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Brownian motion — Laplace Equation

Let g: 002 — R.
Let B be a Brownian motion.
By = x

B hits 992 at B,.

Let u(x) = E(g(B,))
Then

Au=0inQ
u =g on 0f2




Diffusions — Elliptic PDE with coefficients

Let g : 0Q — R.
X = VAdB (A >0)
Xo=x

X hits 0Q at X.
Let u(x) = E(g(X,))
Then
A,-j@,-ju =0inQ
u=g on 022




Stochastic control — Hamilton-Jacobi-Bellman equation

Suppose we can choose the value of the coefficients a;; at every
point from a family of choices aj (v is our control). We want to
minimize the expected value of g(X;).

The function

u(x) = inf  E(g(X,))

all choices of o at every point

solves the equation
o an
|2f a;0ju=101inQ
(generic F(D?u) for F concave)

Evans and Krylov 1982: Solutions of these equations are C%.



Optimal stopping — obstacle problem

u(x) = sup E(p(X7))

where X[ is a Brownian motion starting at x and 7 is any stopping
time.

Au = 0 where u > (@ (at the points of no stop)
Au <0 everywhere in the domain

uze

A similar model is used in financial mathematics for pricing American options

Frehse 1972: Solutions of this equation are C!.
Caffarelli 1977: The free boundary is smooth except at a small set
of singular points.



Processes with jumps

Integro-differential equations (instead of PDEs) arise when we
consider processes X; with discontinuities. Processes that jump
from one point to another.

X; is a purely jump Lévy process.
u(x) = Eu(X;) solves

/ (ulx +y) — u()K() dy =0n ©

u = g outside Q



General kernels

[ (ux+y) ~ wGOIK(y) dy =0

The kernel K(y) represents the frequency of jumps in every
direction y.

» K(y) > 0 for every y.

> g min(y?,1)K(y) dy < +oo.

(We will only consider symmetric kernels K(y) = K(—y))



Fractional Laplacian

The most typical case is

X N)o/? =c u(x —ux#
Lu(x) = ~(=2"2u(x) = < [ (ulx-+y) = u(0) ez dy

which is the fractional Laplacian
—(=2)72u(€) = —[¢]7u(€).

7(7A)”/2 is for integro-differential equations what A is for elliptic PDEs.

The constant ¢ depends on nand o, and c & (2 — o) as 0 — 2.



Obstacle problem for the fractional laplacian

u(x) = sup E((X?))

where X[ is an a-stable Lévy process starting at x and 7 is any
stopping time.

(—A)a/zu =0 where u> (@ (at the points of no stop)
(=A)*2u <0 everywhere in R"
uze

A similar model is used in financial mathematics for pricing American options

Caffarelli, Salsa, S. 2008: Solutions of this equation are C1%/2,
and the free boundary is smooth except at some singular points



elliptic integro-differential equations

We say
(Wbt y) —uB))K(y) dy =0
is uniformly elliptic of order o € (0, 2) if

» K(y) = K(—y) for every y.
> 2-0)ppe < K() < (2 0) e




Nonlinear integro-differential equations

In the same way as for diffusions, we can consider stochastic
control problems with jumps to obtain nonlinear equations of the
form

0= Tu(x) i=sup | (ulx+y) = u(x)Kaly) dy

«



Recovering second order PDEs

Note that the classical PDEs can be recovered from

integro-differential equations in several ways. For example

Au(x) = lim —(=A)u(x)

= |lim

c
— —u(x)d
fim 5z [ e 9) = w0 dy



Dirichlet Problem

The natural Dirichlet problem is

Iu(x) =01in Q
u(x) =g(x) in R"\ Q
Note that the boundary condition is given in the whole

complement of the domain: R" \ Q. This is because of the
nonlocal character of the equation.

It can be shown in fairly good generality that this problem admits
a unique viscosity solution.

What about the regularity?



Uniformly elliptic PDEs

Given 0 < A < A, for second order elliptic PDEs F(D?u) = 0,
ellipticity is defined by the following property of the function F

MY < F(X+Y) = F(X) < AflY]l

every time Y is a positive matrix.

If F is smooth, this is equivalent to the matrix inequality

oF
M < — <A
S5 S

)



Pucci’'s maximal operator

Uniform ellipticity can also be described by means of the extremal
Pucci operators:

M7 (X) = A(sum of negative eigenvalues of X)

+ A(sum of positive eigenvalues of X)
M™(X) = A(sum of negative eigenvalues of X)

+ A(sum of positive eigenvalues of X)

Now, F(D?u) = 0 is a uniformly elliptic equation if

M~=(Y) < F(X +Y) = F(X) < M*(Y)



Regularity results for fully nonlinear PDEs

» Krylov-Safonov Harnack inequality (1979) = Holder
estimates.

If u is a bounded function in By such that MTu >0 and M~ u <0
in By, then u is Hélder continuous in By ;.

> CL regularity.

If u is a solution to a uniformly elliptic fully nonlinear equation
F(D?u) =0 in By then u € CH® in By, for some o > 0.

» Evans-Krylov theorem (1982)

If u is a solution to a convex uniformly elliptic fully nonlinear
equation F(D?u) = 0 in By then u € C>* in By, for some o > 0.



Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M*t(D?u) = sup  a;0ju
N <{az}<AI

M~ (D?u) = inf ii0ii

(D7) Als{lgy}smajaju

An integro-differential analog of order ¢ would be

Mfu(x)= sup (2—0) /(u(x +y) — u(x)) 8(320 d
A<a(y)<A |)/|
a(y)=a(—y)




Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M*t(D?u) = sup  a;0ju
M <{aj}<NI

M~ (D?u) = inf 10

(D) M<fag < STOTY

An integro-differential analog of order ¢ would be

Mfu(x) = sup 270 (u(x+y)+u(x—y)—2u(x)) |;|(3/+)U




Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

M*T(D?u) =  sup  a;Oju
M <{aj}<AI
M~(D?u) = inf  a;0;
(D%u) /\lg{lgj}gAIaJaJu

An integro-differential analog of order o would be

. 2—0/‘ AMu(x+y)+ulx—y)=2u(x)" = X(...)"
Rn

2 |y|n+cr dy



Uniform ellipticity for nonlocal equations

We say that a nonlocal operator I is uniformly elliptic of order o if
M v(x) < I(u + v)(x) — Lu(x) < M} v(x)

(o is always in (0,2))

Examples:
_ ay) _
Lu(x)= [ (u(x+y)— u(x))| e dy for A\ < a<Aand a(y) =a(—y)
y
Lu(x) = infsup Logu(x) for Lo linear as the one above
«@
B

Tu(x) = / Clulx+y) £ ulx = ) = 2u(x)) dy G monotone Lipschitz and G(0) =0

|y|n+a



The Harnack inequality

Theorem (Caffarelli, S.)

Let u>0inR", M;u<0and M u>0in B,.
Then

supu < Cinfu
B: By

Important: The constant C does not blow up as ¢ — 2.

We can understand the condition M, u < 0 and M u > 0 as that there is some kernel
a(x,y) such that

(2= 0)a(x,y)
y|re

/(u(x+y) + u(x — y) — 2u(x)) dy=0

with A < a(x,y) <A, and a can be very discontinuous.



Holder estimates

Theorem (Caffarelli, S.)
Let u € L®(R"), M u <0 and M}ju >0 in B;.
Then u € C*(By) and

Uca(py) < CSﬂlgnplu|

Important: The constant C does not blow up as o — 2.

We can understand the condition M; u < 0 and M} u > 0 as that there is some kernel
a(x,y) such that

(2 -0g)a(x,y)
|y|n+(7

[t 9) + ulx = y) = 20() dy =0

with A < a(x,y) < A, and a can be very discontinuous.



Differentiability of solutions

Theorem (Caffarelli, S.)

If 1 is a nonlocal elliptic operator of order o and u is a bounded
function such that lu = 0 in By, then u € C**%(B, ) and

UCHO‘(Bl/g) S C (Sﬁlél,!) |U| + |IO|>

Important: The constant C does not blow up as o — 2.



More regular solutions for concave problems

Theorem (Caffarelli, S.)

If 1 is a concave nonlocal elliptic operator of order o and u is a
bounded function such that Tu = 0 in By, then u € C7*(By )
and

Ucata(g, ) < C (SIE,P’U’ + |/O|>

Important: The constant C does not blow up as o — 2.
« can also be chosen independently of o.



Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is
based on the ABP estimate: if MTu > —f in By, u <0 on 0B,
and I is the concave envelope of u in By then

c(maxu)" < |VI(B1)| :/ det(—D?T) dx < C fmdx
B {u=r} {u=r}



Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is
based on the ABP estimate: if MTu > —f in By, u <0 on 0B,
and I is the concave envelope of u in By then

C(mBax u)" < |VI(B)
1
For integro differential equations, we

need some alternative way to
measure {u =T}



No cancellations in the integral

Let x € {u =T}, —f(x) < MTu(x)

M2 u(x) = / Au(x +y) + u(x — y) — 2u(x))" — Mu(x +y) + u(x — y) — 2u(x))~ dy
ly|mte




No cancellations in the integral

Let x € {u=T}, —f(x) < MTu(x)

_ — Mulx + y) + u(x — y) — 2u(x))"
M) = [ e dy




One good ring

We compare u(y) — u(x) — y - VI(x) with Aly|2.

f(z_0_))\(u(x+y)+u(x—y)—2u(x))’ dy <c fB (2— UA|y|2 dy

[y|re syl

VT (x) < Aly[2} < c5G2pm



Catching up with the integrals

Lemma: Assume M u > —f in By (where M} is now the
maximal operator of order o). U < 0 in R™\ By and I is the
concave envelope of u in Bs. If u(x) =T(x), for
every A > 0 there is ring R,(x) such that

IR {u(y) < u(x)—(y—x)-VI(x)—Ar’}| < C@r"




Catching up with the integrals

Lemma: Assume M u > —f in By (where M} is now the
maximal operator of order o). U < 0 in R™\ By and I is the
concave envelope of u in Bs. If u(x) =T(x), for
every A > 0 there is ring R,(x) such that

IR {u(y) < u(x)—(y—x)-VI(x)—Ar’}| < C%r"

M(y) < u(x)—(y —x) - VI(x) — Ar? forall y in B, ),



Consequences of the lemma

Around each point x € {u =T} there is a (small) ball B,(x) such
that

» u>T — Cf(x)r? in a large proportion of B,(x).
> [VI(B(x))] < CF(x)"| Byl

By covering the whole contact set {u = I'} with a subfamily of
such balls with finite overlapping we find

VI(B1)| < C|{u(x) > T(x) - Crg }|

(rg is the maximum possible value of r, which depends on o)



nonlocal ABP

Thus we obtain
c(maxu)" < |V (By)| < C{u(x) > T(x) — Crg }|

which is good enough to carry out the rest of the proof of Harnack
inequality and Holder estimates.



Difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then
their difference solves

M~ (u—v)<0< M (u—v)

One can understand this as a linear equation with a priori
discontinuous coefficients.

/n((u —v)(x+y)+(u—v)(x—y) =2(u-v)(x)) K(x,y) dy =0

where (2 — o) |y"n\+g < K(x,y) <(2- J)M% with no continuity a
priori in x.



More on difference of solutions

If v and v are solutions to the same equation Iu = Iv = 0, then

M~ (u—v) <0< M (u—v)

which also implies that the integrals of positive and negative
incremental quotients

1

(=)o) + (= ) =) = 2= ) o d

are comparable.

y



More on difference of solutions

If v and v are solutions to the same equation Iu = Iv = 0, then

M~ (u—v) <0< M (u—v)

which also implies that the integrals of positive and negative
incremental quotients

1
Sy(u—v)(x)F—— dy
[ =00 o

are comparable.



CL estimates

The differential quotient wy, = w satisfies an equation

M w, <0< M+Wh

=—> wp is C* independently of h, and u € Cle,

(there is a technical difficulty because u may not be C! outside of the domain)



Concavity

If Iis concave and u is a solution of Iu = 0 then a mollification is
a subsolution.
I(uxn) =0

In particular for
dyu(x) == (u(x +y) + u(x — y) — 2u(x))

we have
M*§,u(x) >0



Concavity

If I is concave and u is a solution of Iu = 0 then a mollification is

a subsolution.
I(ux*n) >0

In particular for
Syu(x)K(y)dy Zux K — </K dy) u
By

we have

M* [ S,u(x)K(y)dy >0
By



Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have
M*é,u(x) >0

to get u € C>°.

The equation has to be used further. In particular that

D] ~ [[0%u |



Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have
M*é,u(x) >0

to get u € C>°.

The equation has to be used further. In particular that

I(D?u(x) = D2u(y))*|| ~ [|(D*u(x) = D*u(y))"|



What is used

Positive and negative parts of the integral control each other.

(2—-0) _(2-0)

J@ut=s,u0) B2 ay = [(5,u0-5,000) 22 ay
Linear integral operators are subsolutions
M+ [ (6,0 - 8,u()K(y) dy = 0

for any K > 0.



Steps in the proof

Step 1. Prove that the integrals converge absolutely:

/’5 ’n+o) dy S ¢

Step 2. Prove that the function is Co1,



Scheme of step 2.

We prove that

PO = [@,u() - 5yu(0)>+(|2y|;? dy < Clx|°

This implies that

[ 13,0 = 5,000 B2 ay < e

which immediately implies that u € C7T2,



Inductive argument

We show that for every r € (0, 1),

sup P(x)
Br/2

<(1-9) s;p P(x)

for some 8 >0

DA



Inductive argument

We show that for every r € (0, 1),

sup P(x)
Br/2

<(1-9) s;p P(x)

for some 8 >0



Inductive argument

We show that for every r € (0, 1),

sup P(x)
Br/2

<(1-9) s;p P(x)

for some 8 >0

DA



Inductive argument

We show that for every r € (0, 1)

sup P(x) <(1-6) sup P(x)
B, />

for some 0 >0




Inductive argument

We show that for every r € (0, 1)

sup P(x) <(1-6) sup P(x)
B, />

for some 0 >0




Inductive argument

We show that for every r € (0, 1)

sup P(x) <(1-6) sup P(x)
B, />

for some 0 >0




Inductive argument

We show that for every r € (0, 1),

sup P(x)
Br/2

<(1-9) s;p P(x)

for some 8 >0

Thus we get P(x) < Clx|*

DA



The inductive step

%y

some 6 > 0.

Let P(xp) = maxg, , P. We want to show P(xg) < (1 — 6) for

DA



The inductive step

Let P(xp) = maxg, , P. We want to show P(xp) < (1 — 6) for
some 6 > 0.

Recall

Peo) = [(,ut0) — 3,u00) 22




The inductive step

Let P(xp) = maxg, , P. We want to show P(xp) < (1 — 6) for
some 6 > 0.

Recall
Peo) = [ (6yu00) = 8,u(0) 2T s ay

where A = {y : 6, u(x) — 6,u(0) > 0}



A tool: weak Harnack inequality
The following versions of the weak Harnack inequality are available
for sub and super-solutions.
Theorem

Let u>0inR" and M—u < 0 in By (supersolution).

Hu>tinB| < Ct* énf u for every t > 0.
1/2

Theorem
If Mtu >0 in By (subsolution) then

u(y .
u(x) < C/Rnl—!—\(y|)”|+‘7 dy in By /o



First posibility

Since M+ (f((syu( ) — 6,u(0)) 252 xa dy) > 0, if we had

2 —
/((5yu(x) _ 5yu(0))(‘|n+a) wady < (1— CO)
in a fraction of By, we would obtain

Pea) = [u0) ~ 8,000 P xady <1

by weak Harnack inequality.
But what if the opposite inequality holds in most of B;?



Second posibility

/ (6, u(x) — (0))(| |m) Ady > (1— CO)

in most of By, that means that the same choice of set A is
approximately optimal to compute P(x) in most of Bj.

/ <5yu(x)—5yu(0))+(|;;? dy =~ [0~ u(o»mm

with the same set A for most x € B;.



Second posibility

/ (6, u(x) — (0))(| |m) Ady > (1— CO)

in most of By, that means that the same choice of set A is
approximately optimal to compute P(x) in most of Bj.

Jut0-6,00) B2 ay~ [(6,u00-0,u0) v ay

with the same set A for most x € B;.



The punchline

If we have [(d,u(x) — 6yu(0))+|(y2‘_T02 dy very positive in most of
B:



The punchline

If we have [(d,u(x) — @u(O))‘ﬁT’? dy very negative in most of
B:



The punchline

If we have [(d,u(x) — 5yu(0))‘(;‘_T02XAC dy very negative in most
of Bl



The punchline

If we have [(d,u(x) — 5yU(0))(

\ng Yac dy very negative in most
of Bl

But then we can apply weak Harnack and obtain that
J(6yu(x) — 5yu(0))|(§‘_Ta<2XAC dy is strictly negative for all x € By,



The punchline

If we have [(d,u(x) — 5yU(0))(

\ng Yac dy very negative in most
of Bl

But then we can apply weak Harnack and obtain that
J(6yu(x) — 5yu(0))|(§‘_Ta<2XAC dy is strictly negative for all x € By,

This is a contradiction at x = 0!



The punchline

If we have [(d,u(x) — 5yU(0))(

\ng Yac dy very negative in most
of Bl

But then we can apply weak Harnack and obtain that
J(6yu(x) — 5yu(0))|(§‘_Ta<2XAC dy is strictly negative for all x € By,

This is a contradiction at x = 0!

This finishes the proof of the inductive step = P(x) < C|x|* =
ue Cote,
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