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Abstract

We prove Hölder estimates for integro-differential equations related to some continuous time
random walks. These equations are nonlocal both in space and time and recover classical parabolic
equations in limit cases. For some values of the parameters, the equations exhibit at the same
time finite speed of propagation and Cα regularization.

1 Introduction

We study evolution problems that are related to continuous time random walks (CTRW), which are
a discontinuous path for which both the jumps and the time elapsed in between them are random.
These processes are governed by a generalized master equation which is nonlocal both in space and
time.

We consider kernels K(t, x, s, y) in Rn × Rn × (0,∞) × (0,∞). From this kernels, we define an
integral operator which is nonlocal both in space and time.

Lu(t, x) =

∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(t, x, s, y) ds dy, (1.1)

We will study equations that may or may not include a time derivation. The first model we are
interested is the equation which is purely nonlocal.

Lu(t, x) = 0 (1.2)

This was stated as equation (22) in [8], also in [9] and [5]. The function u in the equation above
represents the distribution of particles following a CTRW that have are arriving at position x at time
t.

Other physical models that study the evolution of a distribution of particles following a CTRW
involve an equation of the form.

ut + Lu(t, x) = 0 (1.3)

Equations of this general form can be found in a variety of physical situations, for example see [2],
[3], [4], [5], [10], [11], [14], [15] and [16].

A common simplifying assumption is that the jumps in space and the waiting times are decor-
related: K(t, x, s, y) = µ(x, y)ν(t, s). However, studying correlated kernels provides a more flexible
framework where more interesting physical phenomena can be observed (see for example the discus-
sion by the end of [5]), and more subtle mathematical questions appear. The regularity estimates are
in fact more interesting (harder mathematically) when the jumps in space and the waiting times are
strongly correlated.

In order to obtain our regularity results, we need to make some assumptions on the kernels. We
consider kernels K that are non degenerate in between two surfaces c1|y|β ≤ s ≤ c2|y|β , for some
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β > 0. Moreover, our structural conditions, which follow below, can be interpreted as that the
operator is of order σ in space, and σ/β in time. We assume

K(t, x, s, y) ≥ λ

|y|n+σ+β
when c1|y|β ≤ s ≤ c2|y|β , (1.4)

K(t, x, s, y) ≤ Λ

|y|n+β+σ + sn/β+1+σ/β
. (1.5)

The hypothesis (1.5) assures that the integral expression in (1.1) is computable every time u is
a smooth function (assuming β > σ). The hypothesis (1.4) is a non degeneracy condition that is
necessary to obtain our regularity results.

No regularity is assumed with respect to any of the variables. For simplicity we assume that K is
symmetric in y.

K(t, x, s, y) = K(t, x, s,−y) (1.6)

Theorem 1.1. Let u : (−∞, 1)× Rn → R be a bounded solution to Lu(t, x) = f(t, x) for all (t, x) ∈
(0, 1)×B1, where L is an operator as above and f is a bounded function. Then the solution is in the
class Cα((1/2, 1)×B1/2) for some α > 0. Moreover an estimate holds:

‖u‖Cα((1/2,1)×B1/2) ≤ C
(
‖u‖L∞((−∞,1)×Rn) + ‖f‖L∞((0,1)×B1)

)
.

for some C depending on n, σ, β, λ and Λ.

Theorem 1.1 will be rephrased below in the article so that the equation Lu = 0 is understood in
a weak (viscosity) sense.

We also provide a regularity result for the model with a time derivative.

Theorem 1.2. Let u : (−∞, 1) × Rn → R be a bounded solution to ut + Lu(t, x) = f(t, x) for all
(t, x) ∈ (0, 1) × B1, where L is an operator as above and f is a bounded function. Then the solution
is in the class Cα((1/2, 1)×B1/2) for some α > 0. Moreover an estimate holds:

‖u‖Cα((1/2,1)×B1/2) ≤ C
(
‖u‖L∞((−∞,1)×Rn) + ‖f‖L∞((0,1)×B1)

)
.

for some C depending on n, σ, β, λ and Λ.

The proofs of the Theorems 1.1 and 1.2 are given in the last section of the paper. In fact, we
provide a restatement of these results as Theorems 7.1 and 7.2, in terms of viscosity solutions.

2 Analysis of assumptions and scaling

It is important to point out that the equation make sense only if σ < β. Otherwise the operator
Lu(t, x) has a non integrable function even if u ∈ C∞x,t.

The case β = 1 has finite speed of propagation (meaning that the value of u(t, x) depends only on
the values of u in the cone {(s, y) : |y − x| < t − s}). It is interesting as an example of a parabolic
equation, with regularization effects, and finite speed of propagation. It may be the first example of
such equation.

On a first look at the main assumptions (1.4) and (1.5), it may seem strange that in the first
assumption the lower bound is taken in between two surfaces only. The purpose of these two surfaces
is to make the assumptions fairly general so as to accommodate singular kernels K which vanish for
some values of s and y. Indeed, the more natural looking alternative

K(t, x, s, y) ≥ λ
(

1

|y|n+β+σ + sn/β+1+σ/β

)
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is a strictly more restrictive assumption.
The kernels which are excluded from our assumptions are those which are made of a singular

measure (instead of a locally L1 density). For example, one can imagine an operator L of the form

Lu(t, x) =

∫
Rn

(u(t, x)− u(t− |y|β , x+ y))K(t, x, y) dy.

This operator corresponds to a singular kernel K which is supported on s = |y|β . In terms of a CTRW,
it corresponds to a situation in which the time it takes for a particle to jump a distance y is always
exactly |y|β .

The assumptions (1.4) and (1.5) respect a natural scaling. Indeed, if we call ur(t, x) = u(rβt, rx),
then

Lrur(t, x) = rσLu(rβt, rx), (2.1)

where Lr is an operator of the same form (1.1) with a kernel Kr satisfying the same assumptions (1.4)
and (1.5).

For an operator that involves a time derivative ut + Lu, the scaling is more complicated. In fact,
there is no natural scaling that preserves the structure of the equation exactly. We can understand
this since the operator L implicitly contains a lower order time derivative, so its scaling does not
match the scaling of ut. We consider the following scaling instead: ur(t, x) = u(rσt, rx). The function
ur satisfies the equation

∂tur(t, x) + Lrur(t, x) = rσ (∂tu+ Lu) (rσt, rx),

where Lr is the operator of the form (1.1) with the kernel Kρ(t, x, s, y) = ρn+2σK(ρσt, ρx, ρσs, ρy).
This kernel satisfies the bounds

K(t, x, s, y) ≥ ρσ−βλ

|y|n+σ+β
when ρβ−σc1|y|β ≤ s ≤ ρβ−σc2|y|β , (2.2)

K(t, x, s, y) ≤ Λρn+2σ

|ρy|n+β+σ + (ρβs)n/β+1+σ/β
. (2.3)

Note that since β > σ, the estimates two parabolas where Kr is bounded below in (2.2) become flat
as r → 0. Moreover, (2.3) says that Kr is concentrating close to s = 0 as r → 0. That is, as r → 0,
the operator Lr tends to become local in time.

3 Second order parabolic equations as asymptotic limits

Second order parabolic equations can be formally obtained as limits of master equations in different
ways. In this section we demonstrate how an operator of the form (1.1) converges to a parabolic
operator of the form c(t, x)∂tu− aij(t, x)∂xixju in some assymptotic regimes.

3.1 Limit with β = 2 and σ → 2

Proposition 3.1. Let a(s, y) be a fixed kernel so that

• λ ≤ a(s, y) ≤ Λ (i.e. a is bounded above and below).

• a(s, y) = a(s, λy) for all λ ∈ R, λ 6= 0 (i.e. a is homogeneous of degree zero). Note we also
assume this for λ < 0, so a is even in y.

Let us consider the following family of kernels Kσ:

Kσ(s, y) =

{
(2− σ) a(s,y)

|y|n+2+σ if c1|y|2 ≤ s ≤ c2|y|2,
0 otherwise.
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Let Lσ be the corresponding operator as in (1.1). Then, there exist a constant c > 0 and a positive
definite matrix aij, such that for any C2 function u,

lim
σ→2

Lσu(t, x) = cut(t, x)− aij∂iju(t, x).

Proof. We perform the direct computation.

lim
σ→2

Lσu(t, x) = lim
σ→2

(∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))(2− σ)
a(s, y)

|y|n+2+σ
ds dy

)
,

For any r > 0, we split the domain of integration,

= lim
σ→2

(∫
Br

∫ ∞
0

(u(t, x)− u(t− s, x+ y))(2− σ)
a(s, y)

|y|n+2+σ
ds dy + (2− σ)

∫
Rn\Br

. . . dx

)

For any r > 0, the second integral is bounded independently of σ, then we drop that term in the limit.

= lim
σ→2

(∫
Br

∫ ∞
0

(u(t, x)− u(t− s, x+ y))(2− σ)
a(s, y)

|y|n+2+σ
ds dy

)
We now use a second order Taylor expansion for u at (t, x). Note that in the region of integration
s ≈ |y|2.

= lim
σ→2

(∫
Br

∫ ∞
0

(s ut(t, x)− y · ∇xu(t, x)− ytD2
xu(t, x)y + o(|y|2))(2− σ)

a(s, y)

|y|n+2+σ
ds dy

)
Integrating in s,

= lim
σ→2

(∫
Br

(c(y)|y|2ut(t, x)− y · ∇xu(t, x)− ytD2
xu(t, x)y + o(|y|2))(2− σ)

A(y)

|y|n+σ
ds dy

)

whereA(y) = 1
|y|2
∫ c2|y|2
c1|y|2 a(s, y) ds, which is bounded above and below. And c(y) = 1

A(y)|y|4
∫ c2|y|2
c1|y|2 sa(s, y) ds,

which is also bounded above and below. By the assumptions on a, both A and c are radially symmetric
in y. We now observe that the term which involved ∇xu is odd, and thus integrates to zero.

= lim
σ→2

(∫
Br

(c(y)|y|2ut(t, x)− ytD2
xu(t, x)y + o(|y|2))(2− σ)

A(y)

|y|n+σ
ds dy

)
We now use polar coordinates. Recall that A and c are homogeneous of degree zero.

= lim
σ→2

(∫ r

0

∫
∂B1

(c(θ)ut(t, x)− θtD2
xu(t, x)θ + o(1))(2− σ)

A(θ)

ρn−2+σ
ρn−1 dθ dρ

)
= lim
σ→2

(∫ r

0

(2− σ)ρ1−σ dρ

)(∫
∂B1

(c(θ)ut(t, x)− θtD2
xu(t, x)θ + o(1))A(θ) dθ

)
In the last expression the term o(1) represents a quantity that goes to zero as r → 0. Recall that
r > 0 is arbitrary.

= lim
σ→2

r2−σ
(∫

∂B1

(c(θ)ut(t, x)− θtD2
xu(t, x)θ + o(1))A(θ) dθ

)
=

∫
∂B1

(c(θ)ut(t, x)− θtD2
xu(t, x)θ)A(θ) dθ + o(1),
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making r → 0,

= cut(t, x)− aij∂xixju(t, x).

For some positive coefficients c and aij . This is just because the last expression is a linear function
in ut(t, x) and D2u(t, x), so it must correspond to some coefficients. The positiveness of c and aij is
a consequence of the monotonicity of the last expression given that A(θ) > 0 and c(θ) > 0.

3.2 Limit with finite speed of propagation and c1 → 0

If we relax the assumptions on the kernels, one can consider an asymptotic regime with a fixed β
which converges to a second order parabolic equation. Let us consider the following example.

Kεσ(s, y) =
(2− σ)

|y|n+2+σ + sn/2+1+σ/2
χ{|y|>εs}.

A computation as in the previous subsection shows that the corresponding operator Lεσ will converge
to the heat operator ∂t −4 as ε→ 0 and σ → 0.

The fact that for any ε > 0 the kernel is supported in {|y| > εs} effectively defines a cone of
dependence, and naturally the equation has a finite speed of propagation (equal to ε−1).

The method presented in this paper does not provide a Hölder continuity estimate for these
operators Lεσ, even for fixed ε > 0 and σ > 0. The problem is that the family of kernels defined
above is not scale invariant. The cone of dependence would degenerate in small scales when using the
parabolic scaling. The parabolic scaling is the only one which is compatible with the first factor.

4 Maximal operators and Viscosity solutions

We define Pucci-like extremal operators and their corresponding viscosity solutions.
The maximal and minimal operators M+u and M−u are by definition the maximal and minimal

values that an operator Lu(x) of the form (1.1) can achieve under the restrictions (1.4) and (1.5).
More explicitly

M+u(t, x) = max

{∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(s, y) ds dy : for all K satsifying (1.4) and (1.5)

}
,

M−u(t, x) = min

{∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(s, y) ds dy : for all K satsifying (1.4) and (1.5)

}
.

Note that the maximum and minimum above are typically achieved at different kernels K depending
on the point (t, x), thus, for any smooth function u, M+u and M−u coincide with some Lu for a
kernel K(t, x, s, y).

If a smooth function u satisfies the equation (1.1) for some kernel K(t, x, s, y) satisfying (1.4) and
(1.5), then it also satisfies M+u ≥ 0 and M−u ≤ 0 in the same domain. This is because at every
point (t, x), the kernel K(t, x, ·, ·) is one candidate in the maximum and minimum defining M+ and
M−.

Conversely, if for some smooth function u, we have M+u ≥ 0 and M−u ≤ 0 in some domain,
then we can find two kernels K1 and K2, satisfying the assumptions (1.4) and (1.5), such that the
corresponding operators L1 and L2 satisfy L1u ≥ 0 and L2u ≤ 0. It is not hard to see that there will
be an intermediate kernel K (for example K = ((−M−u)K1 + (M+u)K2)/(M+u+M−u)) for which
the corresponding operator satisfies Lu = 0.

Therefore, assuming that Lu = 0 for some operator L as in (1.1) with (1.4) and (1.5) is the same
as assuming that M+u ≥ 0 and M−u ≤ 0. The technical advantage of the latter formulation is that
the two inequalities can be defined in the viscosity sense, whereas it is hard to define the meaning of
Lu = 0 for a given kernel K if u is not a smooth function.
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In order for us to be able to compute the values classically in the definition of M+u(t, x) and
M−u(t, x), we need some regularity of u at least from one side. More precisely, assume that there
exists A ∈ Rn and C > 0 such that in a neighborhood of (t, x),

u(s, y) ≤ u(t, x) +A · (y − x) + C(|x− y|2 + t− s).

Then, for any symmetric kernel K satisfying (1.4) and (1.5), we have

Lu(t, x) =

∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(s, y) ds dy,

=
1

2

∫
Rn

∫ ∞
0

(2u(t, x)− u(t− s, x+ y)− u(t− s, x− y))K(s, y) ds dy,

=
1

2

∫
Rn

∫ ∞
0

(2u(t, x)− . . . )+K(s, y) ds dy − 1

2

∫
Rn

∫ ∞
0

(. . . )−K(s, y) ds dy

In the first term, (2u(t, x)−u(t− s, x+ y)−u(t− s, x− y))+ ≤ C(|x− y|2 + t− s) by the assumption,
and then it is integrable. We do not have any bound for the second integral, so the value of Lu(t, x)
could be −∞. There is no problem with this, it is just that the value of Lu(t, x) is in [−∞,+∞]. The
only case that we would be unable to compute the value of Lu(t, x) is when both the positive and
negative parts of the integrals are infinity and we end up with the undetermined difference +∞−∞.
The quadratic control on one side prevents this to happen. The definition of viscosity solution that
we give below evaluates the equation only at those points when it is possible to do it.

Definition 4.1. Let u : (−∞, T )→ Rn be a bounded function which is upper (resp. lower) semicon-
tinuous in an open domain D ⊂ (−∞, T )→ Rn. We say M−u ≤ B (resp. M+u ≥ −B) in D if the
following happens. For every point (t, x) in D such that there exists A ∈ Rn, r > 0 (small) and C > 0
(large) such that

u(s, y) ≤ u(t, x) +A · (y − x) + C(|x− y|2 + t− s) for all (s, y) ∈ Qr(t, x). (resp. ≥)

Then M−u(t, x) ≤ B (resp. M+u(t, x) ≥ −B).

This definition of viscosity solution looks somewhat unusual because the equation is evaluated in
the original function u and not on smooth test functions ϕ which are tangent to u from one side. The
definition is in fact equivalent to the usual one. This is a characteristic of nonlocal equations. See
the discussion in [1] to understand this equivalence. Note that the points (t, x) for which we evaluate
the operators M+ and M− are exactly those for which a smooth tangent function ϕ can be found
touching the graph of u from either above or below respectively.

For equations which depend on time derivatives, we need to treat that term with the usual idea
of viscosity solutions of evaluating the derivatives in the test functions.

Definition 4.2. Let u : (−∞, T )→ Rn be a bounded function which is upper (resp. lower) semicon-
tinuous in an open domain D ⊂ (−∞, T )→ Rn. We say ut +M−u ≤ B (resp.ut +M+u ≥ −B) in
D if the following happens. For every point (t, x) in D such that there exists V ∈ Rn, z ∈ R, r > 0
(small) and C > 0 (large) such that

u(s, y) ≤ u(t, x)+A · (y−x)+z(t−s)+C(|x−y|2 + |t−s|2) for all (s, y) ∈ Qr(t, x). (resp. ≥)

Then z +M−u(t, x) ≤ B (resp. z +M+u(t, x) ≥ −B).

Note that if u is a smooth function, then ∂tu+M−u ≤ B in the viscosity sense if and only if there
exists a kernel K satisfying (1.4) and (1.5) such that

ut(t, x) + Lu(t, x) ≤ B
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holds point-wise. Conversely, ∂tu+M+u ≥ B if and only if there exist K such that

ut(t, x) + Lu(t, x) ≥ B.

Both inequalities hold at the same time if there exists a function f with ‖f‖L∞ ≤ B such that

ut(t, x) + Lu(t, x) = f(t, x).

If ut+M
−u ≤ B, we refer to u as a subsolution. If ∂tu+M+u ≥ B, we refer to u as a supersolution.

A function for which both inequalities hold is called a solution.
In order to handle the scaling of the equation ut +Lu, we also introduce the scaled version of M+

and M−.

M+
ρ u(t, x) = max

{∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(s, y) ds dy : for all K satsifying (2.2) and (2.3)

}
,

M−ρ u(t, x) = min

{∫
Rn

∫ ∞
0

(u(t, x)− u(t− s, x+ y))K(s, y) ds dy : for all K satsifying (2.2) and (2.3)

}
.

The definition of viscosity solutions applies to M+
ρ and M−ρ is analogous.

5 Growth lemma - without time derivatives

We start by defining a cylinder Qr with a scale and proportion which is compatible with our assump-
tions (1.4) and (1.5) and is convenient for the upcoming proofs.

Definition 5.1. We write Qr to denote the cylinder (− c1+c22 rβ , 0)×Br. Also Qr(t, x) := (t, x) +Qr.

The following Lemma is a simple geometric observation. It is a technical result which will be used
in the growth lemma.

Lemma 5.2. There exists r0 > 0 (depending on β, c1 and c2) such that for all (t, x) in Q2r0 , the ring

R = (−c1 + c2
2

,−c1 + c2
2

+ r0]× (B1 \B1−r0) (5.1)

is contained in the set {
(s, y) : c1|x− y|β ≤ (t− s) ≤ c2|x− y|β

}
. (5.2)

(t, x)

R R

Proof. We observe that the points (s, y) for which s = − c1+c22 |y|β are in the interior of the open set

{(s, y) : c1|y|β < s < c2|y|β}.
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Therefore, for (t, x) sufficiently close to (0, 0), those points will also be in the interior of the open set
(5.2). In equivalent words, there is a neighborhood of (0, 0) (say Qr1 for some r1 > 0) so that for any
(t, x) ∈ Qr1 , the set (5.2) contains a neighborhood of {s = − c1+c22 |y|β}. In particular it contains

(−c1 + c2
2

,−c1 + c2
2

+ r2]× (B1 \B1−r2),

for some r2 > 0.
We conclude the proof of the lemma by choosing r0 = min(r1/2, r2).

Lemma 5.3. There exist α > 0 and ε > 0 sufficiently small such that the following holds. Let
u : Rn × (−∞, 1) → R be a subsolution to M−u(t, x) ≤ ε in Q1. Let r0 and R be the ones from
Lemma 5.2. Assume that

u ≤ 2r−kα0 − 1 in Qr−k0
for k = 0, 1, 2, . . . , (5.3)

|{u ≤ 0} ∩R| ≥ µ. (5.4)

Then u ≤ (1− θ) in Qr0 for some θ > 0 sufficiently small depending on n, σ, β, λ and Λ.

Proof. Let b : (−∞, 0]× Rn → R be a smooth function such that

• b ≥ 0 everywhere.

• b(t, x) = 0 if (t, x) /∈ Q2r0 .

• b(t, x) = 1 if (t, x) ∈ Qr0 .

We will show that if α and θ are sufficiently small, then u ≤ 1 − θb in Q1, which clearly implies the
result in the Lemma.

The proof is by contradiction. The appropriate values of α and h will be chosen later. Let (t0, x0)
be the point where u + θb achieves its maximum in Q1. By the assumption that we are trying to
contradict, we have that u(t0, x0) + θb(t0, x0) > 1. Thus, (t0, x0) ∈ B2r0 , since otherwise b = 0 and
u ≤ 1.

To obtain the contradiction, we match our estimates against the negativity of the integral. Indeed,
on one hand the difference u(t0, x0)− u(·, ·) is smaller than θ(b(·, ·)− b(t0, x0)) in Q1, and outside Q1

the estimate (5.3) gives a control of the tails of the integral. On the other hand, u ≤ 0 in a substantial
part of the domain of integration, which would make the integral too negative as we will see below.

Let u(t0, x0) + θb(t0, x0) = W > 1. By the choice of (t0, x0), we have that u ≤ W − θb in Q1.
Since b is a smooth function, (t0, x0) is a point where the equation can be evaluated at the function
u (recall Definition 4.1). Therefore, we have that M−u(t0, x0) ≤ 0. In other words, there exists some
kernel K satisfying (1.4) and (1.5) such that∫

Rn

∫ ∞
0

(u(t0, x0)− u(t0 − s, x0 + y))K(s, y) ds dy ≤ ε.

We split the domain of integration first.∫
(t0−s,x0+y)∈Q1

(u(t0, x0)− u(t0 − s, x0 + y))K(s, y) ds dy

+

∞∑
k=0

∫
(t0−s,x0+y)∈(Qk+1\Qk)

(u(t0, x0)− u(t0 − s, x0 + y))K(s, y) ds dy ≤ ε.

We start by estimating the second term, which corresponds to the values so that (t0−s, x0+y) /∈ Q1.
We call this the tail of the integral. We note that by the assumption (5.3), u(t0−s, x0+y) ≤ 2r−αk0 −1
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if (t0 − s, x0 + y) ∈ Qr−k0
, and u(t0, x0) ≥ 1− θ. Therefore, if (t0 − s, x0 + y) /∈ Q1, we have

u(t0, x0)− u(t0 − s, x0 + y) ≥ 1− θ + 1− 2r−αk0 for k s.t. (t0 − s, x0 + y) ∈ Qr−k0

≥ −θ −
(

1− (C(|y|+ s1/β))α
)
.

Where C = r−10 . Note that this lower bound can be arbitrarily close to zero if we take θ and α small.
We estimate the second term as

∞∑
k=0

∫
(t0−s,x0+y)∈(Qk+1\Qk)

(u(t0, x0)− u(t0 − s, x0 + y))K0(s, y) ds dy

≥
∫
Qc

1/4

(−θ + 2− 2(C(|x|+ s
1
β ))α)Λ

(
1

|y|n+σ+β
+

1

sn/β+1+σ/β

)
ds dy

≥ −Cθ − δ(α).

Where δ(α) can be made arbitrarily small by picking α� 1.
For the fist term, we stress that by the choice of (t0, x0), u(t0, x0) − u(t0 − s, x0 + y) ≥ θ(b(t0 −

s, x0 + y)− b(t0, x0)) in Q1. Therefore, we can estimate the first term by∫
(t0−s,x0+y)∈Q1

(u(t0, x0)− u(t0 − s, x0 + y))K0(s, y) ds dy

≥
∫
(t0−s,x0+y)∈Q1

θ(b(t0 − s, x0 + y)− b(t0, x0))K0(s, y) ds dy

≥ −Cθ

In the last inequality we use that b is a smooth function and then
∫

(b(t0−s, x0+y)−b(t0, x0))K0(s, y) ds dy
is a bounded function of (t0, x0). This bound depends on b, Λ and n. Recall that we assumed that K
is symmetric in y.

However, we can improve the pointwise bound on u(t0−s, x0+y) at those points where (t0−s, x0+
y) ∈ R and u(t0−s, x0+y) ≤ 0. In the estimate above we used that u(t0, x0)−u(t0−s, x0+y) ≥ θ(b(t0−
s, x0+y)−b(t0, x0)), whereas in this set we can use the better estimate u(t0, x0)−u(t0−s, x0+y) ≥ 1−θ.
By assumption, the measure of this set is larger than µ and K is boudned below there by (1.4). We
add the difference between these two bounds to the estimate above:∫

(t0−s,x0+y)∈Q1

(u(t0, x0)− u(t0 − s, x0 + y))K0(s, y) ds dy

≥ −Cθ +

∫
(t0−s,x0+y)∈{u≤0}∩R

(1− θ − θ(b(t0 − s, x0 + y)− b(t0, x0)))K0(s, y) ds dy

≥ −Cθ + c0µ

Adding up the estimates, we obtain −Cθ + c0µ− δ(α) ≤ ε. This is a contradiction if we choose ε, θ
and α small enough, since the positive term in the middle is independent of both constants.

Corollary 5.4. There exists an α, ε ∈ (0, 1) (small enough depending on n, σ, β, λ and Λ) so that
the following result holds. Let u : Rn × (−∞, 1) → R be a subsolution to M−u(t, x) ≤ eps in Q1.
Assume that

u ≤ 2r−kα0 − 1 in Qr−k0
for k = 0, 1, 2, . . . ,

|{u ≤ 0} ∩R| ≥ µ.

Then u ≤ 2rα0 − 1 in Qr0 .

9



Proof. The value of α which makes the statement of the corollary true is the minimum between the
value of α of Lemma 5.3 and log2(1− θ).

Lemma 5.5. There exist α > 0 and ε > 0 sufficiently small (depending on n, σ, β, λ and Λ) such
that the following holds. Let u : Rn × (−∞, 1)→ R be a viscosity solution to both M−u(t, x) ≤ ε and
M+u ≥ −ε in Q1. Assume that

osc
Q
r
−k
0

u ≤ C0r
−kα
0 for k = 0, 1, 2, . . .

Then oscBr0 u ≤ C0r
α
0 .

Proof. We use the same α as in Corollary 5.4.
Let m = minQ1

u and M = maxQ1
u. Either

|{u ≤ m+M

2
} ∩R| ≥ 1

2
R,

or

|{u ≥ m+M

2
} ∩R| ≥ 1

2
R.

Let us assume the former (otherwise we do the same with −u instead of u).
Let v be the normalized function

v(t, x) =
2

C0
(u(t, x)−m)− 1.

It is easy to check that v satisfies the hypothesis of Corollary 5.4. Then, v ≤ 2r−α0 − 1 in Qr0 . In
terms of u, this means that u ≤ C0r

α
0 +m in Qr0 . Thus, since u ≥ m in Qr0 ⊂ Q1, we conclude the

proof of the Lemma.

Note that in the proof of Lemma 5.5 we are applying Corollary 5.4 to a normalized version of
either u or −u. Even though we only need u to be a subsolution in Corollary 5.4, we use that u is a
solution in Lemma 5.5, since we cannot say a priori which of the two alternatives will apply.

6 Growth lemma - with time derivatives

When we study the regularity of solutions to equations that involve time derivatives as in Theorem
1.2, we need to consider a different scaling, as explained in section 2. The proof of Lemma 5.3 in
the previous section can be easily adapted at unit scale to equations that involve a time derivative.
However, that proof is not invariant by the scaling, since it depends on the assumptions (1.4) and
(1.5) and we cannot replace them by (2.2) and (2.3) without affecting the result.

We must introduce a different scaling and a different version of Lemma 5.3 that uses (2.2) and
(2.3) for ρ� 1 instead of (1.4) and (1.5).

We start by defining the cylinder Q̃r with a this new scaling

Definition 6.1. We write Q̃r to denote the cylinder (−rσ, 0)×Br. Also Q̃r(t, x) := (t, x) + Q̃r.

Lemma 6.2. Let r0 be small as in Lemma 5.2. There exist d1, d2 > 0 depending on c1, c2 and r0
such that for any ρ > 0, t ∈ R, and x ∈ Br0 , the ring

Rρ(t) = (−d2ρβ−σ + t,−d1ρβ−σ + t)× (B1 \B1−r0),

is contained in the set

{(s, y) : ρβ−σc1|x− y|β ≤ (t− s) ≤ ρβ−σc2|x− y|β}.

10



Proof. After a time translation of t and a scaling in time multiplying time ρσ−β , the Lemma reduces
to Lemma 5.2 taking t = 0 only, with d1 = (c1 + c2)/2− r0 and d2 = (c1 + c2)/2.

Rρ(t) Rρ(t)

(t, x)

It is important to realize that the hypothesis (2.3) gives a bound for Lϕ for any smooth function
ϕ that does not depend on ρ, which is justified in the following lemma.

Lemma 6.3. Let L be a linear operator whose kernel satisfies the estimate (2.3). Let ϕ be a bounded
function, C2 around x, such that ϕ(t, ·)− ϕ(s, ·) ≤ C0(t− s) for all s < t. Then

Lϕ(t, x) ≤ CΛC0ρ
β +

∫
Rn

(ϕ(t, x)− ϕ(t, y))K̃(t, x, y) dy.

where

K̃(t, x, y) =

∫ ∞
0

K(t, x, s, y) ds.

Moreover, (2.2) and (2.3) imply that

cλ

|y|n+σ
≤ K̃(t, x, y) ≤ Cλ

|y|n+σ
.

for some constants c and C depending on c1, c2 and dimension, but not on ρ.

Remark 6.4. Note that the condition ϕ(t, ·)− ϕ(s, ·) ≤ C0(t− s) would be implied by ϕt ≤ C0.

Proof. Without loss of generality, we will prove the Lemma for (t, x) = (0, 0). Recall that L has the
form (1.1).

Lϕ(0, 0) =

∫∫
(ϕ(0, 0)− ϕ(−s, y))K(0, 0, s, y) ds dy,

≤
∫∫

(ϕ(0, 0)− ϕ(0, y)− C0s)K(0, 0, s, y) ds dy,

=

∫∫
C0sK(s, y) ds dy +

∫∫
(ϕ(0, 0)− ϕ(0, y))K(0, 0, s, y) ds dy,

=

∫∫
C0sK(0, 0, , s, y) ds dy +

∫
(ϕ(0, 0)− ϕ(0, y)) K̃(0, 0, y) dy,

In order to estimate the first term, we use (2.2).

11



∫
B1

∫
{s>0}

C0sK(s, y) ds dy

≤
∫
B1

C0s

∫
{s>0}

Λρn+2σ

|ρy|n+β+σ + (ρβs)n/β+1+σ/β
ds dy,

using the formula
∫∞
0

s ds
a+(bs)γ = Ca

2−γ
γ b−1, we get

= ΛC0ρ
β

∫
B1

C|y|−n−σ+β dy = CΛC0ρ
β

The estimates for K̃ follows by the elementary computation of
∫
K ds using (2.2) and (2.3).

Indeed, ∫
{s>0}

K(s, y) ds ≤
∫
{s>0}

Λρn+2σ

|ρy|n+β+σ + (ρβs)n/β+1+σ/β
ds,

using the formula
∫∞
0

ds
a+(bs)γ = Ca

1−γ
γ b−1, the powers of ρ cancel out and we get

≤ ΛC|y|−n−σ

A similar computation gives the other inequality.

Corollary 6.5. Let L be a linear operator whose kernel satisfies the estimate (2.3). Let ϕ be a bounded
function, C2 in a neighborhood of x, such that ϕ(t, ·)− ϕ(s, ·) ≤ C0(t− s) for all s < t. Then

Lϕ(t, x) ≤ C(C0ρ
β + ‖ϕ‖C2

x
)Λ.

for a constant C independent of ρ.
In particular, Lϕ is uniformly bounded for ρ ∈ (0, 1].

Proof. The Corollary follows from Lemma 6.3 since the second term is an integro-differential operator
of order σ (as in [1] or [12]) which is bounded by the C2

x norm of ϕ

Corollary 6.6. If ϕ is C3
x and ∇ϕ is Lipschitz in time, then M+

ρ ϕ and M−ρ ϕ are Lipschitz functions
in x, independently of ρ as long as ρ ∈ (0, 1).

Proof. Applying Corollary 6.5 to every directional derivative in x of ϕ, we see that Lϕ is uniformly
Lipschitz for all K satisfying (2.3). Thus, both M+

ρ ϕ and M−ρ ϕ are Lipschitz since they are a
supremum and an infimum of Lipschitz functions.

We now proceed with the crucial growth lemma which is the heart of the Cα regularity proof. Recall
that when we scale Q̃r to Q̃1, the scaling of the equation makes the integral operator approximate an
operator that is local in time. It is natural that this proof of the growth lemma below will borrow
ideas from regularity results for nonlocal equations in space but local in time. The idea of this proof
was inspired by [13].

Lemma 6.7. There exist α > 0 and r0, ρ, ε > 0 sufficiently small such that the following holds. Let u :
Rn×(−∞, 1)→ R be a subsolution to ut+M

−
r u(t, x) ≤ ε in Q̃1. Let R = (−3/4,−1/4)×(B1\B1−r0).

Assume that

u ≤ 2r−kα0 − 1 in Q̃r−k0
for k = 0, 1, 2, . . . , (6.1)

|{u ≤ 0} ∩R| ≥ µ. (6.2)

Then u ≤ (1− θ) in Q̃r0 for some θ > 0 sufficiently small depending on n, σ, β, λ and Λ, but not on
ρ.
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Proof. We take r0 to be the minimum between the value from Lemma 6.2 and 8−1/σ.
Let b̃ : Rn → R be a smooth function such that

• b̃ ≥ 0 everywhere.

• b̃(x) = 0 if x /∈ B2r0 .

• b̃(x) = 1 if x ∈ Br0 .

We will show that the function u stays below the function

b(x, t) =


1 + ξ + δ(t+ 1)−m(t)b̃(x) in[−3/4, 0]×B1,

1 + ξ in [−1,−3/4]×B1,

2r−kα0 − 1 + ξ in Q̃r−k0
\ Q̃r−k+1

0
for k = 1, 2, . . .

(6.3)

where ξ > 0 is an arbitrarily small constant, δ > 0 will be chosen below and m is the solution to the
ODE:

m(−3/4) = 0,

m′(t) = c0ρ
σ−β |{x ∈ Rρ(t) ∩ Q̃1 : u(x, t) ≤ 0}| − C1m(t) for t > −3/4.

for constants c0 and C1 to be chosen later.
The ODE for m can be solved explicitly. Indeed, for any t ≥ −3/4,

m(t) = c0ρ
σ−β

∫ t

−3/4
|{x ∈ Rρ(s) ∩ Q̃1 : u(x, s) ≤ 0}|e−C1(t−s) ds.

Assuming that r0 and ρ are small enough, we can relate the values of m(t) for t > −r0 to µ.
Indeed, for t > −r0, and assuming that d2ρ

β < 1/4− r0,

m(t) ≥ c0e−C1ρσ−β
∫ t

−3/4
|{x ∈ Rρ(t) ∩ Q̃1 : u(x, t) ≤ 0}| ds,

= c0e
−C1ρσ−β

∫ t

−3/4

∫ −d1ρβ−σ+t
−d2ρβ−σ+t

∫
B1\B1−r0

χQ̃1∩{u≤0}(ζ, y) dy dζ ds,

≥ c0e−C1ρσ−β
∫
B1\B1−r0

∫ −1/4
−3/4

∫ ζ+d2ρ
β−σ

ζ+d1ρβ−σ
χQ̃1∩{u≤0}(ζ, y) ds dζ dy,

= c0e
−C1(d2 − d1)

∫
B1\B1−r0

∫ −1/4
−3/4

χQ̃1∩{u≤0}(ζ, y) dζ dy,

≥ c0e−C1(d2 − d1)µ.

Therefore, by showing that u ≤ b, we prove the lemma as long as δ is small enough.
The inequality u(t, x) < b(t, x) follows directly from our assumptions anywhere outside (−3/4, 0]×

B1. We show that it holds for t > −3/4 and x ∈ B1 by proving that it can never be invalidated for
the first time. Indeed, assume there was a point (t0, x0) where equality holds. This point must be in
the support of b̃ (strict inequality holds in the rest since u ≤ 1 in Q̃1), thus x0 ∈ B2r0 .

Let u(t0, x0) = b(t0, x0). By the choice of (t0, x0), we have that u ≤ b in Q1 whereas u(t0, x0) =
b(t0, x0). To apply the definition of viscosity subsolution, we must check that bt(t0, x0)+M−u(t0, x0) ≤
ε.

From the definition of M−ρ , there exists a kernel K satisfying (2.2) and (2.3) such that

bt(t0, x0) +

∫
Rn

∫ ∞
0

(u(t0, x0)− u(t0 − s, x0 + y))K(s, y) ds dy ≤ ε.

13



We have the simple inequality

bt(t0, x0) = −m′(t0)b̃(x0) + δ.

Replacing the value of bt(t0, x0) above we obtain∫
Rn

∫ ∞
0

(u(t0, x0)− u(t0 − s, x0 + y))K(s, y) ds dy ≤ m′(t0)b̃(x0) + ε− δ. (6.4)

In order to get a contradiction, we estimate the integral on the left hand side from below as in the
proof of Lemma 5.3.

We have that by the choice of (t0, x0), u(t0, x0)− u(t0 − s, x0 + y) ≥ b(t0, x0)− b(t0 − s, x0 + y) in
Q1. Therefore, we can estimate the Lu(t0, x0) by

Lu(t0, x0) =

∫
(u(t0, x0)− u(t0 − s, x0 + y))K0(s, y) ds dy

≥
∫

(b(t0, x0)− b(t0 − s, x0 + y))K0(s, y) ds dy

= Lb(t0, x0)

We can improve the pointwise bound on u(t0−s, x0+y) at those points where (t0−s, x0+y) ∈ Rρ(t)
and u(t0 − s, x0 + y) ≤ 0. In the previous estimate above we used that u(t0, x0)− u(t0 − s, x0 + y) ≥
(b(t0, x0) − b(t0 − s, x0 + y)), whereas in this set we can use the better estimate u(t0, x0) − u(t0 −
s, x0 + y) ≥ b(t0, x0). From (2.2) K is boudned below there. We add the difference (b(t0 − s, x0 + y))
between these two bounds to the estimate above:

Lu(t0, x0)− Lb(t0, x0) ≥
∫
(t0−s,x0+y)∈{u≤0}∩Rρ(t)∩Q̃1

b(t0 − s, x0 + y)K0(s, y) ds dy,

using that b ≥ 1/2 everywhere,

≥ c0ρσ−β |{x ∈ Rρ(t) ∩ Q̃1 : u(x, t) ≤ 0}|

for a constant c0 depending on λ, but not on ρ.
Plugging this estimate into the inequality (6.4), we obtain

Lb(t0, x0) + c0ρ
σ−β |{x ∈ Rρ(t) ∩ Q̃1 : u(x, t) ≤ 0}| ≤ m′(t0)b̃(x0) + ε− δ,

≤
(
c0ρ

σ−β |{x ∈ Rρ(t) ∩ Q̃1 : u(x, t) ≤ 0}| − C1m(t)
)
b(x0) + ε− δ.

Since b ≤ 1, we cancel out the obvious terms to obtain

Lb(t0, x0) ≤ −C1m(t0)b̃(x0) + ε− δ. (6.5)

In Q̃1, the function b is smooth in x and Lipchitz in t. Since (t0, x0) ∈ (−3/4, 0]×B2r0 , for α ≤ σ
we can apply Lemma 6.3 and obtain

Lb(t0, x0) ≥ −̃Cc0ρβ + Lb(t0, x0).

The operator L̃ is the integro-differential operator with kernel K̃ described in Lemma 6.3. It depends
on the values of b(t0, ·) only. Moreover, the estimates on K̃ given on Lemma 6.3 are independent of
ρ. We estimate by a direct computation

L̃b(t0, x0) ≥ −m(t0)L̃b̃(x0)− η(α).
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Here η(α) is a bound on the contribution of the points y /∈ B1 in the integral representation of
L̃b(t0, x0). The value of η(α) is arbitrarily small as α→ 0 (this is the same computation, but only in
space, as in Lemma 5.3, it is also done explicitly in [13]). We conclude that

Lb(t0, x0) ≥ −η(α)− Cm(t0)L̃b̃(x0)− Cc0ρβ .

Therefore, recalling (6.5),

−η(α)− Cm(t0)L̃b̃(x0)− Cc0ρβ ≤ −C1m(t0)b̃(x0) + ε− δ.

We choose δ = ε + η(α) + Cc0ρ
β . Note that the choice of c0, which depends only on dimension

and λ, and C1, which will be chosen below, are independent of ρ, α and ε. We now have

−m(t0)L̃b̃(x0) ≤ −C1m(t0)b̃(x0).

Let M−x be the monster Pucci operator which is defined in [12] and [1]. Since −M+
x b̃(x0) ≤ L̃b̃(x0),

we have
m(t0)M+

x b̃(x0) ≤ −C1m(t0)b̃(x0).

This is clearly possible if we know a lower bound for b̃(x0) and ρ is small. However, we must also
consider that x0 may be a point where b̃ is very small. The final trick is to note that since M+

x b̃ > 0
wherever b̃ = 0 and M+

x b̃ is a Lipchitz function, then M+
x b̃ > 0 as long as b̃ is smaller than some

constant b0. Therefore, a those values of x0 we get a contradiction immediately regardless of the
choice of C1. If b̃(x0) > b0, then we can choose C1 large to get a contradiction.

We proved that u ≤ b everywhere. Recall that b is given by (6.3). We have b̃ ≡ 1 in Br0 and that
m(t) ≥ cµ for t ≥ −r0, where c depends on c0, C1, d1 and d2 only. So, if δ (which depends on α and
ε only) is small enough, then we finish the proof.

Arguing as in section 5, we derive the following two results from Lemma 6.7.

Corollary 6.8. There exists an α, ε, ρ ∈ (0, 1) (small enough depending on n, σ, β, λ and Λ) so that
the following result holds. Let u : Rn × (−∞, 1)→ R be a subsolution to ut +M−ρ u(t, x) ≤ eps in Q1.
Assume that

u ≤ 2r−kα0 − 1 in Q̃r−k0
for k = 0, 1, 2, . . . ,

|{u ≤ 0} ∩R| ≥ µ,

where R is as in Lemma 6.7. Then u ≤ 2rα0 − 1 in Q̃r0 .

Lemma 6.9. There exist ρ > 0, α > 0 and ε > 0 sufficiently small (depending on n, σ, β, λ
and Λ) such that the following holds. Let u : Rn × (−∞, 1) → R be a viscosity solution to both
ut +M−ρ u(t, x) ≤ ε and ut +M+

ρ u ≥ −ε in Q1. Assume that

osc
Q
r
−k
0

u ≤ C0r
−kα
0 for k = 0, 1, 2, . . .

Then oscBr0 u ≤ C0r
α
0 .

7 Hölder regularity

The following theorems are a more precise restatement of Theorem 1.1 and Theorem 1.2 in terms
of viscosity solutions. These restatements makes sense even when u is not smooth enough for the
operator Lu to be computable classically.
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Theorem 7.1. Let u : (−∞, 0) × Rn → R be a bounded function, continuous in Q1, such that
M+u ≥ −B and M−u ≤ B in the viscosity sense in Q1 for some constant B ≥ 0.

Then u ∈ Cα((−1/2, 0]×B1/2) for some α > 0 with an estimate

‖u‖Cα((−1/2,0]×B1/2) ≤ C
(
‖u‖L∞((−∞,0)×Rn) +B

)
for some C and α > 0 depending on n, σ, β, λ and Λ.

Proof. The proof follows by a more or less standard iterative application of Lemma 5.5. We prove
that a Hölder modulus of continuity applies at the origin (0, 0). The same argument centered at other
points gives the estimate of the Theorem.

We point out that we can assume without loss of generality that ‖u‖L∞ = 1 and B ≤ ε. Otherwise,
we replace u by the normalized function

1

‖u‖L∞ +B/ε
.

We prove by induction in k that
osc
Q
rk0

u ≤ 2rαk0 . (7.1)

This clearly implies the Hölder modulus of continuity at (0, 0).
For k ≤ 0, we have that oscQ

rk0

u ≤ 2 since ‖u‖L∞ = 1, and this is enough to obtain (7.1). This is

the base case of the induction.
Now, assume we know (7.1) holds up to some value of k. We will show that it holds for k + 1 as

well. For that we apply Lemma 5.5 to the rescaled function

v(t, x) = r−kα0 u(r−βk0 t, r−k0 x),

with C0 = 2. The application of Lemma 5.5 provides (7.1) for k + 1.

Theorem 7.2. Let u : (−∞, 0] × Rn → R be a bounded function, continuous in Q̃1, such that
ut +M+u ≥ −B and ut +M−u ≤ B in the viscosity sense in Q̃1 for some constant B ≥ 0.

Then u ∈ Cα((−1/2, 0]×B1/2) for some α > 0 with an estimate

‖u‖Cα((−1/2,0]×B1/2) ≤ C
(
‖u‖L∞((−∞,0)×Rn) +B

)
for some C and α > 0 depending on n, σ, β, λ and Λ.

Proof. We first scale the equation by considering u(ρσt, ρx) instead of u for some ρ small enough.
Then, the proof of Theorem 7.2 is identical to the proof of Theorem 7.1 but replacing every Qr by
Q̃r and the application of Lemma 5.5 by Lemma 6.9. Note that every rescaling to Q̃r in the iteration
makes the scale ρ even smaller.

8 Future directions

The constants C and α in Theorem 1.1 depend on β and σ. We did not prove that in the asymptotic
regimes described in section 3 there is a uniform choice of constants C and α which passes to the limit.
In fact, our method does not provide such uniform estimates in terms of σ. For parabolic equations
in nondivergence form, as those obtained in the asymptotic limits, these Hölder estimates are known
to hold true (this was proved by Krylov and Safonov in [6]). The pursue of uniform estimates with
constants C and α which do not deteriorate as we pass to the limit to obtain classical parabolic
equations will be the subject of future research. We anticipate that in order to have an estimate that
passes to the limit, the proof must contain some form of the parabolic ABP estimate, in the spirit of
the one from [7]. One of the main differences with the proof in [7] would be that the convex envelope
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that they consider is automatically Lipschitz in time, whereas for type of equations in this paper it
would not be the case. This would force a different scaling in the building blocks of the Lε estimate.

It would be very interesting to understand the case in which the kernel K(s, y)dsdy is replaced
by a singular measure dµ(s, y). The model case is when the measure is supported entirely on the
parabola s = |y|2 and the operator L has the form

Lu(t, x) =

∫
Rn

(u(t, x)− u(t− |y|2, x+ y))
a(t, x, y)

|y|n+σ
dy,

where a(t, x, y) is bounded from above and below.
In future work, we would also like to address the nonlinear equations arising from stochastic control

problems and stochastic games related to CTRW.
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