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Classical Obstacle problem

Let us consider a surface given by the graph of a function u.

u is a function solving 4u = 0 for fixed
boundary data. (we can think of an
elastic membrane)
Let us now slide an obstacle from
below. The surface must stay above it.
For a given obstacle ϕ, we obtain a
function u ≥ ϕ, that will try to be as
harmonic as possible.
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Classical Obstacle problem

4u = 0 where u > ϕ, since there u is free to move

4u ≤ 0 everywhere, since the surface pushes down

u ≥ ϕ

u

ϕ
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Regularity results

The regularity results for the classical obstacle problems are

• The function u ∈ C 1,1 (Frehse 1972).

• The free boundary is smooth besides a small singular set
(Caffarelli 1977).
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Stochastic approach

u(x) = sup
τ

E (ϕ(Bx
τ ))

where Bx
t is Brownian motion starting at x and τ is any stopping

time.

Then

−4u = 0 where u > ϕ (at the points of no stop)

−4u ≥ 0 everywhere in Rn

u ≥ ϕ

A model like this is used in financial mathematics for pricing American options
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Jump processes
We now consider

u(x) = sup
τ

E (ϕ(X x
τ ))

where X x
t is a purely jump process starting at x and τ is any

stopping time.

Then

Lu = 0 where u > ϕ (at the points of no stop)

Lu ≥ 0 everywhere in Rn

u ≥ ϕ

where the operator L has the integro-differential form

Lu(x) = PV
∫

Rn

(u(x)− u(x + y))K (y) dy

for some positive kernel K .
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Fractional laplacian

Natural example:

Lu(x) = PV
∫

Rn

u(x)− u(x + y)

|y |n+2s
dy = C (−4)su(x)

Corresponds to α-stable stochastic processes.

(−4)su = 0 where u > ϕ (at the points of no stop)

(−4)su ≥ 0 everywhere in Rn

u ≥ ϕ
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Properties of the fractional laplacian

The fractional Laplacian (−4)s is a nonlocal operator that has the
following simple form

̂(−4)su(ξ) = |ξ|2s û(ξ)

It also has the following properties

• Commutes with rigid motions:
(−4)s(u ◦M) = ((−4)su) ◦M for any rigid motion M.

• Scales with order 2s in the following sense:
(−4)suλ(x) = λ2s ((−4)su) (λx), where uλ(x) = u(λx).
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Regularity results

.

• Quasi optimal result u ∈ C 1,α for every α < s (CPAM 2005)

• Optimal regularity u ∈ C 1,s (Caffarelli, Salsa, S. 2007)

• The free boundary is C 1,α except on some singular set.
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Thin Obstacle Problem - Case s = 1/2

u(x , 0) ≥ ϕ(x)

∂n+1u ≤ 0

∂n+1u = 0 where u > ϕ

4u = 0

We extend the function u
harmonically in the upper half
space

4u = 0 in {xn+1 > 0},

then we have the relation

−∂nu(x , 0) = (−4)1/2u(x , 0)
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A drawing of the thin obstacle problem

x

y

z

only applies where y = 0

4u = 0 on y > 0
u

ϕ

The restriction u > ϕ
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Obstacle problem for (−4)1/2

The thin obstacle problem in the upper half space is equivalent to
the obstacle problem on the boundary with L = (−4)1/2.

u ≥ ϕ
(−4)1/2u ≥ 0

(−4)1/2u = 0 where u > ϕ
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Regularity of the thin obstacle problem

The regularity results for the thin obstacle problem are

• u ∈ C 1,α for a small α > 0 (Caffarelli 1979)

• u ∈ C 1,1/2 (Athanasopoulos and Caffarelli, 2004)

• The free boundary is smooth under nondeg. assumptions
(Athanasopoulos, Caffarelli and Salsa, 2006)

All these results would hold for the obstacle problem for (−4)1/2.
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The following properties of the Dirichlet to Neumann map can be
checked directly.
Let u(x , y) be the harmonic extension to the upper half plane and
let

Lu(x , 0) 7→ −∂yu(x , 0)

• L commutes with rigid motions: L(u ◦M) = (Lu) ◦M for any
rigid motion M.

• L scales with order 1 in the following sense:
Luλ(x) = λ (Lu) (λx), where uλ(x) = u(λx).

If we want to construct a similar extension for arbitrary fractional
laplacians (−4)s we have to make it scale in a different way.
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Extension with a weight.

u(x , 0) ≥ ϕ(x)

div(y a∇u) = 0

limy→0 y a∂n+1u ≤ 0

limy→0 y a∂n+1u = 0 where u > ϕ

We extend the function u in
the upper half space to satisfy
the equation:

div(yau) = 0 in {xn > 0},

then we have the relation

− lim
y→0

ya∂nu(x , 0) =

c(−4)
1−a

2 u(x , 0)

(Caffarelli, S., CPDE 2007)
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Equivalent local problem.

An equivalent problem to the obstacle problem for (−4)s is given
by

div (ya∇u) = 0 in {y > 0},
u(x , 0) ≥ ϕ(x , 0),

lim
y→0+

yauy (x , y) = 0 in {u(x , 0) > ϕ(x , 0)},

lim
y→0+

yauy (x , y) ≤ 0

with s = (1− a)/2.
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A2 weights.

|y |a is degenerate near y = 0 however it is in the class of A2

weights.
The equation div |y |a∇u = 0 satisfies:

• Harnack inequality.

• Boundary Harnack

Fabes, Kenig, Jerison, Serapioni.
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Cylindrically symmetric harmonic functions

u(x , y) = ũ(x , |y |)

Let x ∈ Rn and y ∈ R1+a for some
number a.
Assume u is radially symmetric in y .
Then we can express its Laplacian in
cylindrical coordinates

4u = 4xu+∂rru+
a

r
∂ru = r−a div(ra∇u)

Thus the equation div(ra∇u) = 0
basicall means that u is a harmonic
cylindrically symmetric function.
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Fractional dimension.

Our equivalent problem can be thought as a thin obstacle problem
with fractional co-dimension 1 + a.

The problem can be localized.

div (ya∇u) = 0 in B+
1 ,

u(x , 0) ≥ ϕ(x , 0) on B1 ∩ {y = 0},
lim

y→0+
yauy (x , y) = 0 on {u(x , 0) > ϕ(x , 0)}

lim
y→0+

yauy (x , y) ≤ 0

with s = (1− a)/2.

� � � � �
Ω

{xn = 0}

Similar methods to the ones employed to the classical thin obstacle
problem will work.
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Some tools used

• Analysis of blowup sequences.
• Almgren’s frequency formula

Φ(r) = r

R
B+

r
ya|∇u|2 dXR

∂Br∩{y>0} ya|u|2 dσ(X )
↗

• A Liouville theorem for blowup profiles.

• Blowup profiles at nondegenerate points have a flat free
boundary −→ free boundary regularity.
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Almgren monotonicity formula

If u : Rn × R→ R satisfies

4u = 0 in {y > 0}
u · uy = 0 on {y = 0}

Then the following function is monotone increasing

Φ(r) = r

∫
B+

r
|∇u|2 dX∫

∂Br∩{y>0} |u|2 dσ(X )
↗

and Φ is constant λ only if u is homogeneous of degree λ.
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Blowup sequence

Assume 0 is in the free boundary. Let

ur (x) =

(
r−n−a

∫
∂Br∩{y>0}

ya|u|2 dX

)−1/2

u(rX )

There is a subsequence urj converging to a global solution to the
problem u0.
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A Liouville type theorem for blowup profiles

If u0 : Rn × [0,+∞)→ R is a homogeneous global solution to the
problem

div (ya∇u) = 0 in {y > 0},
u(x , 0) ≥ 0,

lim
y→0+

yauy (x , y) = 0 in {u(x , 0) > ϕ(x , 0)},

lim
y→0+

yauy (x , y) ≤ 0

with 0 in the free boundary, then either

• u0 has degree 1 + s and the free boundary is a plane.

• u0 has degree ≥ 2.
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Optimal regularity

The degree of homogeneity of u0 is the value Φ(0) for the Almgren
frequency formula.
The fact that Φ(0) ≥ 1 + s implies that u ∈ C 1,s .
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Free boundary regularity

If Φ(0) = 1 + s then the free boundary is C 1,α in a neighborhood
of the origin.

Idea:
The blowup limit u0 has a flat free boundary. For small r , the free
boundary of ur must be arbitrarily close to flat. Once the free
boundary of ur is almost flat, a similar proof to the one of the
classical obstacle problem follows using the Boundary Harnack
principle.
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