Results in nonlocal elliptic equations

Luis Silvestre

University of Chicago

joint work with Luis Caffarelli

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Outline

Introduction

Stochastic processes and PDEs Stochastic control

Integro-differential equations

Jump processes Integro-differential equations

Regularity results

Uniform ellipticity Harnack Inequality Differentiability of solutions

Some ideas in the proofs

A nonlocal ABP estimate. The difference of solutions satisfies an equation The nonlocal Evans-Krylov theorem The proof of the nonlocal Evans-Krylov

Brownian motion \rightarrow Laplace Equation

Let $g : \partial \Omega \to \mathbb{R}$. Let B be a Brownian motion. $B_0 = x$ B hits $\partial \Omega$ at B_{τ} . Let $u(x) = \mathbb{E}(g(B_{\tau}))$ Then $\triangle u = 0$ in Ω

$$u = g$$
 on $\partial \Omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diffusions \rightarrow Elliptic PDE with coefficients

Let $g: \partial \Omega \to \mathbb{R}$. $X = \sqrt{A}dB \ (A \ge 0)$ $X_0 = x$ X hits $\partial \Omega$ at X_{τ} . Let $u(x) = \mathbb{E}(g(X_{\tau}))$ Then

$$egin{aligned} \mathsf{A}_{ij}\partial_{ij}\,&=0 ext{ in }\Omega\ &u=g ext{ on }\partial\Omega \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stochastic control \rightarrow Hamilton-Jacobi-Bellman equation

Suppose we can choose the value of the coefficients a_{ij} at every point from a family of choices a_{ij}^{α} (α is our control). We want to minimize the expected value of $g(X_{\tau})$. The function

$$u(x) = \inf_{ ext{ all choices of } lpha ext{ at every point}} \mathbb{E}(g(X_{ au}))$$

solves the equation

$$\inf_{\alpha} a_{ij}^{\alpha} \partial_{ij} u = 0 \text{ in } \Omega$$

(generic $F(D^2u)$ for F concave)

Evans and Krylov 1982: Solutions of these equations are $C^{2,\alpha}$.

Optimal stopping \rightarrow obstacle problem

$$u(x) = \sup_{\tau} E(\varphi(X_{\tau}^{x}))$$

where X_t^x is a Brownian motion starting at x and τ is any stopping time.

$$igtriangleup u = 0$$
 where $u > arphi$ (at the points of no stop)
 $igtriangleup u \le 0$ everywhere in the domain
 $u \ge arphi$

A similar model is used in financial mathematics for pricing American options

Frehse 1972: Solutions of this equation are $C^{1,1}$. Caffarelli 1977: The free boundary is smooth except at a small set of singular points.

Processes with jumps

Integro-differential equations (instead of PDEs) arise when we consider processes X_t with discontinuities. Processes that jump from one point to another.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General kernels

$$\int_{\mathbb{R}^n} (u(x+y) - u(x)) K(y) \, \mathrm{d}y = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The kernel K(y) represents the frequency of jumps in every direction y.

(We will only consider symmetric kernels K(y) = K(-y))

Fractional Laplacian

The most typical case is

$$Lu(x) = -(-\triangle)^{\sigma/2}u(x) = c \int_{\mathbb{R}^n} (u(x+y) - u(x)) \frac{1}{|y|^{n+\sigma}} \, \mathrm{d}y$$

which is the fractional Laplacian

$$-(\widehat{-\bigtriangleup)^{\sigma/2}}u(\xi)=-|\xi|^{\sigma}\widehat{u}(\xi).$$

 $-(-\triangle)^{\sigma/2}$ is for integro-differential equations what \triangle is for elliptic PDEs.

The constant c depends on n and σ , and $c \approx (2 - \sigma)$ as $\sigma \rightarrow 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Obstacle problem for the fractional laplacian

$$u(x) = \sup_{\tau} E(\varphi(X_{\tau}^{x}))$$

where X_t^x is an α -stable Lévy process starting at x and τ is any stopping time.

$$(-\triangle)^{lpha/2}u = 0$$
 where $u > \varphi$ (at the points of no stop)
 $(-\triangle)^{lpha/2}u \le 0$ everywhere in \mathbb{R}^n
 $u \ge \varphi$

A similar model is used in financial mathematics for pricing American options

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Caffarelli, Salsa, S. 2008: Solutions of this equation are $C^{1,\alpha/2}$. and the free boundary is smooth except at some singular points

elliptic integro-differential equations

We say

$$\int_{\mathbb{R}^n} (u(x+y) - u(x)) \mathcal{K}(y) \, \mathrm{d}y = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is uniformly elliptic of order $\sigma \in (0,2)$ if

•
$$K(y) = K(-y)$$
 for every y.
• $(2 - \sigma) \frac{\lambda}{|y|^{n+\sigma}} \le K(y) \le (2 - \sigma) \frac{\Lambda}{|y|^{n+\sigma}}$

Nonlinear integro-differential equations

In the same way as for diffusions, we can consider stochastic control problems with jumps to obtain nonlinear equations of the form

$$0 = \mathrm{I} u(x) := \sup_{\alpha} \int_{\mathbb{R}^n} (u(x+y) - u(x)) \mathcal{K}_{\alpha}(y) \, \mathrm{d} y$$

Note that the classical PDEs can be recovered from integro-differential equations in several ways. For example:

$$\Delta u(x) = \lim_{s \to 1} -(-\Delta)^s u(x)$$

=
$$\lim_{r \to 0} \frac{c}{r^{n+2}} \int_{B_r} u(x+y) - u(x) \, \mathrm{d}y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dirichlet Problem

The natural Dirichlet problem is

$$Iu(x) = 0$$
 in Ω
 $u(x) = g(x)$ in $\mathbb{R}^n \setminus \Omega$

Note that the boundary condition is given in the whole complement of the domain: $\mathbb{R}^n \setminus \Omega$. This is because of the nonlocal character of the equation.

It can be shown in fairly good generality that this problem admits a unique *viscosity* solution.

What about the regularity?

Uniformly elliptic PDEs

Given $0 < \lambda < \Lambda$, for second order elliptic PDEs $F(D^2u) = 0$, ellipticity is defined by the following property of the function F

$$\lambda \|Y\| \le F(X+Y) - F(X) \le \Lambda \|Y\|$$

every time Y is a positive matrix.

If F is smooth, this is equivalent to the matrix inequality

$$\lambda I \leq \frac{\partial F}{X_{ij}} \leq \Lambda I$$

Pucci's maximal operator

Uniform ellipticity can also be described by means of the extremal Pucci operators:

$$M^+(X) = \lambda$$
(sum of negative eigenvalues of X)
+ Λ (sum of positive eigenvalues of X)
 $M^-(X) = \Lambda$ (sum of negative eigenvalues of X)
+ λ (sum of positive eigenvalues of X)

Now, $F(D^2u) = 0$ is a uniformly elliptic equation if

$$M^-(Y) \leq F(X+Y) - F(X) \leq M^+(Y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Regularity results for fully nonlinear PDEs

 ▶ Krylov-Safonov Harnack inequality (1979) ⇒ Hölder estimates.

> If u is a bounded function in B_1 such that $M^+ u \ge 0$ and $M^- u \le 0$ in B_1 , then u is Hölder continuous in $B_{1/2}$.

• $C^{1,\alpha}$ regularity.

If u is a solution to a uniformly elliptic fully nonlinear equation $F(D^2u) = 0$ in B_1 then $u \in C^{1,\alpha}$ in $B_{1/2}$ for some $\alpha > 0$.

Evans-Krylov theorem (1982)

If u is a solution to a **convex** uniformly elliptic fully nonlinear equation $F(D^2u) = 0$ in B_1 then $u \in C^{2,\alpha}$ in $B_{1/2}$ for some $\alpha > 0$.

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$M^+(D^2u) = \sup_{\lambda I \le \{a_{ij}\} \le \Lambda I} a_{ij}\partial_{ij}u$$

 $M^-(D^2u) = \inf_{\lambda I \le \{a_{ij}\} \le \Lambda I} a_{ij}\partial_{ij}u$

An integro-differential analog of order σ would be

$$M_{\sigma}^{+}u(x) = \sup_{\substack{\lambda \leq a(y) \leq \Lambda \\ a(y) = a(-y)}} (2 - \sigma) \int (u(x + y) - u(x)) \frac{a(y)}{|y|^{n + \sigma}} \, \mathrm{d}y$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$M^{+}(D^{2}u) = \sup_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij}\partial_{ij}u$$
$$M^{-}(D^{2}u) = \inf_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij}\partial_{ij}u$$

An integro-differential analog of order σ would be

$$M_{\sigma}^+u(x) = \sup_{\lambda \leq a(y) \leq \Lambda} \frac{2-\sigma}{2} \int \left(u(x+y) + u(x-y) - 2u(x)\right) \frac{a(y)}{|y|^{n+\sigma}} \, \mathrm{d}y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$M^{+}(D^{2}u) = \sup_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij}\partial_{ij}u$$
$$M^{-}(D^{2}u) = \inf_{\lambda I \leq \{a_{ij}\} \leq \Lambda I} a_{ij}\partial_{ij}u$$

An integro-differential analog of order σ would be

$$M_{\sigma}^{+}u(x) = \frac{2-\sigma}{2} \int_{\mathbb{R}^{n}} \frac{\Lambda(u(x+y) + u(x-y) - 2u(x))^{+} - \lambda(\dots)^{-}}{|y|^{n+\sigma}} \, \mathrm{d}y$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Uniform ellipticity for nonlocal equations

We say that a nonlocal operator I is uniformly elliptic of order σ if

$$M_{\sigma}^{-}v(x) \leq \mathrm{I}(u+v)(x) - \mathrm{I}u(x) \leq M_{\sigma}^{+}v(x)$$

 $(\sigma \text{ is always in } (0,2))$

Examples:

$$Lu(x) = \int (u(x+y) - u(x)) \frac{a(y)}{|y|^{n+\sigma}} \, \mathrm{d}y \qquad \text{for } \lambda \le a \le \Lambda \text{ and } a(y) = a(-y)$$

$$Iu(x) = \inf_{\alpha} \sup_{\beta} L_{\alpha\beta} u(x) \qquad \text{for } L_{\alpha\beta} \text{ linear as the one above}$$

$$Iu(x) = \int \frac{G(u(x+y) + u(x-y) - 2u(x))}{|y|^{n+\sigma}} \, \mathrm{d}y \qquad G \text{ monotone Lipschitz and } G(0) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Harnack inequality

Theorem (Caffarelli, S.) Let $u \ge 0$ in \mathbb{R}^n , $M_{\sigma}^- u \le 0$ and $M_{\sigma}^+ u \ge 0$ in B_2 . Then $\sup_{B_1} u \le C \inf_{B_1} u$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.

We can understand the condition $M_{\sigma}^{-} u \leq 0$ and $M_{\sigma}^{+} u \geq 0$ as that there is some kernel a(x, y) such that

$$\int (u(x+y) + u(x-y) - 2u(x)) \frac{(2-\sigma)a(x,y)}{|y|^{n+\sigma}} \, \mathrm{d}y = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $\lambda \leq a(x, y) \leq \Lambda$, and *a* can be very discontinuous.

Hölder estimates

Theorem (Caffarelli, S.) Let $u \in L^{\infty}(\mathbb{R}^n)$, $M_{\sigma}^- u \leq 0$ and $M_{\sigma}^+ u \geq 0$ in B_2 . Then $u \in C^{\alpha}(B_1)$ and $u_{C^{\alpha}(B_1)} \leq C \sup_{\mathbb{R}^n} |u|$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.

We can understand the condition $M_{\sigma}^- u \le 0$ and $M_{\sigma}^+ u \ge 0$ as that there is some kernel a(x, y) such that

$$\int (u(x+y) + u(x-y) - 2u(x)) \frac{(2-\sigma)a(x,y)}{|y|^{n+\sigma}} \, \mathrm{d}y = 0$$

with $\lambda \leq a(x, y) \leq \Lambda$, and *a* can be very discontinuous.

Differentiability of solutions

Theorem (Caffarelli, S.)

If I is a nonlocal elliptic operator of order σ and u is a bounded function such that Iu = 0 in B_1 , then $u \in C^{1+\alpha}(B_{1/2})$ and

$$u_{C^{1+\alpha}(B_{1/2})} \leq C\left(\sup_{\mathbb{R}^n} |u| + |I_0|\right)$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.

More regular solutions for concave problems

Theorem (Caffarelli, S.)

If I is a **concave** nonlocal elliptic operator of order σ and u is a bounded function such that Iu = 0 in B_1 , then $u \in C^{\sigma+\alpha}(B_{1/2})$ and

$$u_{C^{\sigma+lpha}(B_{1/2})} \leq C\left(\sup_{\mathbb{R}^n} |u| + |I0|\right)$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$. α can also be chosen independently of σ .

Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is based on the ABP estimate: if $M^+u \ge -f$ in B_1 , $u \le 0$ on ∂B_1 , and Γ is the concave envelope of u in B_2 then

$$c(\max_{B_1} u)^n \le |\nabla \Gamma(B_1)| = \int_{\{u=\Gamma\}} \det(-D^2 \Gamma) \, \mathrm{d} x \le C \int_{\{u=\Gamma\}} f^n \, \mathrm{d} x$$

Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is based on the ABP estimate: if $M^+u \ge -f$ in B_1 , $u \le 0$ on ∂B_1 , and Γ is the concave envelope of u in B_2 then

$$c(\max_{B_1} u)^n \le |\nabla \Gamma(B_1)| = \int_{\{u=\Gamma\}} \det(-D^2 \Gamma) \, \mathrm{d}x \le C \int_{\{u=\Gamma\}} f^n \, \mathrm{d}x$$

For integro differential equations, we need some alternative way to measure $\{u = \Gamma\}$

No cancellations in the integral

Let
$$x \in \{u = \Gamma\}$$
, $-f(x) \leq M^+ u(x)$

$$M_{\sigma}^+ u(x) = \int \frac{\Lambda(u(x+y) + u(x-y) - 2u(x))^+ - \lambda(u(x+y) + u(x-y) - 2u(x))^-}{|y|^{n+\sigma}} dy$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

No cancellations in the integral

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

One good ring

We compare
$$u(y) - u(x) - y \cdot \nabla \Gamma(x)$$
 with $A|y|^2$.

$$\int (2-\sigma) \frac{\lambda(u(x+y)+u(x-y)-2u(x))^-}{|y|^{n+\sigma}} \, \mathrm{d} y \leq c \, \frac{f(x)}{A} \int_{B_r} \frac{(2-\sigma)A|y|^2}{|y|^{n+\sigma}} \, \mathrm{d} y$$

$$|\{u(y) - u(x) - y \cdot \nabla \Gamma(x) \le A|y|^2\}| \le C \frac{f(x)}{A} r^n$$

Catching up with the integrals

Lemma: Assume $M_{\sigma}^+ u \ge -f$ in B_1 (where M_{σ}^+ is now the maximal operator of order σ). $u \le 0$ in $\mathbb{R}^n \setminus B_1$ and Γ is the concave envelope of u in B_3 . If $u(x) = \Gamma(x)$, for every A > 0 there is ring $R_r(x)$ such that

$$|R_r \cap \{u(y) \le u(x) - (y - x) \cdot \nabla \Gamma(x) - Ar^2\}| \le C \frac{f(x)}{A} r^n$$

$\Gamma(y) \le u(x) - (y - x) \cdot \nabla \Gamma(x) - Ar^2$ for all y in $B_{r/2}$

Catching up with the integrals

Lemma: Assume $M_{\sigma}^+ u \ge -f$ in B_1 (where M_{σ}^+ is now the maximal operator of order σ). $u \le 0$ in $\mathbb{R}^n \setminus B_1$ and Γ is the concave envelope of u in B_3 . If $u(x) = \Gamma(x)$, for every A > 0 there is ring $R_r(x)$ such that

$$|R_r \cap \{u(y) \le u(x) - (y - x) \cdot \nabla \Gamma(x) - Ar^2\}| \le C \frac{f(x)}{A} r^n$$

 $\Gamma(y) \le u(x) - (y - x) \cdot \nabla \Gamma(x) - Ar^2$ for all y in $B_{r/2}$

Consequences of the lemma

Around each point $x \in \{u = \Gamma\}$ there is a (small) ball $B_r(x)$ such that

•
$$u \ge \Gamma - Cf(x)r^2$$
 in a large proportion of $B_r(x)$.

 $\triangleright |\nabla \Gamma(B_r(x))| \leq Cf(x)^n |B_r|.$

By covering the whole contact set $\{u = \Gamma\}$ with a subfamily of such balls with finite overlapping we find

$$|\nabla \Gamma(B_1)| \le C \left| \left\{ u(x) \ge \Gamma(x) - Cr_0^2 \right\} \right|$$

(r_0 is the maximum possible value of r, which depends on σ)

Thus we obtain

$$c(\max u)^n \le |\nabla \Gamma(B_1)| \le C \left| \left\{ u(x) \ge \Gamma(x) - Cr_0^2 \right\} \right|$$

which is good enough to carry out the rest of the proof of Harnack inequality and Hölder estimates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Difference of solutions

If *u* and *v* are solutions to the same equation Iu = Iv = 0, then their difference solves

$$M^-(u-v) \le 0 \le M^+(u-v)$$

One can understand this as a linear equation with a priori discontinuous coefficients.

$$\int_{\mathbb{R}^n} ((u-v)(x+y) + (u-v)(x-y) - 2(u-v)(x)) \ K(x,y) \, \mathrm{d}y = 0$$

where $(2 - \sigma) \frac{\lambda}{|y|^{n+\sigma}} \leq K(x, y) \leq (2 - \sigma) \frac{\Lambda}{|y|^{n+\sigma}}$ with no continuity a priori in x.

More on difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then

$$M^-(u-v) \le 0 \le M^+(u-v)$$

which also implies that the integrals of positive and negative incremental quotients

$$\int_{\mathbb{R}^n} \left((u-v)(x+y) + (u-v)(x-y) - 2(u-v)(x) \right)^{\pm} \frac{1}{|y|^{n+\sigma}} \, \mathrm{d}y$$

are comparable.

More on difference of solutions

If u and v are solutions to the same equation Iu = Iv = 0, then

$$M^-(u-v) \le 0 \le M^+(u-v)$$

which also implies that the integrals of positive and negative incremental quotients

$$\int_{\mathbb{R}^n} \delta_y (u-v)(x)^{\pm} \frac{1}{|y|^{n+\sigma}} \, \mathrm{d} y$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are comparable.

$C^{1,\alpha}$ estimates

The differential quotient $w_h = rac{u(x+he)-u(x)}{h}$ satisfies an equation $M^- w_h \leq 0 \leq M^+ w_h$

 \implies w_h is C^{α} independently of h, and $u \in C^{1,\alpha}$.

(there is a technical difficulty because u may not be C^1 outside of the domain)

Concavity

If I is concave and u is a solution of Iu = 0 then a mollification is a subsolution.

$$I(u * \eta) \geq 0$$

In particular for

$$\delta_y u(x) := (u(x+y) + u(x-y) - 2u(x))$$

we have

 $M^+\delta_y u(x) \ge 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Concavity

If I is concave and u is a solution of Iu = 0 then a mollification is a subsolution.

$$I(u * \eta) \ge 0$$

In particular for

$$\int_{B_h} \delta_y u(x) K(y) \, \mathrm{d} y \cong u * K - \left(\int K \, \mathrm{d} y\right) u$$

we have

$$M^+ \int_{B_h} \delta_y u(x) K(y) \, \mathrm{d} y \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

 $M^+\delta_y u(x) \ge 0$

to get $u \in C^{2,\alpha}$.

The equation has to be used further. In particular that

 $\left\|D^2u^+\right\|\approx\left\|D^2u^-\right\|$

Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

 $M^+\delta_y u(x) \ge 0$

to get $u \in C^{2,\alpha}$.

The equation has to be used further. In particular that

 $\|(D^2u(x) - D^2u(y))^+\| \approx \|(D^2u(x) - D^2u(y))^-\|$

What is used

Positive and negative parts of the integral control each other.

$$\int (\delta_y u(x) - \delta_y u(0))^+ \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y \approx \int (\delta_y u(x) - \delta_y u(0))^- \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y$$

Linear integral operators are subsolutions

$$M^+\int (\delta_y u(x) - \delta_y u(0)) K(y) \, \mathrm{d}y \ge 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for any $K \ge 0$.

Steps in the proof

Step 1. Prove that the integrals converge absolutely:

$$\int |\delta_y u(x)| \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d} y \leq C$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Step 2. Prove that the function is $C^{\sigma+\alpha}$.

Scheme of step 2.

We prove that

$$P(x) := \int (\delta_y u(x) - \delta_y u(0))^{+} \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y \leq C |x|^{\alpha}$$

This implies that

$$\int |\delta_{y} u(x) - \delta_{y} u(0)| \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d} y \leq C |x|^{\alpha}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

which immediately implies that $u \in C^{\sigma+\alpha}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣��

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The inductive step

Let $P(x_0) = \max_{\overline{B}_{1/2}} P$. We want to show $P(x_0) \leq (1 - \theta)$ for some $\theta > 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The inductive step

Let $P(x_0) = \max_{\overline{B}_{1/2}} P$. We want to show $P(x_0) \le (1 - \theta)$ for some $\theta > 0$.

Recall $P(x_0) = \int (\delta_y u(x_0) - \delta_y u(0))^+ \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y$

The inductive step

Let $P(x_0) = \max_{\overline{B}_{1/2}} P$. We want to show $P(x_0) \le (1 - \theta)$ for some $\theta > 0$.

Recall $P(x_0) = \int (\delta_y u(x_0) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y$ where $A = \{y : \delta_y u(x) - \delta_y u(0) > 0\}$

A tool: weak Harnack inequality

The following versions of the *weak Harnack inequality* are available for sub and super-solutions.

Theorem Let $u \ge 0$ in \mathbb{R}^n and $M^- u \le 0$ in B_1 (supersolution). $|\{u > t\} \cap B_1| \le Ct^{-\varepsilon} \inf_{B_{1/2}} u$ for every t > 0.

Theorem

If $M^+u \ge 0$ in B_1 (subsolution) then

$$u(x) \leq C \int_{\mathbb{R}^n} \frac{|u(y)|}{1+|y|^{n+\sigma}} \,\mathrm{d} y \qquad \text{in } B_{1/2}$$

First posibility

Since
$$M^+\left(\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y\right) \ge 0$$
, if we had
$$\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y \le (1 - C\theta)$$

in a fraction of B_1 , we would obtain

$$P(x_0) = \int (\delta_y u(x_0) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y \leq 1-\theta$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

by weak Harnack inequality. But what if the opposite inequality holds in most of B_1 ?

Second posibility

lf

$$\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y \ge (1 - C\theta)$$

in most of B_1 , that means that the same choice of set A is approximately optimal to compute P(x) in most of B_1 .

$$\int (\delta_y u(x) - \delta_y u(0))^+ \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y \approx \int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}} \, \mathrm{d}y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with the same set A for most $x \in B_1$.

Second posibility

lf

$$\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_A \, \mathrm{d}y \ge (1 - C\theta)$$

in most of B_1 , that means that the same choice of set A is approximately optimal to compute P(x) in most of B_1 .

$$\int (\delta_y u(x) - \delta_y u(0))^{-} \frac{(2-\sigma)}{|y|^{n+\sigma}} \, \mathrm{d}y \approx \int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} \, \mathrm{d}y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with the same set A for most $x \in B_1$.

If we have $\int (\delta_y u(x) - \delta_y u(0))^+ \frac{(2-\sigma)}{|y|^{n+\sigma}} dy$ very positive in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.

If we have $\int (\delta_y u(x) - \delta_y u(0))^{-\frac{(2-\sigma)}{|y|^{n+\sigma}}} dy$ very negative in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If we have $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^c} dy$ very negative in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.

If we have $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} dy$ very negative in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.

If we have $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} dy$ very negative in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.

If we have $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} dy$ very negative in most of B_1

But then we can apply weak Harnack and obtain that $\int (\delta_y u(x) - \delta_y u(0)) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{\mathcal{A}^c} \, \mathrm{d}y \text{ is strictly negative for all } x \in B_{1/2}$

This is a contradiction at x = 0!

This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow u \in C^{\sigma+\alpha}$.