Results in nonlocal elliptic equations

Luis Silvestre
University of Chicago

joint work with Luis Caffarelli

Outline

Introduction

Stochastic processes and PDEs
Stochastic control
Integro-differential equations
Jump processes
Integro-differential equations
Regularity results
Uniform ellipticity
Harnack Inequality
Differentiability of solutions
Some ideas in the proofs
A nonlocal ABP estimate.
The difference of solutions satisfies an equation
The nonlocal Evans-Krylov theorem
The proof of the nonlocal Evans-Krylov

Brownian motion \rightarrow Laplace Equation

Let $g: \partial \Omega \rightarrow \mathbb{R}$.
Let B be a Brownian motion.
$B_{0}=x$
B hits $\partial \Omega$ at B_{τ}.
Let $u(x)=\mathbb{E}\left(g\left(B_{\tau}\right)\right)$
Then

$$
\begin{aligned}
\triangle u & =0 \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

Diffusions \rightarrow Elliptic PDE with coefficients

> Let $g: \partial \Omega \rightarrow \mathbb{R}$
> $X=\sqrt{A} d B(A \geq 0)$
> $X_{0}=x$
X hits $\partial \Omega$ at X_{τ}.
Let $u(x)=\mathbb{E}\left(g\left(X_{\tau}\right)\right)$
Then

$$
\begin{aligned}
A_{i j} \partial_{i j} u & =0 \text { in } \Omega \\
u & =g \text { on } \partial \Omega
\end{aligned}
$$

Stochastic control \rightarrow Hamilton-Jacobi-Bellman equation

Suppose we can choose the value of the coefficients $a_{i j}$ at every point from a family of choices $a_{i j}^{\alpha}$ (α is our control). We want to minimize the expected value of $g\left(X_{\tau}\right)$.
The function

$$
u(x)=\inf _{\text {all choices of } \alpha \text { at every point }} \mathbb{E}\left(g\left(X_{\tau}\right)\right)
$$

solves the equation

$$
\begin{gathered}
\inf _{\alpha} a_{i j}^{\alpha} \partial_{i j} u=0 \text { in } \Omega \\
\text { (generic } F\left(D^{2} u\right) \text { for } F \text { concave) }
\end{gathered}
$$

Evans and Krylov 1982: Solutions of these equations are $C^{2, \alpha}$.

Optimal stopping \rightarrow obstacle problem

$$
u(x)=\sup _{\tau} E\left(\varphi\left(X_{\tau}^{\times}\right)\right)
$$

where X_{t}^{x} is a Brownian motion starting at x and τ is any stopping time.

$$
\begin{array}{rlrl}
\triangle u & =0 \quad \text { where } u>\varphi \text { (at the points of no stop) } \\
\triangle u & \leq 0 \quad \text { everywhere in the domain } \\
u & \geq \varphi &
\end{array}
$$

A similar model is used in financial mathematics for pricing American options
Frehse 1972: Solutions of this equation are $C^{1,1}$.
Caffarelli 1977: The free boundary is smooth except at a small set of singular points.

Processes with jumps

Integro-differential equations (instead of PDEs) arise when we consider processes X_{t} with discontinuities. Processes that jump from one point to another.

$$
\begin{aligned}
& X_{t} \text { is a purely jump Lévy process. } \\
& u(x)=\mathbb{E} u\left(X_{\tau}\right) \text { solves } \\
& \int_{\mathbb{R}^{n}}(u(x+y)-u(x)) K(y) \mathrm{d} y=0 \text { in } \Omega \\
& u=g \text { outside } \Omega
\end{aligned}
$$

General kernels

$$
\int_{\mathbb{R}^{n}}(u(x+y)-u(x)) K(y) \mathrm{d} y=0
$$

The kernel $K(y)$ represents the frequency of jumps in every direction y.

- $K(y) \geq 0$ for every y.
- $\int_{\mathbb{R}^{n}} \min \left(y^{2}, 1\right) K(y) \mathrm{d} y<+\infty$.
(We will only consider symmetric kernels $K(y)=K(-y)$)

Fractional Laplacian

The most typical case is

$$
L u(x)=-(-\triangle)^{\sigma / 2} u(x)=c \int_{\mathbb{R}^{n}}(u(x+y)-u(x)) \frac{1}{|y|^{n+\sigma}} \mathrm{d} y
$$

which is the fractional Laplacian

$$
-\left(\widehat{-\triangle)^{\sigma} / 2} u(\xi)=-|\xi|^{\sigma} \widehat{u}(\xi)\right.
$$

$-(-\triangle)^{\sigma / 2}$ is for integro-differential equations what \triangle is for elliptic PDEs.
The constant c depends on n and σ, and $c \approx(2-\sigma)$ as $\sigma \rightarrow 2$.

Obstacle problem for the fractional laplacian

$$
u(x)=\sup _{\tau} E\left(\varphi\left(X_{\tau}^{x}\right)\right)
$$

where X_{t}^{x} is an α-stable Lévy process starting at x and τ is any stopping time.

$$
\begin{array}{rlrl}
(-\triangle)^{\alpha / 2} u & =0 & \text { where } u>\varphi(\text { at the points of no stop) } \\
(-\triangle)^{\alpha / 2} u & \leq 0 & & \text { everywhere in } \mathbb{R}^{n} \\
u & \geq \varphi &
\end{array}
$$

A similar model is used in financial mathematics for pricing American options
Caffarelli, Salsa, S. 2008: Solutions of this equation are $C^{1, \alpha / 2}$. and the free boundary is smooth except at some singular points

elliptic integro-differential equations

We say

$$
\int_{\mathbb{R}^{n}}(u(x+y)-u(x)) K(y) \mathrm{d} y=0
$$

is uniformly elliptic of order $\sigma \in(0,2)$ if

- $K(y)=K(-y)$ for every y.
- $(2-\sigma) \frac{\lambda}{|y|^{n+\sigma}} \leq K(y) \leq(2-\sigma) \frac{\Lambda}{|y|^{n+\sigma}}$

Nonlinear integro-differential equations

In the same way as for diffusions, we can consider stochastic control problems with jumps to obtain nonlinear equations of the form

$$
0=\mathrm{I} u(x):=\sup _{\alpha} \int_{\mathbb{R}^{n}}(u(x+y)-u(x)) K_{\alpha}(y) \mathrm{d} y
$$

Recovering second order PDEs

Note that the classical PDEs can be recovered from integro-differential equations in several ways. For example:

$$
\begin{aligned}
\triangle u(x) & =\lim _{s \rightarrow 1}-(-\triangle)^{s} u(x) \\
& =\lim _{r \rightarrow 0} \frac{c}{r^{n+2}} \int_{B_{r}} u(x+y)-u(x) \mathrm{d} y
\end{aligned}
$$

Dirichlet Problem

The natural Dirichlet problem is

$$
\begin{aligned}
\mathrm{I} u(x) & =0 \text { in } \Omega \\
u(x) & =g(x) \text { in } \mathbb{R}^{n} \backslash \Omega
\end{aligned}
$$

Note that the boundary condition is given in the whole complement of the domain: $\mathbb{R}^{n} \backslash \Omega$. This is because of the nonlocal character of the equation.

It can be shown in fairly good generality that this problem admits a unique viscosity solution.

What about the regularity?

Uniformly elliptic PDEs

Given $0<\lambda<\Lambda$, for second order elliptic PDEs $F\left(D^{2} u\right)=0$, ellipticity is defined by the following property of the function F

$$
\lambda\|Y\| \leq F(X+Y)-F(X) \leq \Lambda\|Y\|
$$

every time Y is a positive matrix.
If F is smooth, this is equivalent to the matrix inequality

$$
\lambda I \leq \frac{\partial F}{X_{i j}} \leq \Lambda I
$$

Pucci's maximal operator

Uniform ellipticity can also be described by means of the extremal Pucci operators:

$$
\begin{aligned}
& M^{+}(X)=\lambda(\text { sum of negative eigenvalues of } X) \\
& \\
& \quad+\Lambda(\text { sum of positive eigenvalues of } X) \\
& M^{-}(X)=\Lambda(\text { sum of negative eigenvalues of } X) \\
& \\
& +\lambda(\text { sum of positive eigenvalues of } X)
\end{aligned}
$$

Now, $F\left(D^{2} u\right)=0$ is a uniformly elliptic equation if

$$
M^{-}(Y) \leq F(X+Y)-F(X) \leq M^{+}(Y)
$$

Regularity results for fully nonlinear PDEs

- Krylov-Safonov Harnack inequality (1979) \Rightarrow Hölder estimates.

If u is a bounded function in B_{1} such that $M^{+} u \geq 0$ and $M^{-} u \leq 0$ in B_{1}, then u is Hölder continuous in $B_{1 / 2}$.

- $C^{1, \alpha}$ regularity.

If u is a solution to a uniformly elliptic fully nonlinear equation $F\left(D^{2} u\right)=0$ in B_{1} then $u \in C^{1, \alpha}$ in $B_{1 / 2}$ for some $\alpha>0$.

- Evans-Krylov theorem (1982)

If u is a solution to a convex uniformly elliptic fully nonlinear equation $F\left(D^{2} u\right)=0$ in B_{1} then $u \in C^{2, \alpha}$ in $B_{1 / 2}$ for some $\alpha>0$.

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$
\begin{aligned}
M^{+}\left(D^{2} u\right) & =\sup _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u \\
M^{-}\left(D^{2} u\right) & =\inf _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u
\end{aligned}
$$

An integro-differential analog of order σ would be

$$
M_{\sigma}^{+} u(x)=\sup _{\substack{\lambda \leq a(y) \leq \Lambda \\ a(y)=a(-y)}}(2-\sigma) \int(u(x+y)-u(x)) \frac{a(y)}{|y|^{n+\sigma}} \mathrm{d} y
$$

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$
\begin{aligned}
M^{+}\left(D^{2} u\right) & =\sup _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u \\
M^{-}\left(D^{2} u\right) & =\inf _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u
\end{aligned}
$$

An integro-differential analog of order σ would be

$$
M_{\sigma}^{+} u(x)=\sup _{\lambda \leq a(y) \leq \Lambda} \frac{2-\sigma}{2} \int(u(x+y)+u(x-y)-2 u(x)) \frac{a(y)}{|y|^{n+\sigma}} \mathrm{d} y
$$

Nonlocal extremal operators

The Pucci extremal operators are also given by the formula

$$
\begin{aligned}
M^{+}\left(D^{2} u\right) & =\sup _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u \\
M^{-}\left(D^{2} u\right) & =\inf _{\lambda I \leq\left\{a_{i j}\right\} \leq \Lambda I} a_{i j} \partial_{i j} u
\end{aligned}
$$

An integro-differential analog of order σ would be

$$
M_{\sigma}^{+} u(x)=\frac{2-\sigma}{2} \int_{\mathbb{R}^{n}} \frac{\Lambda(u(x+y)+u(x-y)-2 u(x))^{+}-\lambda(\ldots)^{-}}{|y|^{n+\sigma}} \mathrm{d} y
$$

Uniform ellipticity for nonlocal equations

We say that a nonlocal operator I is uniformly elliptic of order σ if

$$
M_{\sigma}^{-} v(x) \leq \mathrm{I}(u+v)(x)-\mathrm{I} u(x) \leq M_{\sigma}^{+} v(x)
$$

(σ is always in $(0,2)$)
Examples:

$$
\begin{array}{ll}
L u(x)=\int(u(x+y)-u(x)) \frac{a(y)}{|y|^{n+\sigma}} \mathrm{d} y & \text { for } \lambda \leq a \leq \Lambda \text { and } a(y)=a(-y) \\
I u(x)=\inf _{\alpha} \sup _{\beta} L_{\alpha \beta} u(x) & \text { for } L_{\alpha \beta} \text { linear as the one above } \\
I u(x)=\int \frac{G(u(x+y)+u(x-y)-2 u(x))}{|y|^{n+\sigma}} \text { dy } & G \text { monotone Lipschitz and } G(0)=0
\end{array}
$$

The Harnack inequality

Theorem (Caffarelli, S.)

Let $u \geq 0$ in $\mathbb{R}^{n}, M_{\sigma}^{-} u \leq 0$ and $M_{\sigma}^{+} u \geq 0$ in B_{2}.
Then

$$
\sup _{B_{1}} u \leq C \inf _{B_{1}} u
$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.

We can understand the condition $M_{\sigma}^{-} u \leq 0$ and $M_{\sigma}^{+} u \geq 0$ as that there is some kernel $a(x, y)$ such that

$$
\int(u(x+y)+u(x-y)-2 u(x)) \frac{(2-\sigma) a(x, y)}{|y|^{n+\sigma}} \mathrm{d} y=0
$$

with $\lambda \leq a(x, y) \leq \Lambda$, and a can be very discontinuous.

Hölder estimates

Theorem (Caffarelli, S.)

Let $u \in L^{\infty}\left(\mathbb{R}^{n}\right), M_{\sigma}^{-} u \leq 0$ and $M_{\sigma}^{+} u \geq 0$ in B_{2}.
Then $u \in C^{\alpha}\left(B_{1}\right)$ and

$$
u_{C^{\alpha}\left(B_{1}\right)} \leq C \sup _{\mathbb{R}^{n}}|u|
$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.
We can understand the condition $M_{\sigma}^{-} u \leq 0$ and $M_{\sigma}^{+} u \geq 0$ as that there is some kernel $a(x, y)$ such that

$$
\int(u(x+y)+u(x-y)-2 u(x)) \frac{(2-\sigma) a(x, y)}{|y|^{n+\sigma}} \mathrm{d} y=0
$$

with $\lambda \leq a(x, y) \leq \Lambda$, and a can be very discontinuous.

Differentiability of solutions

Theorem (Caffarelli, S.)

If I is a nonlocal elliptic operator of order σ and u is a bounded function such that $\mathrm{I} u=0$ in B_{1}, then $u \in C^{1+\alpha}\left(B_{1 / 2}\right)$ and

$$
u_{C^{1+\alpha}\left(B_{1 / 2}\right)} \leq C\left(\sup _{\mathbb{R}^{n}}|u|+|I 0|\right)
$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$.

More regular solutions for concave problems

Theorem (Caffarelli, S.)

If I is a concave nonlocal elliptic operator of order σ and u is a bounded function such that $\mathrm{I} u=0$ in B_{1}, then $u \in C^{\sigma+\alpha}\left(B_{1 / 2}\right)$ and

$$
u_{C^{\sigma+\alpha}\left(B_{1 / 2}\right)} \leq C\left(\sup _{\mathbb{R}^{n}}|u|+|I 0|\right)
$$

Important: The constant C does not blow up as $\sigma \rightarrow 2$. α can also be chosen independently of σ.

Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is based on the ABP estimate: if $M^{+} u \geq-f$ in $B_{1}, u \leq 0$ on ∂B_{1}, and Γ is the concave envelope of u in B_{2} then

$$
c\left(\max _{B_{1}} u\right)^{n} \leq\left|\nabla \Gamma\left(B_{1}\right)\right|=\int_{\{u=\Gamma\}} \operatorname{det}\left(-D^{2} \Gamma\right) \mathrm{d} x \leq C \int_{\{u=\Gamma\}} f^{n} \mathrm{~d} x
$$

Alexandroff-Bakelman-Pucci estimate

The proof of Harnack inequality for elliptic PDEs of second order is based on the ABP estimate: if $M^{+} u \geq-f$ in $B_{1}, u \leq 0$ on ∂B_{1}, and Γ is the concave envelope of u in B_{2} then

$$
c\left(\max _{B_{1}} u\right)^{n} \leq\left|\nabla \Gamma\left(B_{1}\right)\right|=\int_{\{u=\Gamma\}} \operatorname{det}\left(-D^{2} \Gamma\right) \mathrm{d} x \leq C \int_{\{u=\Gamma\}} f^{n} \mathrm{~d} x
$$

For integro differential equations, we need some alternative way to measure $\{u=\Gamma\}$

No cancellations in the integral

$$
\begin{aligned}
& \text { Let } x \in\{u=\Gamma\},-f(x) \leq M^{+} u(x) \\
& M_{\sigma}^{+} u(x)=\int \frac{\Lambda(u(x+y)+u(x-y)-2 u(x))^{+}-\lambda(u(x+y)+u(x-y)-2 u(x))^{-}}{|y|^{n+\sigma}} \mathrm{d} y
\end{aligned}
$$

No cancellations in the integral

$$
\begin{aligned}
& \text { Let } x \in\{u=\Gamma\},-f(x) \leq M^{+} u(x) \\
& M_{\sigma}^{+} u(x)=\int \frac{\Lambda(u(x+y)+u(x-y)-2 u(x))^{+}-\lambda(u(x+y)+u(x-y)-2 u(x))^{-}}{|y|^{n+\sigma}} \mathrm{d} y
\end{aligned}
$$

One good ring

We compare $u(y)-u(x)-y \cdot \nabla \Gamma(x)$ with $A|y|^{2}$.

$$
\int(2-\sigma) \frac{\lambda(u(x+y)+u(x-y)-2 u(x))^{-}}{|y|^{n+\sigma}} \mathrm{d} y \leq c \frac{f(x)}{A} \int_{B_{r}} \frac{(2-\sigma) A|y|^{2}}{|y|^{n+\sigma}} \mathrm{d} y
$$

Catching up with the integrals

Lemma: Assume $M_{\sigma}^{+} u \geq-f$ in B_{1} (where M_{σ}^{+}is now the maximal operator of order σ). $u \leq 0$ in $\mathbb{R}^{n} \backslash B_{1}$ and Γ is the concave envelope of u in B_{3}. If $u(x)=\Gamma(x)$, for every $A>0$ there is ring $R_{r}(x)$ such that

$$
\left|R_{r} \cap\left\{u(y) \leq u(x)-(y-x) \cdot \nabla \Gamma(x)-A r^{2}\right\}\right| \leq C \frac{f(x)}{A} r^{n}
$$

Catching up with the integrals

Lemma: Assume $M_{\sigma}^{+} u \geq-f$ in B_{1} (where M_{σ}^{+}is now the maximal operator of order σ). $u \leq 0$ in $\mathbb{R}^{n} \backslash B_{1}$ and Γ is the concave envelope of u in B_{3}. If $u(x)=\Gamma(x)$, for every $A>0$ there is ring $R_{r}(x)$ such that

$$
\left|R_{r} \cap\left\{u(y) \leq u(x)-(y-x) \cdot \nabla \Gamma(x)-A r^{2}\right\}\right| \leq C \frac{f(x)}{A} r^{n}
$$

$$
\Gamma(y) \leq u(x)-(y-x) \cdot \nabla \Gamma(x)-A r^{2} \text { for all } y \text { in } B_{r / 2}
$$

Consequences of the lemma

Around each point $x \in\{u=\Gamma\}$ there is a (small) ball $B_{r}(x)$ such that

- $u \geq \Gamma-C f(x) r^{2}$ in a large proportion of $B_{r}(x)$.
- $\left|\nabla \Gamma\left(B_{r}(x)\right)\right| \leq C f(x)^{n}\left|B_{r}\right|$.

By covering the whole contact set $\{u=\Gamma\}$ with a subfamily of such balls with finite overlapping we find

$$
\left|\nabla \Gamma\left(B_{1}\right)\right| \leq C\left|\left\{u(x) \geq \Gamma(x)-C r_{0}^{2}\right\}\right|
$$

(r_{0} is the maximum possible value of r, which depends on σ)

nonlocal ABP

Thus we obtain

$$
c(\max u)^{n} \leq\left|\nabla \Gamma\left(B_{1}\right)\right| \leq C\left|\left\{u(x) \geq \Gamma(x)-C r_{0}^{2}\right\}\right|
$$

which is good enough to carry out the rest of the proof of Harnack inequality and Hölder estimates.

Difference of solutions

If u and v are solutions to the same equation $\mathrm{I} u=\mathrm{I} v=0$, then their difference solves

$$
M^{-}(u-v) \leq 0 \leq M^{+}(u-v)
$$

One can understand this as a linear equation with a priori discontinuous coefficients.
$\int_{\mathbb{R}^{n}}((u-v)(x+y)+(u-v)(x-y)-2(u-v)(x)) K(x, y) \mathrm{d} y=0$ where $(2-\sigma) \frac{\lambda}{|y|^{n+\sigma}} \leq K(x, y) \leq(2-\sigma) \frac{\Lambda}{\left.|y|\right|^{n+\sigma}}$ with no continuity a priori in x.

More on difference of solutions

If u and v are solutions to the same equation $\mathrm{I} u=\mathrm{I} v=0$, then

$$
M^{-}(u-v) \leq 0 \leq M^{+}(u-v)
$$

which also implies that the integrals of positive and negative incremental quotients

$$
\int_{\mathbb{R}^{n}}((u-v)(x+y)+(u-v)(x-y)-2(u-v)(x))^{ \pm} \frac{1}{|y|^{n+\sigma}} \mathrm{d} y
$$

are comparable.

More on difference of solutions

If u and v are solutions to the same equation $\mathrm{I} u=\mathrm{I} v=0$, then

$$
M^{-}(u-v) \leq 0 \leq M^{+}(u-v)
$$

which also implies that the integrals of positive and negative incremental quotients

$$
\int_{\mathbb{R}^{n}} \delta_{y}(u-v)(x)^{ \pm} \frac{1}{|y|^{n+\sigma}} \mathrm{d} y
$$

are comparable.

$C^{1, \alpha}$ estimates

The differential quotient $w_{h}=\frac{u(x+h e)-u(x)}{h}$ satisfies an equation

$$
M^{-} w_{h} \leq 0 \leq M^{+} w_{h}
$$

$\Longrightarrow w_{h}$ is C^{α} independently of h, and $u \in C^{1, \alpha}$.
(there is a technical difficulty because u may not be C^{1} outside of the domain)

Concavity

If I is concave and u is a solution of $\mathrm{I} u=0$ then a mollification is a subsolution.

$$
\mathrm{I}(u * \eta) \geq 0
$$

In particular for

$$
\delta_{y} u(x):=(u(x+y)+u(x-y)-2 u(x))
$$

we have

$$
M^{+} \delta_{y} u(x) \geq 0
$$

Concavity

If I is concave and u is a solution of $\mathrm{I} u=0$ then a mollification is a subsolution.

$$
\mathrm{I}(u * \eta) \geq 0
$$

In particular for

$$
\int_{B_{h}} \delta_{y} u(x) K(y) \mathrm{d} y \cong u * K-\left(\int K \mathrm{~d} y\right) u
$$

we have

$$
M^{+} \int_{B_{h}} \delta_{y} u(x) K(y) \mathrm{d} y \geq 0
$$

Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

$$
M^{+} \delta_{y} u(x) \geq 0
$$

to get $u \in C^{2, \alpha}$.
The equation has to be used further. In particular that

$$
\left\|D^{2} u^{+}\right\| \approx\left\|D^{2} u^{-}\right\|
$$

Evans-Krylov theorem

For the proof of Evans-Krylov theorem, it is not enough to have

$$
M^{+} \delta_{y} u(x) \geq 0
$$

to get $u \in C^{2, \alpha}$.
The equation has to be used further. In particular that

$$
\left\|\left(D^{2} u(x)-D^{2} u(y)\right)^{+}\right\| \approx\left\|\left(D^{2} u(x)-D^{2} u(y)\right)^{-}\right\|
$$

What is used

Positive and negative parts of the integral control each other.

$$
\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{+} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \approx \int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{-} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y
$$

Linear integral operators are subsolutions

$$
M^{+} \int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) K(y) \mathrm{d} y \geq 0
$$

for any $K \geq 0$.

Steps in the proof

Step 1. Prove that the integrals converge absolutely:

$$
\int\left|\delta_{y} u(x)\right| \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \leq C
$$

Step 2. Prove that the function is $C^{\sigma+\alpha}$.

Scheme of step 2.

We prove that

$$
P(x):=\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{+} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \leq C|x|^{\alpha}
$$

This implies that

$$
\int\left|\delta_{y} u(x)-\delta_{y} u(0)\right| \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \leq C|x|^{\alpha}
$$

which immediately implies that $u \in C^{\sigma+\alpha}$.

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r / 2}} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Inductive argument

We show that for every $r \in(0,1)$,

$$
\sup _{B_{r} / 2} P(x) \leq(1-\theta) \sup _{B_{r}} P(x) \quad \text { for some } \theta>0
$$

Thus we get $P(x) \leq C|x|^{\alpha}$

The inductive step

The inductive step

Let $P\left(x_{0}\right)=\max _{\bar{B}_{1 / 2}} P$. We want to show $P\left(x_{0}\right) \leq(1-\theta)$ for some $\theta>0$.

Recall

$$
P\left(x_{0}\right)=\int\left(\delta_{y} u\left(x_{0}\right)-\delta_{y} u(0)\right)^{+} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y
$$

The inductive step

Let $P\left(x_{0}\right)=\max _{\bar{B}_{1 / 2}} P$. We want to show $P\left(x_{0}\right) \leq(1-\theta)$ for some $\theta>0$.

Recall

$$
P\left(x_{0}\right)=\int\left(\delta_{y} u\left(x_{0}\right)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y
$$

where $A=\left\{y: \delta_{y} u(x)-\delta_{y} u(0)>0\right\}$

A tool: weak Harnack inequality

The following versions of the weak Harnack inequality are available for sub and super-solutions.

Theorem
Let $u \geq 0$ in \mathbb{R}^{n} and $M^{-} u \leq 0$ in B_{1} (supersolution).

$$
\left|\{u>t\} \cap B_{1}\right| \leq C t^{-\varepsilon} \inf _{B_{1 / 2}} u \quad \text { for every } t>0
$$

Theorem
If $M^{+} u \geq 0$ in B_{1} (subsolution) then

$$
u(x) \leq C \int_{\mathbb{R}^{n}} \frac{|u(y)|}{1+|y|^{n+\sigma}} \mathrm{d} y \quad \text { in } B_{1 / 2}
$$

First posibility

Since $M^{+}\left(\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} d y\right) \geq 0$, if we had

$$
\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y \leq(1-C \theta)
$$

in a fraction of B_{1}, we would obtain

$$
P\left(x_{0}\right)=\int\left(\delta_{y} u\left(x_{0}\right)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y \leq 1-\theta
$$

by weak Harnack inequality.
But what if the opposite inequality holds in most of B_{1} ?

Second posibility

If

$$
\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y \geq(1-C \theta)
$$

in most of B_{1}, that means that the same choice of set A is approximately optimal to compute $P(x)$ in most of B_{1}.
$\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{+} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \approx \int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y$
with the same set A for most $x \in B_{1}$.

Second posibility

If

$$
\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A} \mathrm{~d} y \geq(1-C \theta)
$$

in most of B_{1}, that means that the same choice of set A is approximately optimal to compute $P(x)$ in most of B_{1}.
$\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{-} \frac{(2-\sigma)}{|y|^{n+\sigma}} \mathrm{d} y \approx \int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} \mathrm{~d} y$
with the same set A for most $x \in B_{1}$.

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{+\frac{(2-\sigma)}{|y|^{n+\sigma}}}$ dy very positive in most of B_{1}

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right)^{-\frac{(2-\sigma)}{|y|}{ }^{n+\sigma}}$ dy very negative in most of B_{1}

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} d y$ very negative in most of B_{1}

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}}$ dy very negative in most of B_{1}

But then we can apply weak Harnack and obtain that $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} \mathrm{~d} y$ is strictly negative for all $x \in B_{1 / 2}$

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}}$ dy very negative in most of B_{1}

But then we can apply weak Harnack and obtain that $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} \mathrm{~d} y$ is strictly negative for all $x \in B_{1 / 2}$

This is a contradiction at $x=0$!

The punchline

If we have $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} \mathrm{~d} y$ very negative in most of B_{1}

But then we can apply weak Harnack and obtain that $\int\left(\delta_{y} u(x)-\delta_{y} u(0)\right) \frac{(2-\sigma)}{|y|^{n+\sigma}} \chi_{A^{c}} \mathrm{~d} y$ is strictly negative for all $x \in B_{1 / 2}$

This is a contradiction at $x=0$!
This finishes the proof of the inductive step $\Rightarrow P(x) \leq C|x|^{\alpha} \Rightarrow$ $u \in C^{\sigma+\alpha}$.

