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A characterization of optimal two-phase
multifunctional composite designs

By Luts SILVESTRE*

Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012 1185, USA

We study the problem of optimal design of a two-phase composite material to maximize
the sum of thermal and electrical conductivity. We obtain a characterization of an
optimal configuration in terms of a free boundary sWse# problem. In the process of
obtaining this result, we provide a new proof of the relevant case of Bergman’s cross-
property bound. We use our characterization to argue that the optimal interface is not,
as has been suggested, a periodic minimal surface.
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1. Introduction

In this paper, we consider periodic two-phase composites. If a composite is made of
two homogeneous materials with thermal (or electrical) conductivities o, and o,
then the effective conductivity o, of the composite depends on the microstructure
and can be computed by solving the so-called cell problem (see §2).

Let ¢, be the proportion of the n-dimensional unit cube covered by the first
material and ¢, the proportion covered by the second. Assume that the
configuration is cubically symmetric, so that the resulting composite is isotropic.
When the thermal conductivities of the two materials are ¢; and o5 and the
corresponding electrical conductivities are A; and A, Bergman (1978) derived the
following cross-property bound:

A=A _ 02701 _ n(Ay01 — A109)

de— (X)) d —=(0)  $1da(ha— Ay) (02— 0y)’
where A, is the effective electrical conductivity and (1) =¢@14; + ¢4y From the
above equation, the value of ¢” is obtained and gives an upper bound for g, as
long as (201 —24103)/(01—02)>0. In particular, if 6, =1, ou=¢, A;=¢, =1, and
¢1=¢2=1/2, Bergman’s upper bound says that

1—¢)?

Aoy (L.1)
n(l +e¢)
A question left open by Bergman’s work is whether or not this upper bound is

achievable. In recent works by Torquato et al. (2002, 2003) two microstructures
where the phases are separated by a minimal surface (either the Schwartz P

0o+ 2. < (1 +¢)—
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2544 L. Silvestre

Figure 1. The Schwartz P surface divides the unit cube into two phases.

surface (figure 1) or the diamond D surface) were tested numerically. Both
examples were shown to achieve the upper bound (1.1) within three digits of
accuracy when e=0.1. Based on this computation, it was natural to hypothesize
that these structures achieve equality in Bergman’s bound (1.1). However, it is
not clear whether this microstructure is truly optimal or just produces an
effective conductivity that is so close to optimal that it cannot be distinguished
by the numerical approximation. The same structure was shown by Torquato &
Donev (2004) to give at least a very close to optimal value for the sum of the
electrical (or thermal) conductivity and the bulk modulus.

In this paper, we find a new proof of the relevant case of Bergman’s upper
bound (1.1). Our proof is very simple and elementary, which allows us to derive
explicit optimality conditions. If the optimal structure has a minimal surface as
its interface, our conditions have implications that can be easily tested
numerically. We report some tests for the Schwartz P surface which strongly
suggest that it is not an optimal structure.

Whether or not the Schwartz P surface gives an optimal effective conductivity
may not be interesting for most practical engineering purposes if the difference is
less than 0.001. However, it is interesting to answer this question in order to
understand the theory better and, in particular, to learn whether there is a
connection (as suggested by Torquato et al. (2002, 2003) and Torquato & Donev
2004) between multifunctionality and the mean curvature of the interface.

The structure of the paper is as follows. In §2, we set up the problem and
notation in a precise way. In §3, we present a new proof of (1.1) and provide
explicit conditions for equality. In §4, we consider the possibility that an interface
would satisfy our optimality condition and also have mean curvature zero. We
derive some consequences (in any space dimension) and test them numerically for
the Schwartz Psurface (in three space dimensions). The numerical results indicate
that the Schwartz P surface cannot be exactly optimal. Finally, in appendix A we
show a new proof of the well-known Hashin—Shtrikman bounds.

The new proof of (1.1) that we present in §3 is based on the observation that in
the optimal configurations the solutions of the cell problem agree with the
directional derivatives of a potential function. This idea may have some interest
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in itself. It was motivated by looking at the known proofs of the Hashin—
Shtrikman bounds and especially at the constructions that achieve the bounds.
After this observation is made, the proof comes quickly after very straightfor-
ward elementary computations. The same idea can be used to prove the classical
Hashin—Shtrikman bounds. We include the proof in appendix A; it is different
from (and more elementary than) the previously known arguments.

2. Preliminaries

We start by recalling the definition of the effective conductivity of a periodic
composite.
Let @ be the unit cube in R™ @=[0,1]". For a set AC (@), we define

1 ifzeA,
a(z) =
e ifze Q\A4,

and extend a periodically to R". This corresponds to a periodic two-phase
composite where one phase is a good conductor (of heat or electricity) and covers
a subset A of the cube, and the other phase is a poor conductor and covers the
rest of the cube.

The effective conductivity A.g is a tensor obtained by solving the cell problem.
The value of Ay is characterized by the following expression:

(Are, ) = min JQa(w)]e + Vu(z)[*dz. (2.1)

1
uE Hyer

A standard source for the general theory of composites is Milton (2002).
If the set A is left invariant by any rigid motion that preserves the unit cube @
(i.e. A is cubically symmetric), then A.y must be a scalar matrix A.g= a.gl.
For two-phase composites, it is also interesting to define the problem switching

the phases
e ifzxEA,
b(z) =
1 ifze\A,
and
(Bue, ¢) = min J b(z)|e + Vu(z)de, (2.2)
el JQ

with Beg= begl for symmetric domains. Note that if A+e= @\ A (modulo the unit
cube), for e=(1/2,1/2,...,1/2), then automatically A.g= B.g. This follows by a
simple change of variables in (2.1).

We study the problem considered by Torquato et al. (2002, 2003), namely to
find the sets A that are cubically symmetric and maximize aqg+ bog.

In order to avoid the complications of restricting our analysis to cubically
symmetric sets A, we consider the quantity (tr Aeg+tr Beg) instead of (e befr)-
In case A is cubically symmetric, both quantities coincide (by a factor n).
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Note that the two-phase configuration separated by the Schwartz P surface is
cubically symmetric and also satisfies A+e= Q\ A for e=(1/2,1/2, ...,1/2). The
value of the sum (tr A.g+tr Bog) is invariant by all those symmetries.

3. Upper bound for tr A g+ tr By

For any dimension n, we will prove an upper bound for tr A.g+tr By
independent of the set A. Then, we will check what conditions A must satisfy
in order to achieve this bound. Our upper bound coincides with equation (1.1) for
cubically symmetric composites, since in that case tr A.g= na.s and tr Bog= nbeg.

Proposition 3.1. Given A g and B,y defined by (2.1) and (2.2), we have the
upper bound

(1—e)? 4e

tr Aegr +tr Byg < n(l +¢)— 1T Z(n—l)(1+e)+1+g.

(3.1)

Remark 3.2. In the case when the conductivities are g, and g5 instead of 1 and
¢, the same proof gives the estimate

40109
tr Ay +tr Bg<(n—1 + +—.
T Aeff r By <(n )(o1 + 09) o+ 0y

Proof. We start writing tr A.g+tr Bey in a long form

tr Ay +tr By =  min J a(:v)(|el + Vul(a:)|2 +--+ e, + Vun(m)lz)
umviEH}}m’(Q) Q

+ b(z)(|e; + Vo, (z)]> +- + e, + an($)|2)dx.

If we write U= (uy,...,u,) and V=(vy,...,v,), the above expression takes the
cleaner form

tr Ay + tr By = min J a(z)|I + DUP* + b(z)|I + DV]*dz.  (3.2)
U,VEH,(QR") JQ

In order to find an upper bound, we restrict the minimum to a smaller set. In
this case, it will be those U and V such that there exists a periodic potential
function p so that

U(z) =Vp (3.3)

V(z) =—Vp. (3.4)

The key idea in this proofis that once we restrict our set of test functions Uand Vto
this smaller set of gradients of a potential, the value of the minimum in (3.2) will

magically become independent of the set A. We do the computations below.
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We rewrite the expression (3.2) in terms of p,

tr Ay +tr By < min J a(.r)|[+D2p|2+b($)|I—D2p\2dx
PEH(Q)J Q

_ nm1JJ1+@0n%HD%Py+mM@—wm»LD%dx

PEHS,(Q)

. 2 192 1—e¢ 1—
=(1+¢) min n+| |Dp|°dz+2| ——Apdz—2 Apdz
PEHL(Q) Q alte Qual+e

1—e¢ —&
=(14+¢) min n+| |A zdx—i—QJ —A dx—QJ Apdz
( )peH]zmw) uq‘ 7 AT+e” oulte”
(I+e) min n+| [ApP +2-—Sapd +J AP — 22— Apd
= min n Ra— z — x
Nt R P o VT T

The value of Ap can be any function we choose as long as its average in the unit
cube Qiszero. We can take the best choice of Ap(z) pointwise, which is the minimum
of the respective quadratic function inside the integral in the expression above. If zis
in A, the minimum of |Ap(z)|*+ 2((1—¢)/(1+ ¢))Ap(z) would be achieved for
Ap(z)=—((1—¢)/(1+ ¢)) =:—f0. On the other hand, for zin @\ A, the best choice
would be Ap(z) = 6. Since we have |A|=(1/2)| @), this choice for Ap has average zero
in . Note that the value of 6 is independent of A and we obtain exactly
(1—e¢)? 4e

1T (n 1)(1+8)+1+€.

tr Aeff + tr Beff S ’Il(l + 8) - (35)

Now, we want to check the conditions for the upper bound in proposition 3.1
to be achieved. We follow the proof and see that the upper bound is achieved if
the optimal U and V for (3.2) happen to have the form given by (3.3) and (3.4).

For a given set A, the function p is easily computed by the equation

—6 in A,
Ap =
6 in Q\A.
Equivalently, we can first solve the equation
1 in A,
$Ag = (3.6)

—1 in Q\A,

then set p=—0q. We also have U=—0Vq and V =0Vq.
In theorem 3.3, we provide necessary and sufficient conditions for a set A to be
optimal.

Theorem 3.3. A set AC U with a smooth boundary 0A realizes the upper bound
of proposition 3.1 if the corresponding function q defined in (3.6) has the following
behaviour near each point xtE0A:

{ M(z) +v®v on the A side of 0A,

q(z) = (3.7)

M(z)—v®v  on the Q\A side of A,
for some matriz M(x) depending on each point t€0A such that M(z)-v=0.

Proc. R. Soc. A (2007)



2548 L. Silvestre

Note that D2q(a:) has a jump on 04; that is why we give two different values on
each side of the surface.

Proof. To check if the computed estimate in proposition 3.1 is achieved for a
given set A, we must check whether the computed U and V satisfy the Euler—
Lagrange equation of (3.2). In other words,

div a(z)VU =0 (3.8)

div b(z)VV = 0. (3.9)

Since Agis constant in A and @\ A, the above equalities are automatically satisfied
within those sets. The only place to check is their boundary 0 A, where we must have
the following jump in the normal derivative (at least if 04 is smooth):

v+0, U =c¢e+0,U) (3.10)

e(v+0,V)=v4+09,V, (3.11)

where 3 denotes the normal derivative to 94 on the A side and 9, denotes the normal
derivative to A on the Q\ A side.

Note that from constructions DU= —0D?q and DV=0D?q, a jump in DU
corresponds to a jump in D?*q. From (3.6), Aq is a discontinuous function across
0A. The Hessian matrix D?q will be a continuous function on both sides and up to
0A, but on 94 it has two different values from each side. Note also that g€ C''*
for every a<1 and g€ C*' if 9A is smooth. Assuming that 04 is smooth, we
rewrite the equations (3.10) and (3.11) as

v—0D?q-v (onthe Aside) = e(v—0D?q-v) (onthe Q\A side) and  (3.12)

e(v+0D%*q-v) (onthe Aside) =v+60D?q-v (onthe Q\A side). (3.13)

The vector field Vg is well defined since g€ C"*. Taking derivatives
tangentially on the surface 0A, we see that D?¢-7 must have the same value
on both sides A and Q\A. Since D?q is self-adjoint, the tangential component of
D?¢-v must be equal on both sides of 4. But from the identities above, this
implies that D?¢-» has no tangential component if e# 1. Thus, » is an eigenvector
of D*q on 04 and D?q can only differ on each side of 94 by a multiple of ¥®u.
Moreover, recalling that §=(1—e¢)/(1+e¢), the above equations tell us exactly
what the eigenvalues are. Let us write D*qv=2A"» in the A side, and D*qw=21"v
in the Q\A side. We have

1—02" =¢(1—017) and (3.14)
e(1+02")=1+01", (3.15)
which mean that A* =1 and A~ = —1. This finishes the proof. ]

Remark 3.4. The proof is slightly simpler if we assume Q\A=A+e, for
e=(1/2,...,1/2). In this case Aqg= Beg, the upper bound on the sum becomes an
upper bound for each trace, and (3.3) implies (3.4).
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Remark 3.5. All that the proof requires is that a(z) + b(z) is a constant, so that
we can apply the identity

j (a(z) + b(2))| D?q[? dz = j (alz) + b(2))|Aqf? d.
Q Q

We could consider periodic functions a(z) and b(z) that do not take only two
values as long as a+ b is a constant. The effective conductivities A, and B,y are
defined accordingly by (2.1) and (2.2). After redoing the computation in the
proof of proposition 3.1, we would obtain some upper bound for tr A.g+tr By
depending on the possible choices of ¢ and b.

Note that the function ¢ is completely defined by (3.6). The extra equation
(3.7) can be understood as a free boundary condition; thus it imposes a
restriction on the form of an optimal set A.

From theorem 3.3, we can draw an interesting conclusion. As expected, the
optimality of a set A does not depend on the value of e. This was pointed out by
Torquato et al. (2003) based on their numerical computations.

It is also simple to show that a laminar composite is optimal. Indeed, if we
choose A={(z, y, 2): 1/4<x<3/4}, then the function ¢ depends only on one

dimension and
1 n 1 1 £ y< 1
2\ ")\ ) Py

1 1Y/3 o1 3
q(z, y,2) = oA Gy A i 1fZ<x<Z,
1 x—§ x—§ ifx>§
2 4 4 4’

which clearly satisfies the condition (3.7). Thus, the laminar structure achieves
the optimal value for tr A.g+tr Bey, though it is not cubically symmetric and Agg
and By are not scalar matrices.

Note that the laminar structure achieves the optimal value in any dimension.
However, in dimension two, the upper bound can never be achieved by an
isotropic composite due to the well-known phase exchange identity in two
dimensions: deg: begg=¢.

4. Further analysis of the free boundary problem

The free boundary problem given by (3.6) and (3.7) has never been studied to our
knowledge. At the present time, we are not able to show even the existence of
other solutions besides the one-dimensional laminar one shown above. The main
relevant question for the theory of composites would be whether or not a
cubically symmetric solution exists. The computations by Torquato et al. (2002,
2003) suggest that there might be a solution whose free boundary coincides with
or at least is very close to the Schwartz P surface. However, we have not been
able to find any link between the free boundary problem and the mean curvature
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of the interface. In this section, we study the potential implications of the
boundary 04 being a minimal surface. We obtain indirect consequences that are
easy to test numerically. We report some numerical results that strongly suggest
that the structure with the Schwartz P minimal surface as the interface cannot
achieve the upper bound (1.1).

Let us assume that we have a cubically symmetric optimal configuration
corresponding to a set A. Equivalently, from theorem 3.3, we would have a
function ¢ solving the following overdetermined problems:

A 1 inA, (4.1)
T4 mowu, '
and

) M(z) +v®v  on dA from the A side,
D7 q(z) = (4.2)

M(z)—v®v ondA from the Q\A4 side,

where M(z) is a symmetric matrix for every point € 0A such that M(z)v=0 and
v is the normal vector to 04 at x.

Lemma 4.1. Assume that 0A is a smooth connected periodic surface with mean
curvature zero for which the overdetermined problems (4.1) and (4.2) have a
solution q. Then, q and q, are constants on dA, where g, denotes the normal
derivative of q.

Remark 4.2. As it is well known, the smoothness assumption is a consequence
of the mean curvature zero up to dimension seven.

Proof. Given any smooth surface S, we can write the Laplacian of any C?
function u in the following way:

Au = Agu + pu, + u,,

where Agu is the intrinsic Laplacian of w on S; u is the sum of the principal
curvatures of S (which is (n—1) times the mean curvature); and w,, is the second
derivative of u in the normal direction.

In case S has mean curvature zero, the formula simplifies to

Au = Agu + u,,.

The function ¢ would be smooth on each side and up to 0A. We can apply
the above formula to ¢ on each side of 0A. For example, on the ‘A’ side we
have Ag=—1 from (4.1) and also ¢,=—1 from (4.2). Then, —1=A¢=
Agq+ q,,= Agq—1. Therefore, we have Agg=0. If we do the same reasoning
from the ‘Q\ A’ side, we would also obtain Agg=0 and no extra information.

Since 04 is assumed to be connected, any harmonic function on it must be
constant. Therefore, ¢ is constant on dA. This proves the first part of lemma 4.1.

In order to prove the second part, we consider g,= Dg-v and take a derivative
in a direction 7 tangential to 0A. We have

9,(¢) = 8-(Dg-v) = 'D’qv + Dq-8,v.
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From (4.2), 7'D’q@w=0. Since 0,v is a tangential vector (this is true for any
smooth surface) and ¢ is constant on 0A, Dq-0,#=0. Therefore, 9,(g,) =0 and g,
must be constant on 0A. This finishes the proof. ]

Note that in the problems (4.1) and (4.2), we can add an arbitrary constant to
the function ¢. Thus, we can make ¢=0 on 04 in lemma 4.1. Using the maximum
principle on equation (4.1), we see that the function ¢ would be negative in the
interior of A and positive outside of A. Therefore, if a set A was optimal and 04
had mean curvature zero, the function ¢ would also be a solution of the following

free boundary problem:
—1 if ¢>0,
Ag = (4.3)
1 if ¢<0,

which is completed by the compatibility condition that ¢ must be C'' across the
free boundary {¢=0}. A similar problem has attracted some attention recently
that is obtained by exchanging —1 and 1 in equation (4.3) (see Henrik
Shahgholian (in press) and references therein). However, our opposite choice of
signs greatly changes the nature of the problem. A more similar equation was
considered by Andersson & Weiss (2006). The function ¢ is a critical point of the
nonconvex functional

Vul?
J(u) =J Vel s, (4.4)
0 2

On the other hand, if we consider the positive part of ¢ only, we arrive at a
better known free boundary problem

A¢gt =—1 in{q" >0},
{ J (4.5)
g, = const. on d{q">0}.

This is usually referred to as the one-phase problem and has been studied
extensively within the free boundary community (e.g. Aguilera et al. 1986;
Caffarelli 1998).

A strange consequence of a zero mean curvature free boundary would be that the
three equations (4.1) and (4.2), (4.3) and (4.5) would have the same solution ¢.

Recalling that U=60Dgq, we observe that one implication of lemma 4.1 is that
| U] would have to be constant on 04, if 94 had zero mean curvature. We ran a
finite element code to solve the cell problem in [—1,1]°. We tried first with a
uniform mesh and then with more accurate adaptive mesh. We used different
nodal approximations to the P surface (Schwarz & Gompper 1999; Gandy et al.
2001). We tested the computed effective conductivities and indeed it was very
close to optimal. But the computed values of |U] showed a significant difference
at the points (1/2,1/2,1/2) and (1, 1/2,0) which lie on the interface (approx.
0.32 and 0.39). These values did not vary much when we changed from the
uniform mesh to the adaptive mesh, or when we added more degrees of freedom.
This suggests that the optimal structure cannot be separated by the P surface.

The main idea for our test is that the effective conductivity may not be very
sensitive to small changes in the domain, and thus hard to test numerically.
However, the value of the normal derivative of ¢ on 04 is more sensitive to
changes in the shape of A and easier to compute. In this way, what we test is an
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indirect consequence of a zero mean curvature boundary. The results that we
obtained show strong evidence that if 04 is the Schwartz P surface, then the
upper bound (1.1) is not attained.

Another test that we performed was to compute a solution to equation (4.3)
numerically. We set up an elementary finite difference scheme where the value of
¢ at each grid point is given by the average of the six neighbours plus &? /6 if qis
positive, or minus A? /6 if ¢ is negative at that point (A is the distance between
two neighbouring points on the grid). Then we solved that equation on the grid
by an iterative method using a suitable relaxation parameter. We tested the
problem in the cube [—1,1]* with various grid sizes (from 20 to 250) and in
every case we obtained that the normal derivative of ¢ at the free boundary point
(1/2,1/2,1/2) is approximately 0.47 and the normal derivative at the free
boundary point (1,1/2,0) is 0.37. Even though we have not done any error
analysis for this finite element scheme, the values we obtain when varying the
grid size are all very similar. This seems to be a significant difference that also
suggests that the minimal surface structure may not be optimal.

At the present time, the source code of our tests can be found on the website of
the author (www.cims.nyu.edu/ ~silvestr/source).

The second test that we described would not suffice to give a definitive answer
to the question. The functional (4.4) is not convex, thus we cannot prove
uniqueness for equation (4.3). We cannot rule out the possibility that our
numerical approximation is picking a different solution that is also cubically
symmetric; however, this seems to us unlikely. For that reason, the first test
provides stronger evidence.

If the Schwartz P surface is not the optimal configuration for the sum of two
effective conductivities, then the question is why does it approximate the upper
bound with such a high level of precision. According to Torquato et al. (2003), if the
conductivities of the two phases are 0.1 and 1, then the effective conductivities range
between 0.38 and 0.427 for all possible structures. This is a small range. A surface that
has a similar shape to the optimal (assuming there is actually a surface that achieves
the upper bound) may have a very similar effective conductivity.

The high accuracy with which the Schwartz P surface configuration
approximates the upper bound suggests that the free boundary problems (4.1)
and (4.2) may have a cubically symmetric solution with a free boundary near the
Schwartz P surface. Our computations suggest, however, that the free boundary
does not coincide exactly with this surface. In any case, equations (4.1) and (4.2)
define a new type of free boundary problem that would be worth studying and
understanding better.

I would like to thank Luca Heltai for help with the implementation of an adaptive finite element
code for one of the numerical tests. I would also like to thank very specially Robert Kohn for telling
me about the problem and for several useful discussions related to this paper.

Appendix A. Yet another proof of the H-S bounds

Using the same idea of writing the vector field U as the gradient of a potential p,
we can provide an elementary proof of the Hashin—Shtrikman upper bounds for
two-phase composites in arbitrary dimension. The lower bounds can be obtained
similarly and are also proved below.
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Suppose a(z) =0 in a set A with measure ¢y, and a(z) =05 in Q\ A with measure
¢o=1—¢1. We want to find an upper bound, independent of A, for the quantity

tr Agy = min Jq@u+DUFm; (A1)
UeH'(QR") ) Q

The method is again to reduce the set of test vector fields to those which are the
gradient of a potential U = Vp. In this way, we obtain the estimate

tr Agy < min J a(z)|I + D*p|* dz =:min J(p).
PEH*(Q) ) Q P

The advantage is that upper bounds are easy to compute for the new functional
J( p). Moreover, we can consider only potentials p for which Ap is constant in both A
and Q\ A4 (the energy Jis minimized for one of these potentials). Let Ap=6 in A and
Ap=06yin Q\A.

We have

J(p) = JQa(:L“)H + D2p|2 dr = JQa(aj)(|[|2 +2Ap + |D2p|2) dz

= (101 + $202)n + 2(1010, + p20,0,) + JQG($)|D2P|2 dz.
We then use the following elementary relations:
| Jp2sldo = | 8 az (A2)
Q Q
and
1
D? > 9,02 > —|Ap|. A3
| MM—ZJMM—H\M (A3)

With these relations in mind, we estimate the value of the remaining term.
Assuming o, <04, we have

j a(@)| D% de = j D% da + (01— 02) [4| D% da
Q Q

= JQJQ|Ap|2 dz + (o, — (72)L|D2p|2 dz

g — 09

<0, (¢107 + $o83) + LlApF dz

01— 03

<ay(107 + $263) + .07,

n

where the equality holds as long as Ap is constant in both A and Q\ A4, and D?p is
a constant scalar matrix in A so that we have equality in (A 3) for any z€ A.
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Putting it all back together we obtain

01— 09 2
¢.07.
n

(A 4)

J(p) < (¢101 + p209)n + 2(¢10160, + ¢y020,) + 02(¢10% + ¢20%) +

Now it only remains to choose the optimal 6, and 6, to obtain optimal bounds.
Our only restriction is that ¢;60, + ¢20>=0, since the average of the Laplacian of
the periodic function p in the whole cube must be zero. Using Lagrange
multipliers we can set up an equation for the optimal values of #; and 6. After
solving the equations (with MATHEMATICA), we obtain

o — $on(oy — a7)
L ginoy + do(0) + (n—1)ay)

and

$1n(oy — 03)
$1n0y + ¢o(01 + (n—1)ay)’

which give the estimate when plugged back into (A 4). After simplifying the
expression, recalling that ¢, +@;=1 (using MATHEMATICA), we obtain

b1ps(09 — 01)° )
(noy + g0y — a3)) )

So we obtained the Hashin—Shtrikman upper bounds in arbitrary dimension.
For completeness, we also prove the lower bound with more or less the same
computation. The lower bound is easier because we do not have to restrict the set
of test vector fields in (A 1).

The whole computation is based on the following elementary relations that
hold for any periodic vector field U: Q@—R™

tr Ay <min J(p) < n<¢101 + P09 —
p

J DU dz> J |div U)* dz  with equality iff U is the gradient of a potential
Q Q
(A5)
and
1
|DU(z))*>=|div U(z)|* for every z, with equality iff U = AI for some scalar A.
n
(A 6)
As before, we say ¢ =|A|, po=|Q\A| and

1
0, =— | div Udaz,
! ¢1JA v

1
0 =—J div U dz.
$2 Jo\a

Note that ¢160;+ ¢205,=0 since div U must have integral zero in the whole cube Q.
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The computation of the lower bound is now straightforward. Assume again
g1 < go, then

J a(2)|T + DU do = J o(z)(|I]2 + 2 div U + | DUP)dz
Q Q

= n(¢10, + ¢102) +2(¢1010, + $y020,) + JQCL(”U)‘DUF dz,

so we need to find a lower bound for the last term. We apply (A 5) and (A 6),
then

J o(z)| DUP dz =01J |DU\2dx+(02—ol)J IDUP dz
Q Q Q\A
1
201J |div U]* dz + (0, — al)J —|div U)* dz
Q QAT
¢20§a

09— 01

2‘71(¢13% + ¢20%) + n

and the equalities hold if U = Vp for some potential p and DU is a constant scalar
matrix in Q\ A.
Putting the estimate back in (A 1) we find that

tr Ao = {}?}gl n(p101 + ¢103) + 2(h1010, + 2¢5050,) + 74 (¢10% + ¢20§)
#7101 +$905=0

0y — 01
+

¢192(05 — 01)2 )
(noy + ¢1(oa— 01))
and we obtained the Hashin—Shtrikman lower bounds in arbitrary dimension.

Note that the condition to achieve the bound in either case is that there is a
potential function p for which

¢20§ = ”<¢101 + 09 —

— U= Vp;

— Ap is constant in Q\A and A; and

— D?p is a constant scalar matrix, and thus p coincides with a quadratic
polynomial in any connected component of A for the upper bound or of Q\A
for the lower bound.

From these conditions, we derive that p is a solution to the obstacle problem
(Caffarelli & Salsa 2005), with a polynomial as the obstacle and periodic
boundary conditions. Either A or Q\A is the contact set depending on whether
we achieve the maximum or the minimum. This result agrees with Liu et al.
(submitted). By a straightforward computation it can be checked that indeed DU
satisfies the right jump conditions on 04 in any dimension.

The idea of restricting the set of test functions to gradients of potentials
proved to be useful for the upper bound of the sum of two effective conductivities,
and also for the Hashin—Shtrikman upper bounds. We believe (or hope) that
more applications may be found in the future, since it provides an elementary
method for producing direct proofs.
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