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Abstract

We study the optimal regularity for a minimizer of a functional of the form J(u) =R
D

|∇u|2
2

+ F (u) dx, where F is merely Hölder continuous. Similar functionals have been
studied earlier under a sign condition. Using iterative and blow-up arguments we obtain
the same optimal C1,α-regularity as the known result in the case of non-negativity.

1 Introduction

Let p ∈ (0, 1), F : R → R be a continuous function such that it is differentiable in R \ {0},
F ′(t) = f(t) and |f(t)| ≤ pΛ |t|p−1. The function F is then only Hölder at 0. We study local
minimizers of the functional

J(u) =
∫

D

|∇u|2
2

+ F (u) dx (1.1)

This is a bounded functional in H1(D). It is easy to show that for any g ∈ H1(D), if we
restrict J to the set A = {v ∈ H1(D) : v − g ∈ H1

0 (D)}, then J achieves a minimum in A.
For any regularity purpose, we can assume D = B1, and we will do it from now on. The

corresponding Euler-Lagrange equation is

4u = f(u) at least where u is away from zero (1.2)

The equation can have a singularity at 0 since f can become unbounded in the origin. In
this case J can never be convex. Since we lack convexity, local minimizers of (1.1) solve the
equation (1.2) but the implication in the other direction does not necessarily hold. If f was
assumed to be a Cα function, then it would be possible to apply standard technics to obtain
that the solution u is a C2,α function, which is optimal.

We do not assume any sign condition for u. An important special case is F (t) = (t+)p.
When p = 0 it is the same as the two phase problem studied in [1]. The optimal regularity
for the function u in that case is C0,1. When p = 1, it is the same as the two phase obstacle
problem. In that case the optimal regularity for the function u is C1,1 as it was shown in [6] or
[7] (although in the second one the hypothesis are slightly different). For both p = 0 and p = 1,
the optimal regularity was achieved using the monotonicity formula developed in [1]. For the
other values of p, the nonnegative case was studied in [5] and [4], and the optimal regularity
was proven to coincide with the scaling of the equation, C1,β−1 for β = 2

2−p . Although this
same optimal regularity would not hold for the unsigned case when p ∈ (1, 2), we will show it
does when p ∈ (0, 1).

We can assume that F (0) = 0, since we can add constants to the functional (1.1) without
altering the minimizer u. Since |f(t)| ≤ pΛ |t|p−1, then |F (t)| ≤ Λ |t|p. The main theorem of
the paper is
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Theorem 1.1. A minimizer u of (1.1) (with 0 < p < 1) is in C1,β−1(B1/2) for β = 2
2−p

(which is the scaling of the equation and the same regularity as in the one phase case).

Remark 1.2. For p < 0 this problem changes a bit, since in this case we would expect u to
be merely Cα for α = 2

2−p . We also remark that in this case we do not only have a singularity
in the pde but also in the functional. We hope to be able to treat these problems in future
papers.

The equation 1.2 is a reaction diffusion equation with a singularity at zero. Since we do not
assume any sign condition for u, the same theory applies for isolated singularities of f at any
point. Reaction diffusion equations appear in a variety of applications including distribution
of temperature in a reacting mixture, or population density in migrations models, to name a
couple. The result of this paper would apply to the cases in which, for whatever reason, the
function f in the equation has an isolated singularity.

2 Estimates in L∞

Proposition 2.1. Let u be a function in H1(B1) solving the equation (1.2) in the unit ball B1

such that u = g on ∂B1 for a continuous function g. Then u ∈ L∞(B1).

Proof. Let ũ(x) = max(u(x), 1). Then 4ũ(x) = f(u(x)) ≥ −pΛ when u(x) > 1. Thus
max ũ ≤ max(1,max g) + C and so u is bounded above.

We can argue the same way for ũ(x) = min(u(x),−1) to obtain a bound from below for u.
Thus we will have the estimate

||u||L∞ ≤ C(n)(pΛ + ||g||L∞) . (2.1)

3 Hölder regularity of the function.

We will achieve a modulus of continuity for the function u by comparing it to its harmonic
replacement in a ball inside the domain B1.

Given a ball B ⊂ B1, we consider the function v ∈ H1(B) solving the following equation

u− v ∈ H1
0 (B) (3.1)

4v = 0. (3.2)

We call this function v, the harmonic replacement of u in B.

Lemma 3.1. Let u be a minimizer of (1.1) for a bounded boundary value g, then for any ball
B ⊂ B1, ∫

B

|∇(u− v)|2 dx ≤ 4Λ sup
B
|u|p |B| (3.3)

Remark 3.2. By Proposition 2.1, we already know that u is bounded in B1.

Proof. Since u− v ∈ H1(B) and 4v = 0 in B, then
∫

B

|∇(u− v)|2 dx =
∫

B

|∇u|2 − |∇v|2 dx
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Since u is a local minimizer of J ,
∫

B

|∇u|2
2

+ F (u) dx ≤
∫

B

|∇v|2
2

+ F (v) dx

By maximum principle, supB v ≤ supB u. Replacing in the above relations and recalling
|F (u)| ≤ C |u|p:

∫

B

|∇(u− v)|2 dx =
∫

B

|∇u|2 − |∇v|2 ≤ 4Λ
∫

B

sup
B
|u|p dx ≤ 4Λ sup

B
|u|p |B|

Lemma 3.3. If a bounded function u ∈ H1(B1) satisfies (3.3) for any harmonic replacement
v in a ball B ⊂ B1, then u is Cα

(
B1/2

)
for any α < 1.

Proof. The idea is to show an appropriate decay for the averages of |∇u|2 of the form
∫

B2−k (x0)

|∇u|2 dx ≤ C12−k(n−η) (3.4)

for an arbitrarily small η and x0 ∈ B1/2, and then apply standard Morrey’s embedding theorem.
We will show it by induction. Suppose it is true up to some value of k. Consider the

harmonic replacement v in B = B2−k(x0). Since v is harmonic,
∫

B

|∇v|2 dx ≤
∫

B

|∇u|2 dx ≤ C2−k(n−η)

Moreover, since v is harmonic, |∇v|2 is subharmonic, thus
∫

B2−k−1 (x0)

|∇v|2 dx ≤ 1
2n

∫

B2−k (x0)

|∇v|2 dx

Combining the above two
∫

B2−k−1 (x0)

|∇v|2 ≤ 1
2n

C12−k(n−η)

By hypothesis, u and v satisfy (3.3)
∫

B2−k (x0)

|∇(u− v)|2 dx ≤ C2−kn

where C = 4Λ sup |u|p vol(B1).
Putting it all together we get

∫

B2−k−1 (x0)

|∇u|2 dx ≤
∫

B2−k−1 (x0)

|∇v|2 + |∇(u− v)|2 + 2 |∇u| |∇v| dx

≤ I1 + I2 +
√

I1I2

Where

I1 =
∫

B2−k−1 (x0)

|∇v|2 dx ≤ 1
2n

C12−k(n−η) = 2−ηC12−(k+1)(n−η)

I2 =
∫

B2−k−1 (x0)

|∇(u− v)|2 dx ≤ C2−kn = 2−kη+n−ηC2−(k+1)(n−η)
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So,
∫

B2−k−1 (x0)

|∇u|2 dx ≤
(

2−η +
C

C1
2−kη+n−η +

√
C

C1
2(−kη+n−η)/2

)
C12−(k+1)(n−η)

≤ C12−(k+1)(n−η)

as long as C
C1

is small enough. Notice that the value of C1 for which this happens depends only
on Λ, η, n and ‖u‖L∞ .

This finishes the proof of (3.4). Now this implies that u ∈ Cα for any α < 1 by the classical
Morrey’s embedding (which can be found for example in [3], Theorem 7.19).

Corollary 3.4. The minimizer u of (1.1) is in the class Cα(B1/2) for any α < 1. Moreover

[u]Cα(B1/2) ≤ C(η, n)pΛ(pΛ + ||g||L∞)p . (3.5)

Proof. We can take C1 ≤ C(η, n)pΛ sup |u|p. This together with (2.1) yields (3.5).

4 Hölder regularity of the derivatives.

To prove a C1,α estimate we will proceed in a similar fashion as in section 3. But our iteration
has to be more careful and it is only going to work for small values of α. We will also use
this as a way to show Lipschitz continuity. We could also achieve a uniform Lipschitz bound
using Alt-Caffarelli-Friedman monotonicity formula. We will not need to do this because we
are assuming p > 0 (although the estimate blows up as p → 0+).

Lemma 4.1. If v is a harmonic function in a ball Br(x0), then for a small enough σ > 0.
∫

Bσr(x0)

|∇v −∇v(x0)|2 dx ≤ (1− θ)σn

∫

Br(x0)

|∇v|2 dx

where θ ∈ (0, 1).

Proof. This just follows from the fact that since v is harmonic, then it has all kinds of estimates.
In particular we can estimate its C1,1 norm in Br/2 from

∫
Br(x0)

|∇v|2 dx. Namely

∣∣D2v(x)
∣∣ ≤ Cr−n/2−1

(∫

Br(x0)

|∇v|2 dx

)1/2

then for any x ∈ Bσr(x0),

|∇v(x)−∇v(0)|2 ≤ Cr−n−2

(∫

Br(x)

|∇v|2 dx

)
(σr)2

Integrating we obtain
∫

Bσr(x0)

|∇v −∇v(x0)|2 dx ≤ Cr−n−2

(∫

Br(x)

|∇v|2 dx

)
(σr)2(σr)n

≤ Cσ2σn

(∫

Br(x)

|∇v|2 dx

)

Now, for any θ ∈ (0, 1), we can make Cσ2 < 1− θ if we choose σ small enough.

4



Theorem 4.2. A minimizer u of (1.1) is C1,α(B1/2) for a small α > 0. There is an upper
bound for ‖u‖C1,α(B1/2)

that depends on Λ, p, ‖u‖L∞ , α and the dimension n.

Proof. The idea is like in the proof of Lemma 3.3, but this time we want to show that for each
x0 ∈ B1/2, there is a vector A(x0) (which will turn out to be ∇u(x0)) such that we have the
following ∫

Br(x0)

|∇u−A(x0)|2 dx ≤ C0r
n+η (4.1)

for some small value η > 0 and any r < 1/2. Then C1,α regularity follows from a result of
Campanato [2] with α = η/2.

We will also do it iteratively, but instead of using balls of radius (1/2)j , we will use σj as
the radius, for the σ of Lemma 4.1. Our choice of C0 will depend only on Λ, p, ‖u‖L∞ , α and
the dimension n.

For each x0 ∈ B1/2, we will iteratively construct a sequence Aj such that
∫

Bσj (x0)

|∇u−Aj |2 dx ≤ C1σ
j(n+η) (4.2)

|Aj −Aj+1| ≤ C2σ
jη/2 (4.3)

But this iteration will continue only as long as infBσj (x0) |u| ≤ σj . In the the other case,
equation (1.2) would be nondegenerate in Bσj (x0), and we would be able to apply C1,2η

estimates to obtain (4.1) for r ≤ σj+1 and A(x0) = ∇u(x0), and there would be no need to
continue the iteration. In case the iteration continues forever, we would define A(x0) = lim Aj

and we will obtain (4.1) from (4.2). In any case it will hold Aj −A(x0) ≤ Cσjη/2.
Let us first show that (4.2) and (4.3) hold as long as we have infBσj (x0) |u| ≤ σj for every

j ≤ k. The proof is by induction. We can choose C1 and C2 large enough so that the statement
is true for j = 1, we want to check that the inductive iteration holds. We assume (4.2) and
(4.3) hold for j = k and also infB

σk (x0) |u| ≤ σk. We will show that then (4.2) and (4.3) hold
for j = k + 1.

Consider the harmonic replacement v of u in B = Bσk(x0). Actually, we see that v−Ak ·x
is the harmonic replacement of u−Ak · x in B. Therefore

∫

B
σk (x0)

|∇v −Ak|2 dx ≤
∫

B
σk (x0)

|∇u−Ak|2 dx =: I1 (4.4)

We set Ak+1 = ∇v(x0). By Lemma 4.1 applied to v −Ak · x, we have
∫

B
σk+1 (x0)

|∇v −Ak+1|2 dx ≤ (1− θ)σn

∫

B
σk (x0)

|∇v −Ak|2 dx ≤ θσnI1

Since we are assuming infB
σk (x0) |u| ≤ σk, we can choose any β ∈ (0, 1) and u ∈ Cβ , then

supB
σk (x0) |u| ≤ Cσβk. By Lemma 3.1,

I2 :=
∫

B
σk (x0)

|∇u−∇v|2 dx ≤ 4Λ sup
B

σk

|u|p |Bσk | ≤ Cσk(βp+n)

We choose η small enough such that ση > 1 − θ
2 and η < βp (recall that β was actually

chosen arbitrarily and it is any number less than one). As in the proof of Proposition 3.3, we
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have
∫

B
σk+1 (x0)

|∇u−Ak+1|2 dx ≤ (1− θ)σnI1 + I2 +
√

θσnI1I2

≤ (1− θ)σnC1σ
k(n+η) + Cσk(βp+n) +

√
θC1Cσ

n+kn+kη+kβp+kn
2

≤ C1σ
(k+1)(n+η)

(
1− θ

2− θ
+

C

C1
σk(βp−η)−n−η +

√
C

C1
σ(k(βp−η)−n−η)/2

)

≤ C1σ
(k+1)(n+η)

as long as C
C1

is small enough.
This shows (4.2) for j = k + 1. Note that we did not use (4.3) in the iteration for (4.2).

Now we can obtain (4.3) for j = k + 1 using (4.2) and C1 estimates for the harmonic function
v. Since Ak+1 −Ak is the gradient of v −Ak · x at zero, then

|Ak+1 −Ak| ≤ C

σkn/2

(∫

B
σk (x0)

|∇v −Ak|2 dx

)1/2

≤ CC
1/2
1 σkη/2 = C2σ

kη/2

Notice that (4.3) implies that |Ak −Aj | ≤ Cσkη/2 for any j > k. If the iteration goes on
forever, then Ak converges, and we immediately have (4.1) for A(x0) = lim Ak if C0 is large
enough.

If the iteration stops at one step k, that means that infB
σk (x0) |u| > σk, then from (1.2),

4u is bounded (recall 0 < p ≤ 1)

0 ≤ 4u ≤ pσk(p−1)

Therefore, we can apply C1,α estimates for u − Ak · x (notice 4(u − Ak · x) = 4u), for
r = σk and α = η/2 we have

|∇u(x0)−Ak| ≤ Cr ‖4u‖L∞(Br(x0))
+ r−n/2

(∫

Br(x0)

|∇u−Ak|2 dx

)1/2

≤ Cpσkp +
√

C1σ
kη/2

≤ Cσkη/2 as long as p > η/2

[∇u−Ak]Cα(Br/2(x0)) ≤ Cr1−α ‖4u‖L∞(Br(x0))
+ r−n/2−α

(∫

Br(x0)

|∇u−Ak|2 dx

)1/2

≤ Cpσk(p−α) +
√

C1σ
k(η/2−α)

≤ C3 as long as p > η/2

Now we set A(x0) = ∇u(x0), for any r ≤ σk+1, we integrate the above estimate to obtain
∫

Br(x0)

|∇u−A(x0)|2 dx ≤
∫

Br(x0)

C3 |x− x0|2α dx

≤ C3 |B1| rn+η

So, setting C0 ≥ C3 |B1|, we obtain (4.1) for all r ≤ σk+1.
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The fact that |Aj −A(x0)| ≤ Cσkη/2 follows from |Ak −A(x0)| ≤ Cσkη/2 and (4.3). This,
together with (4.2) imply (4.1) for r ≥ σk+1 by choosing C0 large.

Finally, using Campanato’s result [2], we obtain ∇u ∈ Cη/2. Since C1 is to be chosen such
that C/C1 is small where C is the constant from Lemma 3.1 we remark that we have the
following estimate

[u]C1,α(B1/2) ≤ C(p, n, Λ)(pΛ + ||g||L∞)p . (4.5)

We can also scale the above theorem to obtain a version in Br.

Corollary 4.3. A minimizer u of (1.1) in Br such that ‖u‖L∞ ≤ M is C1,α(Br/2) for a small
α > 0. There is an upper bound for ‖u‖C1,α(Br/2)

of the form

[u]C1,α(Br/2) ≤ rβ−1−αC(r−βM)

Which also implies the estimate for the Lipschitz norm

[u]C0,1(Br/2) ≤ rβ−1C(r−βM)

Where β = 2
2−p and C is an increasing function depending on Λ, n, p and α.

Proof. We see that ur(x) = r−βu(rx) is a minimizer of (1.1) in B1, so we can apply Theorem
4.2 to ur to get the result.

5 When the derivatives are bounded below.

In this section we will show that if |∇u| is bounded below in B1, then u ∈ C1,p(B1/2), which
is better than optimal. The norm will naturally depend on the lower bound on |∇u|.
Lemma 5.1. Let u be a C1 function in B1 such that a ≤ |∇u| ≤ A. Then for any ball Br(x0)
included in B1, the following estimate holds

|{−λ < u < λ} ∩Br(x0)| ≤ Crn−1λ (5.1)

for a constant C that depends only on dimension, a, A, and the modulus of continuity of ∇u.

Proof. Since u ∈ C1(B1), for a small enough r0 > 0 (depending only on a and the modulus of
continuity for ∇u),

osc
Br0 (x)∩B1

〈∇u, e〉 ≤ a

2

for any x ∈ B1 and unit vector e.
Let e = ∇u(x0)

|∇u(x0)| . The above relation implies that ue ≥ a
2 in the ball Br0(x0). This means

that u is strictly increasing in e, therefore if we look at e as the direction that points up, all
the level sets of u will be the graph of some function. Moreover, since ue ≥ a

2 , then {u = λ}
and {u = −λ} will be at distance at most 4λ

a in the direction of e. Thinking of both level
sets as graphs of functions that means that the corresponding functions differ by at most
4λ
a . If r is any radius less than r0, then the same thing applies and the measure of the set
|{−λ < u < λ} ∩Br(x0)| has to be less or equal than ωn−1

4λ
a rn−1, where ωn−1 is the volume

of the n− 1-dimensional sphere.
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2λ/a

ωn−1r
n−1

If on the other hand r > r0, then we cover Br(x0) with balls of radius r0 and in each piece
we apply the above reasoning. We obtain

|{−λ < u < λ} ∩Br(x0)| ≤ Nωn−1
4λ

a
rn−1
0 λ

≤ Nωn−1
4λ

a
rn−1λ

where N is the number of balls of radius r0 that we need to cover Br. But N is bounded by the
number of balls of radius r0 that we would need to cover the whole B1, that is a fixed number
depending only on dimension and r0.

Remark 5.2. Looking at the proof of Lemma 5.1, it may seem that the constant C does not
depend on A. That is somewhat misleading because A is implicit in the modulus of continuity
for ∇u if |∇u| = a was actually achieved.

Remark 5.3. It is not clear whether the constant of Lemma 5.1 should or should not depend
on the modulus of continuity but only on a and A. We leave it as an interestin question. Of
course, for our proof to work the constant must depend on the modulus of continuity.

Proposition 5.4. Let u be a minimizer of (1.1) (with 0 < p < 1) in B1 such that ‖u‖L∞(B1)
≤

M and |∇u| ≥ a, then u ∈ C1,p(B1/2). Moreover, there is an estimate of the form

[u]C1,p(B1/4) ≤ C(M,a) (5.2)

where C(M, a) is some function of M and a that depends also on dimension.

Proof. We apply Theorem 4.2 to obtain that u ∈ C1,α(B1/2). In particular u ∈ C1(B1/2) with
a Cα modulus of continuity for ∇u (depending on M) and A := sup |∇u| ≤ C(M). Then we
can apply Lemma 5.1 to a rescaling of u to obtain

|{−λ < u < λ} ∩Br(x0)| ≤ Crn−1λ

We want to use (1.2) to control the behavior of 4u. First of all we must notice that since
u ∈ C1,α and |∇u| > a, by the implicit function theorem {u = 0} is a C1 surface. Moreover,
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since u ∈ C1,α, there is no jump of the derivative across this surface, and therefore 4u has no
singular part on {u = 0}.

Recalling that u solves (1.2), we obtain

|{|4u| > λ} ∩Br(x0)| ≤ Crn−1λ
1

1−p

for any ball Br ⊂ B1/2. Then
∫

Br

|4u| dx ≤
∫ ∞

0

|{|4u| > λ} ∩Br(x0)| dλ ≤ Crn−1+p (5.3)

which implies (5.2) as shown in the appendix.

Corollary 5.5. With the same hypotheses of Proposition 5.4, we have

[u]C1,β−1(B1/4) ≤ C(M, a) (5.4)

where β = 2
2−p .

Proof. β ≤ 1 + p

Corollary 5.6. Let u be a minimizer of (1.1) (with 0 < p < 1) in B1 such that ‖u‖L∞(Br) ≤ M

and |∇u| ≥ a, then u ∈ C1,β−1(B1/2). Moreover, there is an estimate of the form

[u]C1,β−1(Br/4) ≤ C(r−βM,
a

rβ−1
) (5.5)

Proof. We see that ur(x) = r−βu(rx) is a minimizer of (1.1) in B1, so we can apply Corollary
5.5 to ur to get (5.5).

6 Optimal regularity for p ∈ (0, 1)

We will prove that when p ∈ (0, 1) then the optimal regularity of the minimizers of (1.1) is
C1,β−1 for β = 2

2−p , which comes from the scaling of the equation and the same as the optimal
regularity for the nonnegative case when F (u) = up (see [5]).

The following lemma exploits the scaling of the equation via a blowup argument.

Lemma 6.1. Let u be a minimizer of (1.1) in B1 such that ‖u‖L∞(B1)
≤ M . Then there is a

constant C, depending only on p, M , and dimension, such that if r < 1/2 and β = 2
2−p , one

of the following happens

1. infBr u ≥ rβ

2. infBr |∇u| ≥ rβ−1

3. supBr
|u| ≤ Crβ

4. supBr
|u| ≤ 2−jβ supB2jr

|u| for some j ≥ 1 such that 2jr ≤ 1.

Proof. Suppose there is no such constant C. Then for every t > 1 we would be able to find a
ut and rt such that ‖ut‖L∞ ≤ M and all of the following hold

1. infBrt
ut ≤ rβ

t
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2. infBrt
|∇ut| ≤ rβ−1

t

3. supBrt
|ut| ≥ trβ

t

4. supBrt
|ut| ≥ 2−jβ supB2jrt

|ut| for every j ≥ 1 such that 2jrt ≤ 1.

For (3) to hold, rt must go to zero as t →∞ because the functions ut are bounded uniformly.
If we consider

ũt =
1

supBrt
|ut|ut(rtx)

then ũt is a local minimizer of the functional

Jt(v) :=
∫
|∇v|2 + Ft(v) dx

where Ft(v) = r2
t

(supBrt
|ut|)2 F

(
supBrt

|ut| v
)

satisfies |Ft(v)| ≤
(

rβ
t

supBrt
|ut|2

)
Λ |v|p that goes to

zero as t →∞ because of (3). Moreover, for ũt all of the following hold

1. infB1 ũt ≤ t−2

2. infB1 |∇ũt| ≤ t−2

3. supB1
|ũt| = 1

4. supB2j
|ũt| ≤ 2jβ for every j ≥ 1 such that 2j ≤ 1

rt
.

For j < 1 (which holds for t > 1), we have a uniform C1,α estimate for ũt for a small α.
This means that we can extract a subsequence such that ũt and ∇ũt converge uniformly to
some function u∞ and ∇u∞ respectively. Then function u∞ has to be a local minimizer of

J∞(v) :=
∫
|∇v|2 dx

But this means that u∞ is harmonic and satisfies

1. infB1 u∞ ≤ 0

2. infB1 |∇u∞| ≤ 0

3. supB1
|u∞| = 1

4. supB2j
|u∞| ≤ 2jβ for every j ≥ 1 such that 2j ≤ 1

rt
.

From (4), u∞ must be of the form ax + b since it is a harmonic function that grows less
than quadratic at infinity. From (2), a = 0, and then from (1), b = 0. But then u∞ ≡ 0 which
contradicts (3).

Theorem 6.2. A minimizer u of (1.1) (with 0 < p < 1) is in C1,β−1(B1/2) for β = 2
2−p

(which is the scaling of the equation and the same regularity as in the one phase case).
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Proof. The proof follows more or less a similar strategy as in Theorem 4.2. We will prove some
decay by iterating Lemma 6.1 that this time will work as long as u and |∇u| remain small.
When they are too large we apply either the estimates for a function with bounded laplacian,
or Proposition 5.4.

For any x0 ∈ B1/2, we apply iteratively Lemma 6.1 for ball of radius r = 2−j centered in
x0 for as long as we have

sup
B2−j

u ≤ 2−jβ

sup
B2−j

|∇u| ≤ 2−j(β−1)

in case we can carry out the iteration forever, we have ∇u(x0) = 0 and

sup
B2−j (x0)

|u| ≤ C2−jβ for any j

which means that |u(x)| ≤ C |x− x0|β for x ∈ B1/2 and u is C1,β−1 at x0.
In case the iteration stop for some step j = k, we would have

sup
B2−j (x0)

|u| ≤ C2−jβ for j ≤ k

which means that there is a constant C for which

|u(x)| ≤ C |x− x0|β for x ∈ B1/2 \Br/4(x0) (6.1)

for r = 2−k and
sup

Br(x0)

|u| ≤ Crβ (6.2)

If the iteration stopped at j = k it is because (for r = 2−k) either

inf
Br(x0)

u ≥ rβ

or
inf

Br(x0)
|∇u| ≥ rβ−1

We have to analyze both cases.
Case 1. If infBr |u| ≥ rβ , then 4u is bounded in Br(x0) by

|4u(x)| ≤ pr(p−1)β

Then u has C1,β−1 estimates in Br/2. Using (6.2), they give

|∇u(x0)| ≤ C

r
sup

Br(x0)

|u|+ Cr sup
Br(x0)

|4u|

≤ Crβ−1

[u]C1,β−1(Br/2) ≤
C

rβ
sup

Br(x0)

|u|+ Cr2−β sup
Br(x0)

|4u|

≤ C

11



Therefore |u(x)− u(x0)− (x− x0) · ∇u(x0)| ≤ C |x− x0|β for x ∈ Br/2(x0). On the other
hand for x ∈ B1/2 \Br/2(x0) we use (6.2) with the bound on |∇u|,

|u(x)− u(x0)− (x− x0) · ∇u(x0)| ≤ |u(x)− u(x0)|+ |x− x0| |∇u(x0)|
≤ C(|x− x0|β + |x− x0| rβ−1) ≤ C |x− x0|β

Then u is C1,β−1 at x0.
Case 2. If infBr(x0) |∇u| ≥ rβ−1, then we can apply Corollary 5.6 to u in Br(x0) to obtain

the following C1,β−1 estimate in Br/4(x0) of the form

[u]C1,β−1(Br/4) ≤ C (6.3)

for a constant C that depends only on dimension. We can also apply Corollary 4.3 with
(6.2) to obtain

|∇u(x0)| ≤ rβ−1C (6.4)

From (6.3) we have that |u(x)− u(x0)− (x− x0) · ∇u(x0)| ≤ C |x− x0|β for x ∈ Br/4(x0).
On the other hand when x ∈ B1/2 \Br/4(x0) we can do exactly as before combining (6.4) with
(6.1),

|u(x)− u(x0)− (x− x0) · ∇u(x0)| ≤ |u(x)− u(x0)|+ |x− x0| |∇u(x0)|
≤ C(|x− x0|β + |x− x0| rβ−1) ≤ C |x− x0|β

and we obtain that u is C1,β−1 at x0.
Since none of the constants C along the proof depend on x0, we have that u ∈ C1,β−1(B1/2).

Remark 6.3. For p = 1, our proof does not work for two reasons. The first one is that estimate
(5.3) does not imply that u ∈ C1,1. The second, and maybe most important, is that in the
proof of lemma 6.1 we would have our limit function growing quadratically, and therefore it is
not necessarily a plane.

The optimal regularity for p = 1 was proven to be C1,1 when f ′ is bounded below very
recently using ACF monotonicity formula in [6].

7 Appendix: Proof that 5.3 implies C1,p

In this appendix we show the following result that we need for section 5

Theorem 7.1. Let u : B1 → R be a bounded function such that

u ≤ M in B1∫

Br(x)

|4u| dy ≤ Mrn−1+p for any ball Br(x) ⊂ B1

then u ∈ C1,p(B1/4). Moreover

∇u(x1)−∇u(x2) ≤ CM |x1 − x2|p

for any x1, x2 ∈ B1/4, where the constant C depends only on p and the dimension n.
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Remark 7.2. By a standard covering argument, the theorem implies that the same result is
true if we replace B1/4 for any other set compactly contained in B1. In that case, the constant
C would depend on that set too.

Proof. We can prove it assuming that u is smooth. A density argument extends it to any
bounded function satisfying the hypothesis.

Let us consider

u = u1 + u2

u1(x) =
∫

B1/3

Cn

|x− y|n−24u(y) dy

4u2(x) = 0 in B1/3(z)

First, we estimate |u1(x)| for x ∈ B1/3,

|u1(x)| =
∣∣∣∣∣
∫

B1/3

Cn

|x− y|n−24u(y) dy

∣∣∣∣∣

≤
∫

B1/3(z)

Cn

|x− y|n−2 |4u(y)| dy ≤
∫

B2/3(x)

Cn

|x− y|n−2 |4u(y)| dy

≤ Cn

(
2n−2

∫

B2/3(x)

|4u(y)| dy +
∫ 2/3

0

(n− 2)ρ−n+1

∫

Bρ(x)

|4u(y)| dy dρ

)

≤ Cn,pM

Since 4u1 = 0 outside B1/3 and u1 vanishes at infinity, u1 ≤ Cn,pM everywhere.
Since u2 = u− u1, then u2 ≤ CM in B1. Moreover, since u2 is harmonic in B1/3(z), then

|∇u2(x1)−∇u2(x2)| ≤ CM |x1 − x2|p (7.1)

for x1, x2 ∈ B1/4.
Second, we estimate |∇u1(x1)−∇u1(x2)| for x1, x2 ∈ B1/4. Let z = x1+x2

2 , and R =
|x1 − x2|. Recall

∇u1(x) =
∫

B1/3

Cn
x− y

|x− y|n4u(y) dy

Now we write ∇u1(x1)−∇u1(x2) = I1 + I2 where

I1 =
∫

BR(z)

Cn

(
x1 − y

|x1 − y|n −
x2 − y

|x2 − y|n
)
4u(y) dy

I2 =
∫

B1/3(z)\BR(z)

Cn

(
x1 − y

|x1 − y|n −
x2 − y

|x2 − y|n
)
4u(y) dy

For I1 we do

|I1| ≤
∑

i=1,2

∣∣∣∣∣
∫

BR(z)

Cn
xi − y

|xi − y|n4u(y) dy

∣∣∣∣∣

≤ Cn

∑

i=1,2

(
1

(2R)n−1

∫

B2R(xi)

|4u(y)| dy +
∫ 2R

0

(n− 1)ρ−n

∫

Bρ(xi)

|4u(y)| dy dρ

)

≤ Cn,pMRp
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For I2, we must take cancellations into account, but we can extend the domain of integration
to Rn \BR(z).

|I2| ≤
∫

Rn\BR(z)

Cn |x1 − x2| 1
|y − z|n |4u(y)| dy

≤ CnR

∫ ∞

2R

nρ−n−1

∫

Bρ(z)

|4u(y)| dy dρ

≤ Cn,pMRp

Thus |∇u1(x1)−∇u1(x2)| ≤ |I1|+ |I2| ≤ Cn,pMRp. Combining this with (7.1), we obtain

|∇u(x1)−∇u(x2)| ≤ CM |x1 − x2|p
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