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Abstract

In Euler and Navier Stokes equations, the pressure is related to the velocity by the formula
p = RiRjuiuj . We prove that if u ∈ Cα then p ∈ C2α.

1 Introduction

In Euler or Navier Stokes equation, the pressure is computed from the velocity by the formula

p = RiRj uiuj . (1.1)

where Ri denotes the Riesz transform and repeated indexes are summed. Since the Riesz transforms
are operators of order zero, it is generally understood that p would have the same regularity estimates
as u ⊗ u or |u|2. Therefore, if u ∈ Cα, it is natural to obtain that also p ∈ Cα. The purpose of this
note is to show that if α ∈ (0, 1/2) ∪ (1/2, 1), actually p ∈ C2α, which seems somewhat surprising.

The case α = 1/2 is a borderline case because in that case one would expect p to be Lipschitz. It
is well known that that kind spaces do not get along well with singular integrals.

Note that (1.1) arises from the following equivalent formula

4p = ∂i∂juiuj . (1.2)

Even thought the most interesting cases for Euler or Navier Stokes equation are in dimension 2 and
3, we will present the proof in arbitrary dimension n, since there is no difference in difficulty.

As a notational clarification, we denote by [u]Cα the Cα seminorm given by

[u]Cα = sup
x,y∈Rn

|u(x)− u(y)|
|x− y|α

.

The main result of this note is the following.

Theorem 1.1. Assume u ∈ Cα for α ∈ (0, 1/2) ∪ (1/2, 1) is a divergence free vector field, and p be
given by the formula (1.1). Then if α ∈ (0, 1/2), we have for all x, y ∈ Rn,

|p(x)− p(y)| ≤ C|x− y|2α[u]2Cα ,

where C is a constant depending on n and α. In addition, if α ∈ (1/2, 1),

|∇p(x)−∇p(y)| ≤ C|x− y|2α−1[u]2Cα .

I came up with these estimates by 2010. Since I could not find a good application for them, I
did send them for publication. However, the result was cited at least in [1] and [2] as a personal
communication.

The rest of the article consists of the proof of Theorem 1.1
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1.1 Subtracting constants

We start by the following simple observation. Since div u = 0, the value of ∂i∂j(ui−Ai)(uj −Bj) does
not depend on A and B for any two constant vectors A and B. In particular, for any two points x1

and x2, we have
∂i∂jui(x)uj(x) = ∂i∂j(ui(x)− ui(x1))(uj(x)− uj(x2)). (1.3)

1.2 The case α ∈ (0, 1/2).

Let Φ(y) = cn
|y|n−2 be the fundamental solution of the Laplace equation, i.e. 4Φ = −δ0.

For any two points x1 and x2, let ϕ(y) = Φ(y − x1) − Φ(y − x2). We multiply both sides of (1.2)
by ϕ and integrate by parts. We obtain

p(x2)− p(x1) =

∫
p(y)4ϕ(y) dy =

∫
(ui(y)− ui(x1))(uj(y)− uj(x2))D2ϕ(y) dy

We assume that u has an appropriate decay at infinity so that the tail of integral is integrable.
Assuming u ∈ L2 is sufficient. The estimates below do not depend on any norm of u except [u]Cα .

Note that D2ϕ contains some singular part (delta functions) at y = x1 and y = x2. However, we
have that (ui(y) − ui(x1))(uj(y) − uj(x2)) vanishes for both y = x1 and y = x2, so we can ignore the
singular part of D2ϕ.

Let us compute the second derivatives of ϕ. We start by computing D2Φ. We have D2ϕ(y) =
D2Φ(y − x1)−D2Φ(y − x2), where

∂ijΦ(y) =
|y|2δij − 2yiyj
|y|n+2

.

In particular |D2Φ(y)| ≤ C|y|−n.
There is some cancellation between the two terms when y is far from x1 and x2. Let x̄ = x1+x2

2 and
r = |x1 + x2|. Then if |y − x̄| > 5r, by mean value theorem we have

|D2ϕ(y)| ≤ Cr

|y − x̄|n+1
.

Therefore, we can estimate that part of the integral∫
Bc5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x2))∂ijϕ(y) dy ≤

≤ ‖u‖2Cα
∫
Bc5r(x̄)

|y − x1|α|y − x2|α
Cr

|y − x̄|n+1
dy

≤ [u]2Cα

∫
Bc5r(x̄)

Cr

|y − x̄|n+1−2α
dy ≤ C[u]2Cαr

2α

Now we estimate the part of the integral where y is close to x̄.∫
B5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x2))∂ijϕ(y) dy ≤

≤
∫
B5r(x̄)

|ui(y)− ui(x1)||uj(y)− uj(x2)|(|D2Φ(y − x1)|+ |D2Φ(y − x2)|) dy
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Note that we bound both terms, from |D2Φ(y−x1)| and |D2Φ(y−x2)|, in the same way. Let us bound
the first term. We use that |uj(y)− uj(x2)| ≤ C[u]Cαr

α in B5r(x̄).

≤ Crα ‖u‖Cα

∫
B5r(x̄)

(ui(y)− ui(x1))|D2Φ(y − x1)| dy

≤ Crα ‖u‖2Cα

∫
B5r(x̄)

|y − x1|α
1

|y − x1|n
dy ≤ C ‖u‖2Cα r

2α

Adding the two parts of the integral together, we obtain

p(x1)− p(x2) ≤ C ‖u‖2Cα r
2α

which finishes the proof of the case α ∈ (0, 1/2).

1.3 The case α ∈ (1/2, 1)

When α ∈ (1/2, 1), 2α > 1 and the estimate obtained (p ∈ C2α) is actually a Hölder continuity result
for ∇p. The proof is slightly different because instead of estimating p(x1)− p(x2) we have to estimate
|∇p(x1)−∇p(x2)|. For that we note that

∇p(xk) =

∫
(ui(y)− ui(xk))(uj(y)− uj(xk))∇∂ijΦ(y − xk) dy

The kernel ∇∂ijΦ(y−xk) has a singularity of the form |y−xk|−n−1 and some singular part at y = xk of
order one (derivatives of Dirac delta functions). However, note that |(ui(y)−ui(xk))(uj(y)−uj(xk))| ≤
C|y − xk|2α and 2α > 1, therefore the singular part of ∇∂ijΦ(y − xk) can be ignored and the integral
above is convergent.

We write |∇p(x1) − ∇p(x2)| in integral form and divide the integral as above in the domains
|y − x̄| < 5r and |y − x̄| ≥ 5r. Let us start with the first of these integrals.

|
∫
B5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x1))∇∂ijΦ(y − x1)− (ui(y)− ui(x2))(uj(y)− uj(x2))∇∂ijΦ(y − x2) dy| ≤

≤ 2

∣∣∣∣∣
∫
B5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x1))∇∂ijΦ(y − x1) dy

∣∣∣∣∣
≤ C[u]2Cα

∫
B5r(x̄)

|y − x1|2α
1

|y − x1|n+1
dy ≤ C[u]2Cαr

2α−1

Now we analyze the part of the integral where y is far from x̄.

|
∫
Bc5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x1))∇∂ijΦ(y − x1)− (ui(y)− ui(x2))(uj(y)− uj(x2))∇∂ijΦ(y − x2) dy| ≤

≤ |
∫
Bc5r(x̄)

(ui(y)− ui(x1))(uj(y)− uj(x1))
(
∇∂ijΦ(y − x1)−∇∂ijΦ(y − x2)

)
+
(
(ui(y)− ui(x1))(uj(y)− uj(x1))− (ui(y)− ui(x1))(uj(y)− uj(x2))

)
∇∂ijΦ(y − x2) dy |

+
(
(ui(y)− ui(x1))(uj(y)− uj(x2))− (ui(y)− ui(x2))(uj(y)− uj(x2))

)
∇∂ijΦ(y − x2) dy |

≤ C[u]2Cα

∫
Bc5r(x̄)

|y − x̄|2α r

|y − x̄|n+2
+ rα|y − x̄|α 1

|y − x̄|n+1
dy

≤ C[u]2Cαr
2α−1
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Adding the two parts of the integral together, we obtain

|∇p(x1)−∇p(x2)| ≤ C[u]2Cαr
2α−1

which finishes the proof of the case α ∈ (1/2, 1).
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