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Abstract

In Euler and Navier Stokes equations, the pressure is related to the velocity by the formula
p = RiRju;u;. We prove that if u € C then p € C?°.

1 Introduction

In Euler or Navier Stokes equation, the pressure is computed from the velocity by the formula
P = RzR] UiUyj- (1.1)

where R; denotes the Riesz transform and repeated indexes are summed. Since the Riesz transforms
are operators of order zero, it is generally understood that p would have the same regularity estimates
as u @ u or |u|?. Therefore, if u € C, it is natural to obtain that also p € C®. The purpose of this
note is to show that if a € (0,1/2) U (1/2,1), actually p € C?*, which seems somewhat surprising.
The case a = 1/2 is a borderline case because in that case one would expect p to be Lipschitz. It
is well known that that kind spaces do not get along well with singular integrals.
Note that (1.1) arises from the following equivalent formula

Ap = 8i8juiu]'. (1'2)

Even thought the most interesting cases for Euler or Navier Stokes equation are in dimension 2 and
3, we will present the proof in arbitrary dimension n, since there is no difference in difficulty.
As a notational clarification, we denote by [u]ce the C* seminorm given by

[U]Cu = sup |U((E) _ u(y)|
syeRr T —yl®
The main result of this note is the following.

Theorem 1.1. Assume u € C* for a € (0,1/2) U (1/2,1) is a divergence free vector field, and p be
given by the formula (1.1). Then if o € (0,1/2), we have for all x,y € R™,

p(x) = p(y)| < Clo — y[**[u]t.,
where C is a constant depending on n and «. In addition, if o € (1/2,1),
Vp(z) = Vp(y)| < Clo — y|** [ule

I came up with these estimates by 2010. Since I could not find a good application for them, I
did send them for publication. However, the result was cited at least in [1] and [2] as a personal
communication.

The rest of the article consists of the proof of Theorem 1.1



1.1 Subtracting constants

We start by the following simple observation. Since divu = 0, the value of 9;0;(u; — A;)(u; — B;) does
not depend on A and B for any two constant vectors A and B. In particular, for any two points x
and x5, we have

0i0jui(x)u;(x) = 9,05 (ui(w) — wi(x1))(uj(x) — uj(22)). (1.3)

1.2 The case a € (0,1/2).

Let ®(y) = 2 be the fundamental solution of the Laplace equation, i.e. AP = —§.
lyl

For any two points 21 and x2, let p(y) = ®(y — z1) — ®(y — 22). We multiply both sides of (1.2)
by ¢ and integrate by parts. We obtain

pla2) — plar) = / p(y)Dp(y) dy = / (i) — (1)) (5 () — 5 (22)) D2 p(y) dly

We assume that u has an appropriate decay at infinity so that the tail of integral is integrable.
Assuming u € L? is sufficient. The estimates below do not depend on any norm of u except [u]ca.

Note that D?p contains some singular part (delta functions) at y = x; and y = x5. However, we
have that (u;(y) — ui(21))(u;(y) — uj(z2)) vanishes for both y = 1 and y = 2, so we can ignore the
singular part of D?¢.

Let us compute the second derivatives of ¢. We start by computing D?®. We have D?%p(y) =
D*®(y — x1) — D*®(y — x3), where

y|26i; — 2yy;
9i;®(y) = W

In particular |D?®(y)| < Cly|~™.
There is some cancellation between the two terms when y is far from z; and z5. Let T = % and
r = |z1 + x2|. Then if |y — Z| > 5r, by mean value theorem we have

Cr
D? <
D p(y)| < = 2

Therefore, we can estimate that part of the integral
| ()~ w ) 50) () 0) dy <
£ (z

Cr
2
< Jull¢a / o ly — 1|y — IQ\QW dy

Bg,.

Cr

< [u]Za / —— — dy < C[u]Zar®®
“ Be (z) ly — |12 ¢

Now we estimate the part of the integral where y is close to .
/ 00 ) ) — 0 22)) s 000) <
57 (T

< /B . luiy) — wi(x1)|Juj(y) — uj(22)|(|D*®(y — z1)| + |D*®(y — 22)|) dy



Note that we bound both terms, from |D?®(y —x1)| and |D?®(y — x2)|, in the same way. Let us bound
the first term. We use that |u;(y) — u;j(z2)| < Clu]car® in Bs,(Z).

<Crlulo, [ (uily) ~ uiCe) DBl — )] dy

5r

1
< Cr® ullz, |y — 1| ——— dy < C |Jull¢, r*
— 1:1

By, (%) | |
Adding the two parts of the integral together, we obtain
2 o
p(a1) = p(x2) < Cllullg, r*

which finishes the proof of the case o € (0,1/2).

1.3 The case a € (1/2,1)

When a € (1/2,1), 2a > 1 and the estimate obtained (p € C?%) is actually a Hélder continuity result
for Vp. The proof is slightly different because instead of estimating p(x1) — p(x2) we have to estimate
|[Vp(z1) — Vp(z2)|. For that we note that

Vp(ax) = / (usy) — () (1 () — 05 () VO By — 1) dly

The kernel V9;;®(y —xy) has a singularity of the form |y — x| ~™~! and some singular part at y = z, of
order one (derivatives of Dirac delta functions). However, note that |(u;(y) —w;(zx))(u;(y) —u;(zg))| <
Cly — zx|*™ and 2a > 1, therefore the singular part of V;;®(y — z) can be ignored and the integral
above is convergent.

We write |Vp(z1) — Vp(z2)| in integral form and divide the integral as above in the domains
|y — Z| < 5r and |y — Z| > 5r. Let us start with the first of these integrals.

| /B - (ui(y) — wi(1))(w;(y) = uj(21)) VO @y — 21) — (wi(y) — wi(22))(uj(y) — u;(22))VOi; By — x2) dy| <

<2

/ (ui(y) = wi(e1)) (u; (y) — uj(21)) VO ®(y — 1) dy
Bs,-(T)

1
SC’uQQ/ y—21)*——————— dy < Clu]Zar?®!
[ule B5T(i)| 1 ly — o1 |n+1 [ule

Now we analyze the part of the integral where y is far from Zz.

|/BC (j(ui(y) — ui(w1)) (uj (y) = uj(21)) VO3 By — 1) — (wily) — wi(w2))(uj(y) — u;(22))VOi; By — w2) dy| <

<] /L (_)(Uz'(y) — (1)) (u(y) — u;(21)) (VO ®(y — 1) — VO, (y — x2))

5r

+ ((uiy) — wa(@1))(u (y) — i (21) — (wiy) — wi(@1)) (i (y) — u;(22))) VOi;(y — 22) dy |

+ ((uily) — wa(@1))(u () — w5 (22)) = (wiy) — wi(22)) (w5 (y) — u;(22))) VOi;2(y — 22) dy |

1
SC[U]%Q/ ly — z|2 +r¥y — | ———— dy
B, (7) ly — z["*+!

< C[u]QCQTQ’l*l

ly — z|"+2



Adding the two parts of the integral together, we obtain
[Vp(21) = Vp(z2)| < Clulgar

which finishes the proof of the case a € (1/2,1).
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