0, x0).

(resp. M−α and ≥)



10 Luis Silvestre

Note that M+ and M− satisfy the relation M+ϕ = −M−(−ϕ). Moreover, u
satisfies ut + b · ∇u −M−u ≥ f in the viscosity sense, if and only if −u satisfies
(−u)t + b · ∇(−u)−M+(−u) ≤ −f .

One of the keys in the study of regularity properties of second order equations in
non divergence form lies in the difficulty to obtain estimates in integral form. This
is achieved estimating the measure of some contact sets or through the Alexandrov-
Bakelman-Pucci inequality. The following lemma is a simple property of viscosity
solutions of the integral equations we consider in this paper. At the same time, it
is a crucial ingredient in our regularity theory since it provides a simple integral
quantity associated with every point which can be touched by one side with a
smooth function.

Lemma 4.5. Assume (4) holds in the viscosity sense. Let ϕ be a test function as
in the Definition 4.4 such that u(t0, x0 + y) ≥ ϕ(t0, x0 + y) for all y ∈ Rd. Then,
we have

ϕt(t0, x0) + b(t0, x0) · ∇ϕ(t0, x0)−M−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ f(t0, x0).

Proof. Let v be the function constructed out of u, ϕ and some ε > 0 in Defini-
tion 4.4. Note that if |y| > ε we have δyv(t0, x0) = (u(t0, x0 + y) − ϕ(t0, x0 +
y)) + δyϕ(t0, x0). Moreover, vt(t0, x0) = ϕt(t0, x0) and ∇v(t0, x0) = ∇ϕ(t0, x0).
Therefore

f(t0, x0) ≤ vt(t0, x0) + b(t0, x0) · ∇v(t0, x0)−M+
α v(t0, x0),

= ϕt(t0, x0) + b(t0, x0) · ∇ϕ(t0, x0)−M−ϕ(t0, x0)

−
∫
Rd\Bε

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy

We finish the proof taking ε→ 0 and applying the monotone convergence theorem.

Remark 4.6. Applying the previous result to −u, we can obtain a corresponding
result for viscosity sub-solutions of (11).

5. The weak Harnack inequality

We use the following notation for parabolic cylinders

Qr := (−rα, 0]×Br,
Qr(t0, x0) := (t0, x0) +Qr = (t0 − rα, t0]×Br(x0).

The following result is the weak Harnack inequality and is the key ingredient in
the proof of the Hölder estimates. Its proof is inspired by a similar (but somewhat
weaker) result for a particular case of (1) which appeared in [43]. Some of the
ideas can be traced back to [41] for the elliptic case.
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Theorem 5.1. Let u be a function which satisfies the following inequality in the
viscosity sense.

ut + Λ|∇u| −M−u ≥ −a in Q1,

Assume that u ≥ 0 in Q1, then

min
[−1/2,0]×B1/2

u ≥ c

(∫
(−1,−1/2]×Rd

u(t, x)

(1 + |x|)d+α
dx dt

)
− a,

where c is a positive constant depending on λ, Λ, α and the dimension d.

Proof. Multiplying u by a scalar, we can assume that∫
(−1,−1/2]×Rd

u(t, x)

(1 + |x|)d+α
dx dt = 1. (13)

We should then prove that there is a small constant c so that

min
[−1/2,0]×B1/2

u ≥ c− a,

for any value of a. Of course this inequality is non trivial when a < c only.
Let θ be the constant, depending on dimension and α only, so that∫

(−1,−1/2]×Rd

θ

(1 + |x|)d+α
dx dt = 1/2.

From (13), we deduce that∫
(−1,−1/2]×Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx dt ≥ 1/2.

Let ϕ : Rd → R be a smooth, non negative function supported in B3/4 so that
ϕ ≡ 1 in B1/2. We will construct a bound from below of the form m(t)ϕ(x) −
(1 + t)a. The function m is the solution of the following ODE, for some positive
constants c0 and C1.

m(−1) = 0, (14)

m′(t) = c0

(∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
− C1m(t). (15)

The ODE above has the explicit solution

m(t) = c0

∫ t

−1

∫
Rd

(u(t, x)− θ)+

(1 + |x|)d+α
eC1(s−t) dx ds ≥ c0

eC1

∫∫
[−1,−1/2]×Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx dt.

Therefore, if we proved that u(t, x) ≥ m(t)ϕ(x) − (1 + t)a, we would finish
the proof with c = c0e

−C1/2. Let us assume the contrary and let ε > 0 be an
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arbitrarily small number. Since m(−1) = 0 and ϕ is supported in B3/4, there
exists a first crossing point (t0, x0) so that

u(t0, x0) = m(t0)ϕ(x0)− (1 + t0)a− ε,
u(t, x) ≥ m(t)ϕ(x)− (1 + t)a− ε for every t < t0 and x ∈ Rd.

We observe that we can use m(t)ϕ(x) − (1 + t)a − ε as a test function for
Definition 4.4 and from Lemma 4.5 we have

m′(t0)ϕ(x0)− a+ Λm(t0)|∇ϕ(x0)| −m(t0)M−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ −a.

The a terms cancel out and we get

m′(t0)ϕ(x0) + Λm(t0)|∇ϕ(x0)| −m(t0)M−ϕ(t0, x0)

−
∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥ 0.

(16)

The last integral term is crucial to obtain the contradiction.
The first condition that we need in the choice of c0 is that it must be chosen

small enough so that m(t) < θ for all t ∈ [−1, 0]. This is guaranteed simply by the
condition c0 ≤ θ. Under this condition, we obtain the following∫
Rd

(u(t0, x0 + y)− ϕ(t0, x0 + y))
λ

|y|d+α
dy ≥

∫
Rd

(u(t, y)− θ)+
(

min
x0∈B1/2

λ

|y − x0|d+α

)
dy

≥ c0
(∫

Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
The last inequality holds provided that c0 ≤ λ(5/4)d+α.
Substituting back into (16), we have

m′(t0)ϕ(x0)+Λm(t0)|∇ϕ(x0)|−m(t0)M−ϕ(x0)−c0
(∫

Rd

(u(t, x)− θ)+

(1 + |x|)d+α
dx

)
≥ 0.

Recalling the ODE (15) and that ϕ ≤ 1, it follows that

−C1m(t0)ϕ(x0) + Λm(t0)|∇ϕ(x0)| −m(t0)M−ϕ(x0) ≥ 0.

Since u(t0, x0) = m(t0)ϕ(x0) − a(t + 1) − ε, then certainly m(t0) > 0 and we
can factor it out from the previous inequality.

−C1ϕ(x0) + Λ|∇ϕ(x0)| −M−ϕ(x0) ≥ 0.

We are left with choosing C1 large enough in order to contradict this last
inequality. Note that we can certainly do so in the set {x : ϕ(x) > ρ} for any fixed
ρ > 0. However, we must address the fact that ϕ(x0) might be arbitrarily small.
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The key to solve this extra difficulty is to observe that M−ϕ(x) > 0 wherever
ϕ(x) = 0. Indeed M−f(x) > 0 if f achieves its global minimum at x. Moreover,
also ∇ϕ = 0 wherever ϕ = 0. Since ϕ is C2, then M−ϕ is continuous. Let
−δ := min{M−ϕ(x) : ϕ(x) = 0}. Then there is a ρ > 0 so that if ϕ(x) < ρ then
|∇ϕ(x)| < δ/(2Λ) and M−ϕ(x) < −δ/2. Therefore, every time ϕ(x) < ρ we have

−C1ϕ(x0) + Λ|∇ϕ(x0)| −M−ϕ(x0) ≤ −C1ϕ(x0) < 0.

For the points x where ϕ(x) ≥ ρ, we choose C1 large enough so as to obtain a
contradiction. This finishes the proof.

Note that the lower bound provided in Theorem 5.1 involves a weighted integral
of u in the full space Rd. This is obviously something that would not be expected
for a local equation. The following is an immediate corollary of Theorem 5.1 in
which we simply replace the integral in the right hand side by an integral in a
subdomain. In this way, we obtain the weaker version of the result which is more
similar to the weak Harnack inequality for local equations.

Corollary 5.2. Let u be a function which satisfies the following inequality in the
viscosity sense.

ut + Λ|∇u| −M−u ≥ −a in Q1,

Assume that u ≥ 0 in Q1, then

min
[−1/2,0]×B1/2

u ≥ c

(∫
(−1,−1/2]×B1/2

u(t, x) dx dt

)
− a,

where c is a positive constant depending on λ, Λ, α and the dimension d.

Even the result of Corollary 5.2 is not true for second order equations. Instead,
the integral on the right hand side must be replaced with the Lε norm of u in
[−1,−1/2] × B1/2 (See theorem 4.15 in [25]). It is relatively simple to construct
stationary examples of the form u(t, x) = |x|−p for large p, to check that indeed a
small power ε is required in the second order case if Λ/λ is large.

6. Hölder estimates

We first state the Hölder estimates in the case α ≥ 1. This case is relatively easier
than α < 1 because the diffusion is of higher order than the drift. The proof is
a rather standard iterative improvement of oscillation. If the drift term vanishes,
the same proof works for all α ∈ (0, 2).

Theorem 6.1. Assume α ≥ 1. Let u : [−1, 0]× Rd → R be a continuous bounded
function which satisfies the following two inequalities in the viscosity sense

ut + Λ|∇u| −M−u ≥ −A in Q1,

ut − Λ|∇u| −M+u ≤ A in Q1.
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Then, u ∈ Cγ(Q1/2) and there is an estimate

‖u‖Cγ(Q1/2) ≤ C
(
‖u‖L∞([−1,0]×Rd +A

)
.

Here the constant C depends on λ, Λ, α, and the dimension d.

Proof. Replacing u with u/(‖u‖L∞ + A/ε0), we can assume ‖u‖L∞ ≤ 1/2 and
A ≤ ε0. We must now find a universal upper bound for the Hölder norm of u in
Q1/2. We will prove that there for all r > 0,

osc
Qr

u ≤ rγ . (17)

This shows that u is Cγ in space and Cγ/α in time at the point (0, 0). The
regularity is extended to the cylinder Q1/2 by a standard scaling and translation
argument. Therefore, we only need to show (17).

Note that since we have ‖u‖L∞ ≤ 1/2, then (17) holds for all r ≥ 1. We will
show it holds for all r > 0 by induction in r. The inductive step we need to prove
is that if (17) holds for all r > r0, with r0 ≤ 1, then it also holds for all r > r0/2.

So, assume (17) holds for all r > r0. Let us consider the rescaled function

ur0(t, x) := (2R)−γu ((2R)αt, 2Rx) .

This is the scaling for which the values of ur0 in Q1/2 correspond to the values of
u in Qr0 . The function ur0 satisfies the equations

ut + r0
α−1Λ|∇u| −M−u ≥ −r0αε0 in Q1/r0 , (18)

ut − r0α−1Λ|∇u| −M+u ≤ r0αε0 in Q1/r0 . (19)

Since r0 < 1 and α ≥ 1, both powers of r0 in the formula above are less or equal
to one. In particular

ut + Λ|∇u| −M−u ≥ −ε0 in Q1/r0 ,

ut − Λ|∇u| −M+u ≤ ε0 in Q1/r0 .

Moreover, from the inductive hypothesis (17) for r ≥ r0, we have that

osc
Qr

ur0 ≤ rγ for all r ≥ 1/2. (20)

Let m := minQ1 ur0 and M = maxQ1 ur0 . From (20) we know that M −m ≤ 1.
Therefore, for every point (t, x) in Q1 we have at least one of the inequalities
ur0(t, x) ≤ m+1/2 or u(t, x) ≥M−1/2. Thus, one of the following two statements
will hold ∣∣{ur0 < m+ 1/2} ∩ [−1,−1/2]×B1/2

∣∣ > 1

4
|B1/2| or (21)∣∣{ur0 > M − 1/2} ∩ [−1,−1/2]×B1/2

∣∣ > 1

4
|B1/2| (22)
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Without loss of generality, we assume (22) (otherwise, we will proceed with the
rest of the proof with −ur0 instead of ur0).

Note that from (20), we deduce that ur0(t, x) > M − 1 in Q1 and ur0(t, x) >
M − |x|γ for all x /∈ B1 and t ∈ [−1, 0].

Let v(t, x) be the non negative function

v(t, x) = (ur0(t, x)−M + 2γ)
+
.

Note that v ≥ ur0 and for t ∈ [−1, 0] we have v(t, x) − u(t, x) ≤ (|x|γ − 2γ)+.
In particular, u(t, x) = v(t, x) if t ∈ [−1, 0] and x ∈ B2.

Let U(x) = (|x|γ − 2γ)+, so that 0 ≤ v(t, x) − u(t, x) ≤ U(x). The function v
satisfies the following equation (in the viscosity sense)

vt + Λ|∇v| −M−v ≥ −ε0 −M−U in Q1.

Taking γ small, we can make M−U arbitrarily small in B1. Therefore, for small
enough γ,

vt + Λ|∇v| −M−v ≥ −2ε0 in Q1.

We now apply Corollary 5.2 to v and obtain a lower bound in Q1/2,

min
Q1/2

v ≥ c
∫
[−1,−1/2]×B1/2

v dx dt− 2ε0.

We now apply (22) and obtain

min
Q1/2

v ≥ c(2γ − 1/2)− 2ε0 > δ.

This lower bound δ does not depend on γ or ε0 provided that ε0 is sufficiently
small.

Bringing this information back into ur0 , this means that ur0 ≥ M − 2γ + δ in
Q1/2. Here we also choose γ sufficiently small so that 2γ − δ < 1− δ/2. Therefore
we have that oscQ1/2

ur0 ≤ 1− δ/2. This also means that

osc
Qr0/2

u ≤ (1− δ/2)r0
γ .

In particular oscQr u ≤ (1−δ/2)r0
γ for all r < r0. Choosing γ sufficiently small one

last time so that 2−γ > 1− δ/2, we proved that oscQr u ≤ rγ for all r ∈ [r0/2, r0].
This finishes the proof of (17) by induction in r.

We now state and prove the corresponding theorem for α < 1. In this case
the interaction between the diffusion and drift is more subtle and we must make
a change of variables partially following the flow in order to obtain the necessary
cancellation to prove the theorem. This idea originated in [44].

Theorem 6.2. Assume α < 1. Let u : [−1, 0]× Rd → R be a continuous bounded
function which satisfies the following two inequalities in the viscosity sense

ut + b(t, x) · ∇u−M−u ≥ −A in Q1,

ut + b(t, x) · ∇u−M+u ≤ A in Q1.
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Assume that b is a continuous vector field and ‖b(t, ·)‖C1−α(B1) is bounded uni-
formly in t. Then, u ∈ Cγ(Q1/2) and there is an estimate

‖u‖Cγ(Q1/2) ≤ C
(
‖u‖L∞([−1,0]×Rd +A

)
.

Here the constant C depends on λ, Λ, α, and the dimension d.

Proof. The general strategy of the proof is similar to the proof of Theorem 6.1.
The problem in the iterative argument is that in the rescaled equations (18) and
(19), the factor r0

α−1 is large for small values of r0. It is crucial that this factor
remains bounded for the induction argument to succeed.

The solution is to change the shape of the parabolic cylinders we use, so that
they follow the flow. Let us defined the following modified parabolic cylinders.

Q̃r := {(t, x) : |x−X(t)| < r ∧ t ∈ (−rα, 0]} .

Here X(t) is one solution to the backward ODE

X(0) = 0,

X ′(t) = b(t,X(t)), for t < 0.

The corresponding scaled function ũr0 is now

ũr0 = r0
−γu(r0

αt, r0(X(t) + x)).

This function solves the equations

ut + r0
α−1 (b(t, x)− b(t,X(t))) |∇u| −M−u ≥ −r0αε0 in Q1/r0 ,

ut − r0α−1 (b(t, x)− b(t,X(t))) |∇u| −M+u ≤ r0αε0 in Q1/r0 .

The Hölder continuity assumption on b assures that r0
α−1 |b(t, x)− b(t,X(t))| ≤

Λ for some constant Λ > 0. This allows us to continue with the rest of the proof
as in Theorem 6.1.

7. Failure of the Harnack inequality

The Harnack inequality is a property of non negative solutions to some elliptic and
parabolic equations. For parabolic equations, it says that there is some universal
constant C so that if u is a solution of the equation in Q1 which is non negative
in [−1, 0]× Rd, then

sup
[−3/4,−1/2]×B1/2

u ≤ C inf
[−1/4,0]×B1/2

u.

The Harnack inequality holds for some integral equations, for example see [4], [9]
and [1]. Interestingly enough, in the situation of [1], the Harnack inequality holds,
but the solution of the equation is not necessarily continuous.
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It turns out, however, that the Harnack inequality fails for the type of equations
we consider in this paper. In this section, we construct a counterexample.

Let e1 be a the unit vector (1, 0, . . . ) in Rd. Consider the following integral
operator

Lu(x) =

∫
Rd

δyu(x)

|y|d+α
dy +

∫
R

δy1e1u(x)

|y1|1+α
dy.

This operator is in fact the same as

Lu = −c1(−∆)α/2u− c2(−∂x1x1)α/2u.

for some positive constants c1 and c2. We look at the solution to the problem

ut − Lu = f(x) in (0,∞)× Rd,
u(−1, x) = 0 for x ∈ Rd.

(23)

where f = χQε is the indicator function of the set

Kε = {x ∈ Rd : |x1 − 4| < ε and |x′| < ε}.

We used the notation x = (x1, x
′). The operator L we are considering here is

an integral operator with respect to a singular measure (singular along the axis
y′ = 0). That is the only reason why it does not have the form (1). Indeed, in (1)
we implicitly assumed that for every (t, x) the integral equation has a absolutely
continuous measure with density K(t, x, ·). That is a choice for convenience of
notation only. Indeed, the non negative solution u to the equation (23) satisfies
the two inequalities in the viscosity sense

ut −M−u ≥ 0 in Q1,

ut −M+u ≤ 0 in Q1.

So, it is a valid candidate for a Harnack inequality. However, we will prove that

lim
ε→0

u(0, (0, x′))

u(−1/2, 0)
= 0, (24)

provided that x′ 6= 0. This contradicts the parabolic Harnack inequality.
The intuition behind this counterexample is similar to the constructions given

in [7] and [39] (for very different types of kernels). The equation we consider is the
generator of a Levy process with frequent purely horizontal jumps. For ε � 1, a
process starting at the origin would have a much higher chance to exit the domain
at a point with |x1| < ε than a process that starts outside of a band |x1| > δ.

In order to verify (24), we will compute the solution to (23) almost explicitly.
In order to write a formula for u we will use the heat kernel associated with L and
Duhamel formula.

The heat kernel associated with this equation is explicit in Fourier side:

Ĥ(t, ξ) = c exp(−t|ξ|α − t|ξ1|α).
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In real variables, H(t, x) is not explicit. But we know it must be the convolution
of the heat kernel of (−∆)α/2 and the heat kernel of (−∂x1x1). That is

H(t, x) = Φd(t, x) ∗ Φ1(t, x),

where
Φd(t, x) = t−d/αΦd(1, x/t

1/α) =: t−d/αϕd

( x

t1/α

)
.

The exact formula for the d-dimensional fractional hear kernel ϕd is not known.
However, we know that

ϕd(x) ≈ (1 + |x|)−d−α.
Here we use the symbol ≈ to say that the ratio between the left hand side and
right hand side is bounded below and above by positive constants.

The heat kernel Φ1(t, x) is simply the one dimensional heat kernel of the frac-
tional Laplacian in the variable x1. Thus, it is a singular measure supported on
the line x′ = 0 with a density of the form

t−1−αϕ1

( x1
t1/α

)
.

As before, we have ϕ1(x) ≈ (1 + |x|)−1−α.
Using Duhamel formula, and following routine arithmetic manipulations, we

arrive at a formula for u(T, x).

u(T, x) =

∫ T+1

0

∫
Kε

∫
R
t−

d+1
α ϕd

(
x− z − y1e1

t1/α

)
ϕ1

( y1
t1/α

)
dy1 dz dt.

We will first estimate u(−1/2, 0) in terms of ε. That is, we set T = −1/2 and
x = 0.

Assume ε� 1. We obtain a lower bound by restricting the domain of integra-
tion to a smaller domain.

u(−1/2, 0) ≥
∫
Kε

∫ |z′|α
0

∫ −4+ε
−4−ε

t−
d+1
α ϕd

(
−z − y1e1

t1/α

)
ϕ1

( y1
t1/α

)
dy1 dt dz,

In this whole domain of integration we have

ϕd

(
−z − y1e1

t1/α

)
≥ c

(
1 +

ε

t1/α

)−d−α
≥ cε−d−αtd/α+1,

ϕ1

( y1
t1/α

)
≥ c

(
1 +

4

t1/α

)−1−α
≥ ct1+1/α

Therefore

u(−1/2, 0) ≥ cε−d−α+1

∫
Kε

∫ |z′|α
0

t2 dt dz,

= cε2α+1
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Now we estimate u(0, (0, x′)) from above in terms of ε. That is, we set T =
−1/2 and x = (0, x′) for some non zero x′ ∈ Rd−1 with |x′| < 1/2. Using that
ϕd(x) ≤ C|d|−d−α and ϕ1(x) ≤ C|x|−1−α, we get

u(0, (0, x′)) ≤ C
∫ T+1

0

∫
Kε

∫
R
t1−

1
α (|x′ − z′|+ |x1 − z1 − y1|)

−d−α
ϕ1

( y1
t1/α

)
dy1 dz dt.

Since x′ 6= 0, then |x′ − z′| > |x′|/2 provided that ε < |x′|/2. That is, |x′ − z′|
is of order one as ε→ 0. Therefore

u(0, (0, x′)) ≤ C
∫ T+1

0

∫
Kε

∫
R
t1−

1
αϕ1

( y1
t1/α

)
dy1 dz dt,

= C

∫ T+1

0

∫
Kε

t dz dt = Cεd.

So, if d > 1 + 2α, we obtain that u(0, (0, x′))� u(−1/2, 0) as ε→ 0. Therefore
the Harnack inequality does not hold.

Remark 7.1. It is not clear whether the condition d > 1 + 2α is a limitation of
this construction or the standard Harnack inequality actually holds for d ≤ 1+2α.
We leave it as an open question.

8. Applications

In this last section we give a brief summary of applications to the estimates of
Theorems 6.1 and (6.2).

8.1. Fully nonlinear parabolic equations. One of the canonical ap-
plications of the Hölder estimates presented in this paper is the C1,γ regularity for
solutions to the parabolic Isaacs equation.

ut − inf
a

sup
b

∫
Rd
δyu(x)Kab(y) dy = 0.

The Isaacs equation models the value function for the optimal strategy in a
zero-sum stochastic game. For the purpose of this article, we consider games
driven by Levy processes without diffusion. We point out that discontinuous Levy
processes have a number of applications in finance [46] and physics [36].

It is easy to check that if all kernelsKab satisfy the assumptions (5) and (4), then
the incremental quotients vh(x) = (u(x+h)−u(x))/|h| satisfy the assumptions of
Theorem (6.1) or Theorem (6.2). This quickly leads to a C1,γ regularity result for
u at least if the equation holds in the whole space (0,∞)×Rd. If the equation holds
in a bounded domain, there are some extra difficulties. The method is explained
in [40]. The result there applies to a less general class of kernels but it is robust,
since it is based on the Hölder estimates from [34].
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8.2. Active scalar equations. There exist several active scalar equations
of the form

θt +B(θ) · θ + (−∆)α/sθ = 0, (25)

that have attracted attention in recent years. Here B(θ) is a vector field which
depends on the solution θ of the equation. This dependence makes the equation
non linear. Some examples of B which are of interest are the following.

• Conservation laws with fractional diffusion. B(θ) = F ′i (θ). See for
example [21].

• Surface quasi-geostrophic equation. B(θ) = R⊥θ, where R stands for
the Riesz tranform. See for example [29], [12] and [16] among many others.

• Modified surface quasi-geostrophic equation. B(θ) = R⊥(−∆)1−αθ,
where R stands for the Riesz tranform. See for example [15].

• Incompressible flow in porous media. B(θ) = (0,−θ) − ∇p, so that
divB = 0. See for example [17].

The solution to any of these equations is a priori bounded in L∞ from the
maximum principle. The key step in order to prove that they posses a classical
global solution is to be able to obtain a regularity estimate for the solution which
goes beyond L∞. Once a Hölder estimate is established, it can be bootstrapped
into higher regularity using the result from [42] in any of the models above.

Theorem 6.1 gives us a Hölder estimate for conservation laws with critical
fractional diffusion α = 1. It also gives us a Hölder estimate for the modified surface
quasi-geostrophic equation if α ∈ (0, 1). Therefore, the classical well-posedness of
both models follows.

The study of either the surface quasi-geostrophic model or the fluid in porous
media with critical diffusion α = 1 does not follow immediately from Theorem 6.1.
This is because Theorem 6.1 requires the vector field to be bounded and in these
cases B(θ) is a priori only controlled in L∞((0,∞), BMO). A version of Theorem
6.1 for vector fields b ∈ L∞(BMO) was given in [12] provided that div b = 0, but
the result are of very different nature. Indeed, the result in [12] is based on the
variational structure of the equation and uses De Giorgi’s technique.

8.3. The space homogeneous Boltzmann equation. The Boltz-
mann equation models the evolution of dilute gasses. In the space homogeneous
case, the equation takes the form

ft = Q(f, f),

where

Q(g, f) =

∫
Rd

∫
S1

(g(v′∗)f(v′)− g(v∗)f(v)) dσ dv∗

and we write

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ.
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For every fixed g, the operator f 7→ Q(g, f) is an integro-differential operator
which has the form

Q(g, f) = Rgf(v) +

∫
Rd
δv′f(v)Kg(v, v

′ − v) dv′.

The function Rg and the kernel Kg can be computed in terms of g, although
the formula is quite involved.

Under some conditions, the kernel Kf satisfies the assumptions (5) and (4) and
consequently Theorems 6.1 and 6.2 may be used to prove a local Hölder continuity
result for the Boltzmann equation.

In order to apply the result of Theorems 6.1 and 6.2 we would need to consider a
collision kernel without Grad’s angular cutoff condition. Moreover, we should know
a priori that f is bounded below in order to guarantee that Kf satisfies (4). This
last assumption in particular is quite undesirable. In a work in progress of Russell
Schwab and the author, we are developing a more general Hölder estimate which,
for some collision kernels, would only depend on observable quantities associated
with f (mass, energy and entropy).

Note that the regularity of the solutions to the inhomogeneous Boltzmann
equation is rather well understood by completely different methods [18].
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[13] Héctor Chang Lara and Gonzalo Dávila. Regularity for solutions of nonlocal, non-
symmetric equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(6):833–859,
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