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The p-Laplace operator

Let p ∈ (0,∞). The p-Laplace equation arises as the
Euler-Lagrange equation of the functional

F (u) :=

∫
|∇u|p dx .

A function is p-Harmonic when

4pu = div[|∇u|p−2∇u] = 0.

It is a classical result that p-harmonic functions are C 1,α for some
α > 0. The optimal value of α depends on p and dimension and it
is currently unknown in general.
Uraltseva [1968, p ≥ 2], Uhlenbeck [1977 - systems - p ≥ 2],
Evans [1982, p ≥ 2], DiBenedetto [1983], Lewis [1983], Tolksdorf
[1984] and Wang [1994].



The gradient flow equation

The following parabolic p-Laplace equation is the gradient flow of
the functional

∫
|∇u|p dx .

ut = div
[
|∇u|p−2∇u

]
.

The solutions are also known to be C 1,α in space for some α > 0 .
This was proved by DiBenedetto and Friedman [1985] and Wiegner
[1986] (some extra conditions are needed for p ∈ (1, 2)).



Non-divergence version of the p-Laplacian

Let us expand the formula of the p-Laplacian.

4pu = div
[
|∇u|p−2∇u

]
,

= |∇u|p−2

(
4u + (p − 2)

∂iu∂ju

|∇u|2
∂iju

)
.

Therefore, the elliptic equation 4pu = 0 is equivalent to

4u + (p − 2)
∂iu∂ju

|∇u|2
∂iju = 0.



The ∞-Laplacian

The cases p = 1,∞ are special. They are best understood in non
divergence form.
As p →∞, the equation converges to

∂iu ∂ju ∂iju = 0.

Solutions to this are ∞-Harmonic functions. They correspond to
optimal Lipschitz extensions. They are known to be C 1,α in 2D
(Evans and Savin [2008]) and pointwise differentiable in arbitrary
dimension (Evans and Smart [2011]). They are conjectured to be
C 1+1/3.
The ∞-hamonic functions also correspond to the value function of
the stochastic “tug of war” game (Peres, Schramm, Sheffield
and Wilson [2009]). At the discrete level, this is a similar
construction to a numerical algorithm developed by Adam
Oberman [2005].



Tug of war games with a terminal time

If we impose a terminal time to the tug of war game, we derive the
(homogeneous) parabolic equation

ut =
∂iu ∂ju

|∇u|2
∂iju.



Mean curvature flow

The homoegeneous parabolic equation for p = 1 reads

ut =

(
δij −

∂iu∂ju

|∇u|2

)
∂iju.

This is the evolution equation for the function u whose level sets
follow a mean curvature flow. This equation was studied by a
number of authors like Chen-Giga-Goto, Evans-Spruck,
Evans-Soner-Souganidis, Ishii-Souganidis, Oberman,
Minicozzi-Colding, etc...



Homogeneous parabolic p-Laplace equation.

Y. Peres and S. Shefield [2008] extended the tug of war game to a
construction of the p-Laplace equation by adding lateral noise.
When we add a terminal time to this game, we obtain the
homogeneous parabolic equation

ut = 4u + (p − 2)
∂iu∂ju

|∇u|2
∂iju.

This parabolic problem was considered by
Manfredi-Parviainen-Rossi [2010]. Existence and uniqueness of
Lipschitz viscosity solutions was established by Does [2011] and
Banerjee-Garofalo [2013].



Our result

Theorem (Tianling Jin, LS.)

Let u be a viscosity solution of the homogeneous parabolic
p-Laplace equation

ut = 4u + (p − 2)
∂iu ∂ju

|∇u|2
∂iju in Q1 = (−1, 0]× B1,

then ∇u is well defined and Hölder continuous in
Q1/2 = (−1/4, 0]× B1/2.

Difficulty: no variational structure. Different methods need to be
used.



Uniform ellipticity

We have the equation

ut = 4u + (p − 2)
∂iu ∂ju

|∇u|2
∂iju in Q1 = (−1, 0]× B1.

For

aij = δij + (p − 2)
∂iu∂ju

|∇u|2
.

Note that max(p − 1, 1)I ≥ {aij} ≥ min(p − 1, 1)I. The
equation is uniformly elliptic in non-divergence form.

The coefficients aij(∇u) are a smooth function of ∇u except where
∇u = 0. If aij(∇u) was smooth everywhere resp. ∇u, the
regularity of the solution would follow from classical estimates.
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Lipschitz estimates

Fact 1. W 2,ε estimates

Solutions to uniformly parabolic equations

ut = aij(x , t)∂iju,

with λI ≤ {aij} ≤ ΛI, are in W 2,ε for some ε > 0. This means that∫
Q1

|D2u|ε dx ≤ C

(
sup
Q1

|u|
)ε

,

for some ε > 0 and C universal.

Fact 2. |∇u|p is a subsolution to a unif. parabolic equation

Fact 3. Local Maximum principle
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Fact 1. W 2,ε estimates∫
Q1
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(
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Non negative subsolutions to uniformly parabolic equations in non-
divergence form

ϕt − aij(x , t)∂ijϕ ≤ 0,

satisfy the local maximum principle

ϕ(0) ≤
(∫

Q1

ϕε dx dt

)1/ε

.



Lipschitz estimates

Fact 1. W 2,ε estimates∫
Q1

|Du|ε dx ≤ C

(
max
Q1

|u|
)ε

.

Fact 2. |∇u|p is a subsolution to a unif. parabolic equation

The function ϕ = |∇u|p is a subsolution to

ϕt − aij∂ijϕ ≤ 0.

Fact 3. Local Maximum principle

ϕ(0) ≤
(∫

Q1

ϕε dx dt

)1/ε

.

=⇒ |∇u(0)| ≤ C max
Q1

|u|.

The alternative proof by Does uses Berstein’s technique.



The oscillation of ∇u

We aim at proving that

Cα regularity for ∇u

∇u(Qrk ) ⊂ B(1−δ)k (pk).

for some r , δ ∈ (0, 1) and some sequence of centers pk ∈ Rn and all
k ≥ 0.

This is exactly the Cα regularity of ∇u where α = log(1− δ)/ log r .

In order to prove it by induction, we must show

(flawed) induction step

∇u(Q1) ⊂ B1 =⇒ ∇u(Qr ) ⊂ B(1−δ),

for some r , δ ∈ (0, 1).



Improvement of oscillation

Lemma
Assume ∇u(Q1) ⊂ B1. Let e be
any unit vector. Assume that

|{(t, x) ∈ Q1 : e·∇u(t, x) ≤ 1−c0}| ≥ µ.

Then

e · ∇u(t, x) ≤ 1− δc0 in Qr .

Here δ and r are positive and
depend on p and µ.

∇u stays inside this ball

e

c0

δc0

Proof. The function w = max(e · ∇u, 1− c0) is a subsolution
of some parabolic equation.
Indeed, note that the equation is only relevant where
1− c0 ≤ e · ∇u ≤ 1. Our equation is smooth if the gradient is
restricted there. So we can differentiate the equation and obtain
something.



The favorable case

If we can apply the previous lemma for fixed µ and c0 and for all
directions e, then we obtain that

∇u(Qr ) ⊂ B(1−δ),

and the induction step succeeds.

∇u never goes into
the red area.

This indution step can only work indefinitely if ∇u(0) = 0. We
cannot expect this to always happen. We must have a backup
plan for the case when the conditions of the Lemma are not met.
We can choose arbitrarily small µ and c0.



Small perturbation of smooth parabolic equations

Theorem (Yu Wang [2013])

Let u be a solution to the parabolic equation

ut = F (D2u,∇u) in Q1.

Assume F is smooth and uniformly elliptic in a neighborhood of
(D2ϕ,∇ϕ) for some smooth solution ϕ. If ‖u −ϕ‖L∞ is
sufficiently small, then u ∈ C2,α in Q1/2.

This is the parabolic version of an earlier result by Ovidiu Savin for
elliptic equations.



The backup plan

It will eventually happen that our previous lemma does not apply.
That is, for some unit vector e,

|{(t, x) ∈ Q1 : e · ∇u(t, x) ≤ 1− c0}| < µ. (1)

The constants µ and c0 are arbitrarily small.

We want to show that in this case u(x , t)− e · x has a small
oscillation in Q1/2 and we can apply the result of Yu Wang.

The condition (1) tells us that for fixed time u(x, t)− p · x has
small oscillation, except for a set of times of small measure.



Small oscillation for all fixed times

The condition (1) tells us that for fixed time u(x, t)− p · x has
small oscillation, except for a set of times of small measure.

Recall that the function v(x , t) = u(x , t)− p · x solves a uniformly
parabolic equation

vt = aij∂ijv ,

with λI ≤ {aij} ≤ ΛI.

Using the Cα estimates of Krylov and Safonov, we extend the
small oscillation for all values of t.



Small oscillation for the whole parabolic cylinder

Lemma

Let v be a solution to the uniformly parabolic equation
vt = aij∂ijv . Assume that

osc
x∈B1

v(t, x) ≤ δ for all t ∈ [−1, 0].

Then,
osc
Q1

v(t, x) ≤ Cδ,

for a constant C depending on dimension and the ellipticity
constants.

Proof. Use barriers of the form

w(t, x) = a + δ|x |2 + Cδt.

This is a supersolution for large enough C .



Summary of strategy

For as long as we can apply the first lemma, we get

∇u(Brk ) ⊂ B(1−δ)k .

Whenever the first lemma fails, that means there is a unit vector e
so that ∇u is very close to e at most points in Q1.

Using the uniform ellipticity of the equation (in non-divergence
form) we deduce that u(t, x)− p · x has a small oscillation and we
conclude applying the result of Yu Wang.

Both alternative co-exist peacefully and we obtain a uniform Cα

estimate for ∇u in Q1/2.
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