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Brownian motion → Laplace Equation

B0 = x

g(Bτ )

Let g : ∂Ω→ R.
Let B be a Brownian motion.
B0 = x

B hits ∂Ω at Bτ .

Let u(x) = E(g(Bτ ))
Then

4u = 0 in Ω

u = g on ∂Ω



Diffusions → Elliptic PDE with coefficients

X0 = x

g(Xτ )

Let g : ∂Ω→ R.
X =

√
AdB (A ≥ 0)

X0 = x

X hits ∂Ω at Xτ .

Let u(x) = E(g(Xτ ))
Then

Aij∂iju = 0 in Ω

u = g on ∂Ω



Stochastic control → Hamilton-Jacobi-Bellman equation

Suppose we can choose the value of the coefficients aij at every
point from a family of choices aαij (α is our control). We want to
minimize the expected value of g(Xτ ).
The function

u(x) = inf
all choices of α at every point

E(g(Xτ ))

solves the equation

inf
α

aαij ∂iju = 0 in Ω

(generic F (D2u) for F concave)

Evans and Krylov 1982: Solutions of these equations are C 2,α.



Optimal stopping → obstacle problem

u(x) = sup
τ

E (ϕ(X x
τ ))

where X x
t is a Brownian motion starting at x and τ is any stopping

time.

4u = 0 where u > ϕ (at the points of no stop)

4u ≤ 0 everywhere in the domain

u ≥ ϕ

A similar model is used in financial mathematics for pricing American options

Frehse 1972: Solutions of this equation are C 1,1.
Caffarelli 1977: The free boundary is smooth except at a small set
of singular points.



Processes with jumps

Integro-differential equations (instead of PDEs) arise when we
consider processes Xt with discontinuities. Processes that jump
from one point to another.

x

g(Xτ )

Xt is a purely jump Lévy process.
u(x) = Eu(Xτ ) solves

∫
Rn

(u(x + y)− u(x))K (y) dy = 0 in Ω

u = g outside Ω



General kernels

∫
Rn

(u(x + y)− u(x))K (y) dy = 0

The kernel K (y) represents the frequency of jumps in every
direction y .

I K (y) ≥ 0 for every y .

I
∫

Rn min(y2, 1)K (y) dy < +∞.

(We will only consider symmetric kernels K(y) = K(−y))



Fractional Laplacian

The most typical case is

Lu(x) = −(−4)σ/2u(x) = c

∫
Rn

(u(x + y)− u(x))
1

|y |n+σ
dy

which is the fractional Laplacian

̂−(−4)σ/2u(ξ) = −|ξ|σû(ξ).

−(−4)σ/2 is for integro-differential equations what 4 is for elliptic PDEs.

The constant c depends on n and σ, and c ≈ (2− σ) as σ → 2.



Obstacle problem for the fractional laplacian

u(x) = sup
τ

E (ϕ(X x
τ ))

where X x
t is an α-stable Lévy process starting at x and τ is any

stopping time.

(−4)α/2u = 0 where u > ϕ (at the points of no stop)

(−4)α/2u ≤ 0 everywhere in Rn

u ≥ ϕ

A similar model is used in financial mathematics for pricing American options

Caffarelli, Salsa, S. 2008: Solutions of this equation are C 1,α/2.
and the free boundary is smooth except at some singular points



elliptic integro-differential equations

We say ∫
Rn

(u(x + y)− u(x))K (y) dy = 0

is uniformly elliptic of order σ ∈ (0, 2) if

I K (y) = K (−y) for every y .

I (2− σ) λ
|y |n+σ ≤ K (y) ≤ (2− σ) Λ

|y |n+σ



Nonlinear integro-differential equations

In the same way as for diffusions, we can consider stochastic
control problems with jumps to obtain nonlinear equations of the
form

0 = Iu(x) := sup
α

∫
Rn

(u(x + y)− u(x))Kα(y) dy



Recovering second order PDEs

Note that the classical PDEs can be recovered from
integro-differential equations in several ways. For example:

4u(x) = lim
s→1
−(−4)su(x)

= lim
r→0

c

rn+2

∫
Br

u(x + y)− u(x) dy



Dirichlet Problem

The natural Dirichlet problem is

Iu(x) = 0 in Ω

u(x) = g(x) in Rn \ Ω

Note that the boundary condition is given in the whole
complement of the domain: Rn \ Ω. This is because of the
nonlocal character of the equation.

It can be shown in fairly good generality that this problem admits
a unique viscosity solution.

What about the regularity?



Uniformly elliptic PDEs

Given 0 < λ < Λ, for second order elliptic PDEs F (D2u) = 0,
ellipticity is defined by the following property of the function F

λ ‖Y ‖ ≤ F (X + Y )− F (X ) ≤ Λ ‖Y ‖

every time Y is a positive matrix.

If F is smooth, this is equivalent to the matrix inequality

λI ≤ ∂F

Xij
≤ ΛI



Pucci’s maximal operator

Uniform ellipticity can also be described by means of the extremal
Pucci operators:

M+(X ) = λ(sum of negative eigenvalues of X )

+ Λ(sum of positive eigenvalues of X )

M−(X ) = Λ(sum of negative eigenvalues of X )

+ λ(sum of positive eigenvalues of X )

Now, F (D2u) = 0 is a uniformly elliptic equation if

M−(Y ) ≤ F (X + Y )− F (X ) ≤ M+(Y )



Regularity results for fully nonlinear PDEs

I Krylov-Safonov Harnack inequality (1979) ⇒ Hölder
estimates.

If u is a bounded function in B1 such that M+u ≥ 0 and M−u ≤ 0
in B1, then u is Hölder continuous in B1/2.

I C 1,α regularity.
If u is a solution to a uniformly elliptic fully nonlinear equation
F (D2u) = 0 in B1 then u ∈ C1,α in B1/2 for some α > 0.

I Evans-Krylov theorem (1982)

If u is a solution to a convex uniformly elliptic fully nonlinear
equation F (D2u) = 0 in B1 then u ∈ C2,α in B1/2 for some α > 0.



Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M+(D2u) = sup
λI≤{aij}≤ΛI

aij∂iju

M−(D2u) = inf
λI≤{aij}≤ΛI

aij∂iju

An integro-differential analog of order σ would be

M+
σ u(x) = sup

λ≤a(y)≤Λ
a(y)=a(−y)

(2− σ)

∫
(u(x + y)− u(x))

a(y)

|y |n+σ
dy



Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M+(D2u) = sup
λI≤{aij}≤ΛI

aij∂iju

M−(D2u) = inf
λI≤{aij}≤ΛI

aij∂iju

An integro-differential analog of order σ would be

M+
σ u(x) = sup

λ≤a(y)≤Λ

2− σ
2

∫
(u(x + y) + u(x − y)− 2u(x))

a(y)

|y |n+σ
dy



Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M+(D2u) = sup
λI≤{aij}≤ΛI

aij∂iju

M−(D2u) = inf
λI≤{aij}≤ΛI

aij∂iju

An integro-differential analog of order σ would be

M+
σ u(x) =

2− σ
2

Z
Rn

Λ(u(x + y) + u(x − y)− 2u(x))+ − λ(. . . )−

|y |n+σ
dy



Uniform ellipticity for nonlocal equations

We say that a nonlocal operator I is uniformly elliptic of order σ if

M−σ v(x) ≤ I(u + v)(x)− Iu(x) ≤ M+
σ v(x)

(σ is always in (0, 2))

Examples:

Lu(x) =

Z
(u(x + y)− u(x))

a(y)

|y |n+σ
dy for λ ≤ a ≤ Λ and a(y) = a(−y)

Iu(x) = inf
α

sup
β

Lαβu(x) for Lαβ linear as the one above

Iu(x) =

Z
G(u(x + y) + u(x − y)− 2u(x))

|y |n+σ
dy G monotone Lipschitz and G(0) = 0



The Harnack inequality

Theorem (Caffarelli, S.)

Let u ≥ 0 in Rn, M−σ u ≤ 0 and M+
σ u ≥ 0 in B2.

Then
sup
B1

u ≤ C inf
B1

u

Important: The constant C does not blow up as σ → 2.

We can understand the condition M−σ u ≤ 0 and M+
σ u ≥ 0 as that there is some kernel

a(x , y) such thatZ
(u(x + y) + u(x − y)− 2u(x))

(2− σ)a(x , y)

|y |n+σ
dy = 0

with λ ≤ a(x , y) ≤ Λ, and a can be very discontinuous.



Hölder estimates

Theorem (Caffarelli, S.)

Let u ∈ L∞(Rn), M−σ u ≤ 0 and M+
σ u ≥ 0 in B2.

Then u ∈ Cα(B1) and

uCα(B1) ≤ C sup
Rn
|u|

Important: The constant C does not blow up as σ → 2.

We can understand the condition M−σ u ≤ 0 and M+
σ u ≥ 0 as that there is some kernel

a(x , y) such thatZ
(u(x + y) + u(x − y)− 2u(x))

(2− σ)a(x , y)

|y |n+σ
dy = 0

with λ ≤ a(x , y) ≤ Λ, and a can be very discontinuous.



Differentiability of solutions

Theorem (Caffarelli, S.)

If I is a nonlocal elliptic operator of order σ and u is a bounded
function such that Iu = 0 in B1, then u ∈ C 1+α(B1/2) and

uC1+α(B1/2) ≤ C

(
sup
Rn
|u|+ |I0|

)

Important: The constant C does not blow up as σ → 2.



More regular solutions for concave problems

Theorem (Caffarelli, S.)

If I is a concave nonlocal elliptic operator of order σ and u is a
bounded function such that Iu = 0 in B1, then u ∈ Cσ+α(B1/2)
and

uCσ+α(B1/2) ≤ C

(
sup
Rn
|u|+ |I0|

)

Important: The constant C does not blow up as σ → 2.
α can also be chosen independently of σ.



Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is
based on the ABP estimate: if M+u ≥ −f in B1, u ≤ 0 on ∂B1,
and Γ is the concave envelope of u in B2 then

c(max
B1

u)n ≤ |∇Γ(B1)| =

∫
{u=Γ}

det(−D2Γ) dx ≤ C

∫
{u=Γ}

f n dx

u

Γ
For integro differential equations, we
need some alternative way to
measure {u = Γ}



Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is
based on the ABP estimate: if M+u ≥ −f in B1, u ≤ 0 on ∂B1,
and Γ is the concave envelope of u in B2 then

c(max
B1

u)n ≤ |∇Γ(B1)| =

∫
{u=Γ}

det(−D2Γ) dx ≤ C

∫
{u=Γ}

f n dx

u

Γ
For integro differential equations, we
need some alternative way to
measure {u = Γ}



No cancellations in the integral

Let x ∈ {u = Γ}, −f (x) ≤ M+u(x)

M+
σ u(x) =

Z
Λ(u(x + y) + u(x − y)− 2u(x))+ − λ(u(x + y) + u(x − y)− 2u(x))−

|y |n+σ
dy

x

u

Γ



No cancellations in the integral

Let x ∈ {u = Γ}, −f (x) ≤ M+u(x)

M+
σ u(x) =

Z
Λ(u(x + y) + u(x − y)− 2u(x))+ − λ(u(x + y) + u(x − y)− 2u(x))−

|y |n+σ
dy

x

u

Γ



One good ring

We compare u(y)− u(x)− y · ∇Γ(x) with A|y |2.

∫
(2− σ)λ(u(x+y)+u(x−y)−2u(x))−

|y |n+σ dy ≤ c f (x)
A

∫
Br

(2−σ)A|y |2
|y |n+σ dy

|{u(y)− u(x)− y · ∇Γ(x) ≤ A|y |2}| ≤ C f (x)
A rn



Catching up with the integrals

Lemma: Assume M+
σ u ≥ −f in B1 (where M+

σ is now the

maximal operator of order σ). u ≤ 0 in Rn \ B1 and Γ is the
concave envelope of u in B3. If u(x) = Γ(x), for
every A > 0 there is ring Rr (x) such that

|Rr∩{u(y) ≤ u(x)−(y−x)·∇Γ(x)−Ar2}| ≤ C
f (x)

A
rn

Rr

Γ(y) ≤ u(x)− (y − x) · ∇Γ(x)− Ar2 for all y in Br/2



Catching up with the integrals

Lemma: Assume M+
σ u ≥ −f in B1 (where M+

σ is now the

maximal operator of order σ). u ≤ 0 in Rn \ B1 and Γ is the
concave envelope of u in B3. If u(x) = Γ(x), for
every A > 0 there is ring Rr (x) such that

|Rr∩{u(y) ≤ u(x)−(y−x)·∇Γ(x)−Ar2}| ≤ C
f (x)

A
rn

Rr

Γ(y) ≤ u(x)− (y − x) · ∇Γ(x)− Ar2 for all y in Br/2



Consequences of the lemma

Around each point x ∈ {u = Γ} there is a (small) ball Br (x) such
that

I u ≥ Γ− Cf (x)r2 in a large proportion of Br (x).

I |∇Γ(Br (x))| ≤ Cf (x)n|Br |.

By covering the whole contact set {u = Γ} with a subfamily of
such balls with finite overlapping we find

|∇Γ(B1)| ≤ C
∣∣{u(x) ≥ Γ(x)− Cr2

0

}∣∣
(r0 is the maximum possible value of r , which depends on σ)



nonlocal ABP

Thus we obtain

c(max u)n ≤ |∇Γ(B1)| ≤ C
∣∣{u(x) ≥ Γ(x)− Cr2

0

}∣∣
which is good enough to carry out the rest of the proof of Harnack
inequality and Hölder estimates.



Difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then
their difference solves

M−(u − v) ≤ 0 ≤ M+(u − v)

One can understand this as a linear equation with a priori
discontinuous coefficients.∫

Rn

((u− v)(x + y) + (u− v)(x − y)− 2(u− v)(x)) K (x , y) dy = 0

where (2− σ) λ
|y |n+σ ≤ K (x , y) ≤ (2− σ) Λ

|y |n+σ with no continuity a
priori in x .



More on difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then

M−(u − v) ≤ 0 ≤ M+(u − v)

which also implies that the integrals of positive and negative
incremental quotients∫

Rn

((u − v)(x + y) + (u − v)(x − y)− 2(u − v)(x))±
1

|y |n+σ
dy

are comparable.



More on difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then

M−(u − v) ≤ 0 ≤ M+(u − v)

which also implies that the integrals of positive and negative
incremental quotients∫

Rn

δy (u − v)(x)±
1

|y |n+σ
dy

are comparable.



C 1,α estimates

The differential quotient wh = u(x+he)−u(x)
h satisfies an equation

M−wh ≤ 0 ≤ M+wh

=⇒ wh is Cα independently of h, and u ∈ C 1,α.

(there is a technical difficulty because u may not be C1 outside of the domain)



Concavity

If I is concave and u is a solution of Iu = 0 then a mollification is
a subsolution.

I(u ∗ η) ≥0

In particular for

δyu(x) := (u(x + y) + u(x − y)− 2u(x))

we have
M+δyu(x) ≥ 0



Concavity

If I is concave and u is a solution of Iu = 0 then a mollification is
a subsolution.

I(u ∗ η) ≥0

In particular for∫
Bh

δyu(x)K (y) dy ∼= u ∗ K −
(∫

K dy

)
u

we have

M+

∫
Bh

δyu(x)K (y) dy ≥ 0



Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

M+δyu(x) ≥ 0

to get u ∈ C 2,α.

The equation has to be used further. In particular that∥∥D2u+
∥∥ ≈ ∥∥D2u−

∥∥



Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

M+δyu(x) ≥ 0

to get u ∈ C 2,α.

The equation has to be used further. In particular that∥∥(D2u(x)− D2u(y))+
∥∥ ≈ ∥∥(D2u(x)− D2u(y))−

∥∥



What is used

Positive and negative parts of the integral control each other.∫
(δyu(x)−δyu(0))+

(2− σ)

|y |n+σ
dy ≈

∫
(δyu(x)−δyu(0))−

(2− σ)

|y |n+σ
dy

Linear integral operators are subsolutions

M+

∫
(δyu(x)− δyu(0))K (y) dy ≥ 0

for any K ≥ 0.



Steps in the proof

Step 1. Prove that the integrals converge absolutely:∫
|δyu(x)|(2− σ)

|y |n+σ
dy ≤ C

Step 2. Prove that the function is Cσ+α.



Scheme of step 2.

We prove that

P(x) :=

∫
(δyu(x)− δyu(0))+

(2− σ)

|y |n+σ
dy ≤ C |x |α

This implies that∫
|δyu(x)− δyu(0)|(2− σ)

|y |n+σ
dy ≤ C |x |α

which immediately implies that u ∈ Cσ+α.



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

P(x) ≤ 1

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

P(x) ≤ 1− θ

θ

1

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

P ≤ (1− θ)2

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

Thus we get P(x) ≤ C |x |α



Inductive argument

We show that for every r ∈ (0, 1),

sup
Br/2

P(x) ≤ (1− θ) sup
Br

P(x) for some θ > 0

P ≤ C |x |α

Thus we get P(x) ≤ C |x |α



The inductive step

x0

P ≤ 1 in B1

Let P(x0) = maxB1/2
P. We want to show P(x0) ≤ (1− θ) for

some θ > 0.



The inductive step

Let P(x0) = maxB1/2
P. We want to show P(x0) ≤ (1− θ) for

some θ > 0.

Recall

P(x0) =

∫
(δyu(x0)− δyu(0))+

(2− σ)

|y |n+σ
dy



The inductive step

Let P(x0) = maxB1/2
P. We want to show P(x0) ≤ (1− θ) for

some θ > 0.

Recall

P(x0) =

∫
(δyu(x0)− δyu(0))

(2− σ)

|y |n+σ
χA dy

where A = {y : δyu(x)− δyu(0) > 0}



A tool: weak Harnack inequality

The following versions of the weak Harnack inequality are available
for sub and super-solutions.

Theorem

Let u ≥ 0 in Rn and M−u ≤ 0 in B1 (supersolution).

|{u > t} ∩ B1| ≤ Ct−ε inf
B1/2

u for every t > 0.

Theorem

If M+u ≥ 0 in B1 (subsolution) then

u(x) ≤ C

∫
Rn

|u(y)|
1 + |y |n+σ

dy in B1/2



First posibility

Since M+
(∫

(δyu(x)− δyu(0)) (2−σ)
|y |n+σχA dy

)
≥ 0, if we had∫

(δyu(x)− δyu(0))
(2− σ)

|y |n+σ
χA dy ≤ (1− Cθ)

in a fraction of B1, we would obtain

P(x0) =

∫
(δyu(x0)− δyu(0))

(2− σ)

|y |n+σ
χA dy ≤ 1− θ

by weak Harnack inequality.
But what if the opposite inequality holds in most of B1?



Second posibility

If ∫
(δyu(x)− δyu(0))

(2− σ)

|y |n+σ
χA dy ≥ (1− Cθ)

in most of B1, that means that the same choice of set A is
approximately optimal to compute P(x) in most of B1.

∫
(δyu(x)−δyu(0))+

(2− σ)

|y |n+σ
dy ≈

∫
(δyu(x)−δyu(0))

(2− σ)

|y |n+σ
χA dy

with the same set A for most x ∈ B1.



Second posibility

If ∫
(δyu(x)− δyu(0))

(2− σ)

|y |n+σ
χA dy ≥ (1− Cθ)

in most of B1, that means that the same choice of set A is
approximately optimal to compute P(x) in most of B1.

∫
(δyu(x)−δyu(0))−

(2− σ)

|y |n+σ
dy ≈

∫
(δyu(x)−δyu(0))

(2− σ)

|y |n+σ
χAc dy

with the same set A for most x ∈ B1.



The punchline

If we have
∫

(δyu(x)− δyu(0))+ (2−σ)
|y |n+σ dy very positive in most of

B1

But then we can apply weak Harnack and obtain that∫
(δyu(x)− δyu(0)) (2−σ)

|y |n+σχAc dy is strictly negative for all x ∈ B1/2

This is a contradiction at x = 0!

This finishes the proof of the inductive step ⇒ P(x) ≤ C |x |α ⇒
u ∈ Cσ+α.



The punchline
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This finishes the proof of the inductive step ⇒ P(x) ≤ C |x |α ⇒
u ∈ Cσ+α.
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The punchline

If we have
∫

(δyu(x)− δyu(0)) (2−σ)
|y |n+σχAc dy very negative in most

of B1

But then we can apply weak Harnack and obtain that∫
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This is a contradiction at x = 0!

This finishes the proof of the inductive step ⇒ P(x) ≤ C |x |α ⇒
u ∈ Cσ+α.
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