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Fully nonlinear elliptic PDE

We consider equations of the form

F (D2u) = 0 in B1.

with

λI ≤ ∂F

∂Xij
≤ ΛI (uniform ellipticity).

The Dirichlet problem in B1 has a unique viscosity solution, which
a priori is just a continuous function.

Basic question: is the viscosity solution going to be C 2?
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Regularity results

• The solution is always C 1,α

(Krylov and Safonov. Early 80’s)

• In 2D, the solution is always C 2,α

(Nirenberg 50’s)

• In 12D, there are solutions which are not C 2

(Nadirashvili-Vladut 2007)
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Extra structure conditions

• F concave or convex =⇒ the solution is C 2,α

(Evans - Krylov, 1983)

• What if F is smooth?

• What if F is homogeneous?

• What if F depends only on the eigenvalues of D2u?

For any of the three possibilities above, Nadirashvili and Vladut
proved that there can be singular solutions in high dimension.
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Partial regularity

Question: Can we show that u is C 2 except in a very small set?

We want to prove an upper bound for the Hausdorff dimension of
the possible singular set.

It would be great if we could prove that the singular set of u has
Hausdorff dimension at most n − 9 or even n − 2. But right now
we are far from that.

What we can prove is the following.

Theorem (Armstrong, S., Smart)

If the equation F (D2u) = 0 is uniformly elliptic and F ∈ C 1, then
u is C 2,α outside of a closed set of Hausdorff dimension at most
n − ε
(for ε being a small universal constant)



Introduction Preliminaries Proof of partial regularity Unique continuation

Partial regularity

Question: Can we show that u is C 2 except in a very small set?

We want to prove an upper bound for the Hausdorff dimension of
the possible singular set.

It would be great if we could prove that the singular set of u has
Hausdorff dimension at most n − 9 or even n − 2. But right now
we are far from that.

What we can prove is the following.

Theorem (Armstrong, S., Smart)

If the equation F (D2u) = 0 is uniformly elliptic and F ∈ C 1, then
u is C 2,α outside of a closed set of Hausdorff dimension at most
n − ε
(for ε being a small universal constant)



Introduction Preliminaries Proof of partial regularity Unique continuation

Partial regularity

Question: Can we show that u is C 2 except in a very small set?

We want to prove an upper bound for the Hausdorff dimension of
the possible singular set.

It would be great if we could prove that the singular set of u has
Hausdorff dimension at most n − 9 or even n − 2. But right now
we are far from that.

What we can prove is the following.

Theorem (Armstrong, S., Smart)

If the equation F (D2u) = 0 is uniformly elliptic and F ∈ C 1, then
u is C 2,α outside of a closed set of Hausdorff dimension at most
n − ε
(for ε being a small universal constant)



Introduction Preliminaries Proof of partial regularity Unique continuation

Reason for the C 1,α estimate

The main reason why the C 1,α regularity holds is because the
derivatives of a solution satisfy a uniformly elliptic equation with
rough coefficients.

F (D2u) = 0

with λI ≤ aij(x) ≤ ΛI .

By Krylov-Safonov Harnack inequality ue ∈ Cα for any e.
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W 2,ε estimate

Solutions to uniformly elliptic equations with rough coefficients

aij(x)∂ijv = 0 with λI ≤ aij(x) ≤ ΛI ,

also satisfy a W 2,ε estimate which says that v is second
differentiable almost everywhere and D2u ∈ Lε.

First proved by Fanghua Lin in 1986. Later, another proof was given by Caffarelli in 1989.
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More precise W 2,ε estimate

Solutions to uniformly elliptic equations with rough coefficients

aij(x)∂ijv = 0 in B1 with λI ≤ aij(x) ≤ ΛI ,

satisfy the following estimate. Let

At := {x ∈ B1/2 : there exists L linear s.t.

|v(y)− L(y)| ≤ t|x − y |2 for all y ∈ B1}.

Then
|B1/2 \ At | ≤ C t−ε||v ||εL∞(B1).
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A W 3,ε estimate

The previous W 2,ε estimate can be applied to the derivatives of a
solution to a fully nonlinear PDE F (D2u) = 0.
Let

At := {x ∈ B1/2 : there exists P quadratic s.t.

|u(y)− P(y)| ≤ t|x − y |3 for all y ∈ B1}.

Then
|B1/2 \ At | ≤ C t−ε||u||εL∞(B1).

Almost the same estimate was recently used by Caffarelli and Souganidis to obtain convergence rates for finite

difference schemes and homogenization of fully nonlinear PDE.
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Flat solutions are C 2,α

Theorem (O. Savin 2007)

If u solves a uniformly elliptic equation F (D2u) = 0 in B1, F ∈ C 1,
F (0) = 0 and ||u||L∞(B1) ≤ δ, then u ∈ C 2,α(B1/2).
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Flat solutions are C 2,α (scaled)

Theorem (O. Savin 2007)

If u solves a uniformly elliptic equation F (D2u) = 0 in Br , F ∈ C 1,
P is a quadratic polynomial such that F (D2P) = 0 and
||u − P||L∞(Br ) ≤ δr 2, then u ∈ C 2,α(Br/2).
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Proof of partial regularity

Let S be the set of points in B1/2 where a solution u is not C 2.
Let us cover S with a collection of balls {Bj} of radius r . We take
a subcover if necessary so that {3Bj} covers S and they do not
overlap (Vitali covering lemma).

S ⊂
⋃

j=1,...,N

3Bj .

In order to estimate the Hausdorff measure of S , we must find an
appropriate upper bound for the number of balls.
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Proof of partial regularity
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Recall Savin’s result

Theorem

If u solves a uniformly elliptic equation F (D2u) = 0 in Br , F ∈ C 1,
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||u − P||L∞(Br ) ≤ δr 2, then u ∈ C 2,α(Br/2).
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||u − P||L∞(Bj ) ≤ δr 2.
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Second part of the talk

Unique continuation for fully
nonlinear PDE

Joint work with Scott Armstrong
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Unique continuation problem

Assume u and v are two solutions to a fully nonlinear elliptic
equation

F (D2u) = F (D2v) = 0 in B1.

If {u = v} has nonempty interior, is it true that u ≡ v in B1?
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case F (D2u) = ∆u

The unique continuation property certainly holds for harmonic
functions. There are three independent proofs.

1. Analyticity: u and v are analytic, therefore unique
continuation holds (prehistoric).

2. Carleman estimates (1930’s).

3. Frequency formula (Garofalo - Lin 1987).

The last two methods generalize to elliptic equations with variable
coefficients

aij(x)∂iju = 0,

provided that aij is uniformly elliptic and Lipschitz.
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Trivial case: smooth solutions
If F ∈ C 1,1 and u and v are two C 2,α classical solutions then the
unique continuation property holds.

Proof.

From Schauder estimates, u and v are C 3,α. The difference
w = u − v satisfies the elliptic equation

aij(x)∂ijw = 0

with coefficients given by

aij(x) =

∫ 1

0
(tD2u(x) + (1− t)D2v(x)) dt.

From our smoothness assumptions, aij(x) are Lipschitz and the
linear unique continuation theorems apply.
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Almost trivial case

If F ∈ C 1,1 and u and v are two C 2,α classical solutions outside of
a singular set S with Hn−1-measure zero, then the unique
continuation property holds.

Proof.

There will be one point on ∂{u = v} where both u and v are
smooth.

x0
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Our result

Theorem (Armstrong, S.)

Let u be a viscosity solution to the uniformly elliptic equation
F (D2u) = 0 in B1. Assume that F ∈ C 1,1 and {u = 0} has
nonempty interior. Then u ≡ 0 everywhere.

The unique continuation property holds if u is an arbitrary viscosity
solution and v smooth.
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Proof of the unique continuation result

Let B be a ball contained in {u = 0} (it exists by assumption).

x0

We can move B until ∂B and ∂{u = 0} have a common point x0.
We will prove that around this particular point x0, the solution u is
smooth (C 2,α).
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Boundary Harnack for nondivergence equations

Assume that Ω has a smooth boundary (the
exterior of a ball for example). Let
x0 ∈ ∂Ω ∩ B. If v is a solution to a uniformly
elliptic equation with rough coefficients

aij(x)∂ijv = 0 in B ∩ Ω,

and ν is the unit normal to ∂Ω at x0, then there is a an a ∈ R such
that

v(x) = a(x − x0) · ν + O(|x − x0|1+α).

Result obtained by Krylov and independently by Baumann in the early 80’s.

There is a simple proof by Caffarelli which is unpublished.
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Proof

We apply the boundary Harnack theorem to all derivatives of the
solution u to obtain

u(x) ≤ C |x − x0|2+α

But then for r � 1, we will have ||u||L∞(Br ) ≤ δr 2 and we can
apply Savin’s result.


