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Abstract

We show that fully nonlinear elliptic PDEs (which may not have classical solutions) can be
approximated with integro-differential equations which have C2,α solutions. For these approx-
imated equation we prove a uniform C1,α estimate. We also study the rate of convergence.

1 Introduction

The possibility of approximating solutions of nonconvex fully nonlinear equations by classical
solutions has been a long standing issue. The recent work [2] provided such approximation but it
required considerably technical arguments. The ideas in this article are based in the work [3] on
integral fully nonlinear equations

Let ϕ be a compactly supported, smooth, symmetric, probability density and given a smooth
function u, let

Iε(x) =
∫

Rn
(u(x+ y) + u(x− y)− 2u(x))

1
εn+2

ϕ
(y
ε

)
dy

If we let ε→ 0, Iε converges to an integral on the unit sphere

I0(x) =
∫
S1

uσσ(x)Φ(σ) dσ

where the weight Φ(σ) is the second moment of ϕ in the direction σ

Φ(σ) =
∫ ∞

0

t2ϕ(tσ) dt

In turn, uσσ =
∑
σiσj∂iju and thus

I0(x) =
∑

aij∂iju

where the coefficients aij are

aij =
∫
S1

σiσjΦ(σ) dσ

conversely, given an elliptic (positive definite) matrix aij = B2 = BtB, if ϕ is a radially
symmetric probability density with quadratic moments in any direction equal to 1/|S1| and we
define

ϕ̃(x) =
1

detB
ϕ(B−1x)
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then the resulting operator of the limiting process with ϕ̃ is indeed aij∂iju.
Consider now the Isaacs fully nonlinear equation

F (D2u) = f(x) in Ω

where F (D2u) = inf
β

sup
γ
aγβij ∂iju = inf

β
sup
γ
Lγβu

(1.1)

Assume that the equation is uniformly elliptic: there exist constants 0 < λ ≤ Λ such that for
every index α, β, λI ≤ {aαβij } ≤ ΛI. Thus, we can write every linear operator as

aαβij ∂iju =
λ

2
4u+ lim

ε→0
Iαβε (v)

where
Iαβε v =

∫
Rn
δu(x, y)

1
εn+2 detBαβ

ϕ
(
B−1
αβ

y

ε

)
dy,

and B2
αβ = {aαβij } − λ

2 I. We are using the notation δu(x, y) = u(x + y) + u(x − y) − 2u(x), and
ϕ is a compactly supported radially symmetric probability density with second moment equal to
one in any direction.

The above discussion suggests that solutions v of the equation

Eε(v) =
λ

2
4v + inf

β
sup
α
Iαβε (v) = f(x) (1.2)

would be, as ε goes to zero, approximations of the solution u to the original fully nonlinear elliptic
PDE (1.1). The interesting fact about these approximations is that since the second term is always
a Lipschitz function for every ε > 0, then the functions v will be C2,α (with estimates depending
on ε). Moreover, since the first term λ

24v is fixed and the second term has some type of ellipticity,
it is possible to obtain some a priori estimates independent of ε which coincide, in fact, with known
regularity results for fully nonlinear elliptic PDE without convexity assumptions.

In this note we intend to prove existence, smoothness, and rate of convergence to the solution
as ε → 0. We will prove that the problem is well posed for every ε > 0 once boundary value g is
extended in a neighborhood of Ω. The we will show that the equation has an interior C1,α estimate
independent of ε (corresponding to the interior C1,α estimate for fully nonlinear PDEs). And in
the last section we will show that the rate of convergence of the solutions to our approximated
problem to the solution to (1.1) is of the order εα for some α > 0.

2 Some simple properties of the approximate equation

In this section we construct the approximate equation and observe some elementary properties.
To fix ideas, let us choose a smooth function ϕ that is supported in B2, 0 ≤ ϕ ≤ 1 in its

support, and for every direction σ on the unit sphere,∫ ∞
0

t2ϕ(tσ) dt =
1
|S1|

.

This choice is made so that for any C2 function u,

lim
ε→0

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))
1

εn+2
ϕ
(y
ε

)
dy = 4u(x).
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And also,

lim
ε→0

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))
1

εn+2 det(B)
ϕ
(
B−1 y

ε

)
dy = aij∂iju(x),

where B2 = {aij}.
By construction all matrices Bαβ in the definition of Eε have their eigenvalues bounded above

and below, so the support of 1
detBϕ(B−1x) will always be contained in a ball BQ where Q is a

universal constant given by 2/
√
λ. Therefore, the value of Eεu(x) depends only on the values of

u in BQε(x). This universal constant Q will appear in several estimates in this paper.
Let g be a continuous function defined on ∂Ω. We want to solve the approximated problem

Eεu = f in Ω and u = g on ∂Ω. However, in order for every Iαβε to be well defined, we need to
extend g to a neighborhood of Ω of size Qε.

A natural continuous extension of g to CΩ can be done by a sup-convolution:

g̃(x) = sup
x∗∈∂Ω

g(x∗)− |x− x∗|2

For the existence of the solution of the equation for a positive value ε, any continuous extension
would work. For computing the rates of convergence, it is better to extend g in a way that the
extension is as regular as the original function g. If g is C1,1 and Ω has the exterior ball condition,
then g̃ will be C1,1 in a neighborhood of ∂Ω. The approximated problem that we will study is

Eεu = f(x) in Ω
u = g̃ in (∂Ω)Qε

(2.1)

where (∂Ω)Qε = {x ∈ CΩ : dist(x, ∂Ω) < Qε} is a Qε neighborhood of ∂Ω.
We point out the scaling of the equation. If u is a solution of Eεu = f , then ū(x) = su(tx) is

a solution of Ētε(u) = st2f where Ētε is also an operator as in (1.2) but with tε instead of ε.
We note that the equation is constructed so that EεP = F (D2P ) for any quadratic polynomial

P , where F is the original fully nonlinear equation. The following lemmas provide more precise
statements.

Lemma 2.1. Assume ϕ radially symmetric, nonnegative and supported in a ball BR. If u is
superharmonic in BR(x) then

Iu(x) =
∫

Rn
δu(x, y)ϕ(y) dy ≤ 0

Proof. It is a simple average of the mean value theorem.

Corollary 2.2. Let u be a function such that for a fixed matrix aij,

aij∂iju ≤ 0 in a ball Br+Qε, (resp. ≥ 0)

then also ∫
BQε

δu(x, y)
1

detB
ϕ(B−1y) dy ≤ 0 in Br (resp. ≥ 0)

Proof. We apply Lemma 2.1 to ũ(x) = u(Bx).

Corollary 2.3. Let λmin and λmax be the smallest and largest eigenvalues of D2u. Assume that
in a ball BQε, λmin ≤ 0 ≤ λmax and −λmin ≥ c(λ,Λ)λmax, ϕ as above, then∫

BQε

δu(x, y)
1

detB
ϕ(B−1y) dy ≤ 0

Here B is a positive definite matrix and λ and Λ above refers to the ellipticity constants.
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Proof. Under the change of variables y∗ = B−1y, u remains superharmonic if C(λ,Λ) is large
enough.

Recalling that Eε is given by the Laplacian plus an inf-sup of integral operators as in Corollary
2.3, we have the following corollary.

Corollary 2.4. If λmin and λmax are the smallest and largest eigenvalues of D2u, λmin ≤ 0 ≤
λmax and −λmin ≥ c(λ,Λ)λmax, ϕ as above, then

Eεu ≤ 0

3 Subsolutions, supersolutions, and Perron’s method

In this section we will prove that the approximated problem has a unique solution using Perron’s
method. The smoothness of the integral part of the equation allows us to use very classical
arguments.

We will assume that in the domain Ω is connected and the classical Laplace equation is solvable
for any continuous Dirichlet data. We will use this to show that the solution to our approximated
problem also achieves its boundary data g continuously. For example we can consider a connected
domain Ω with a uniform external ball condition: there exists a ρ0 such that for every point
x ∈ ∂Ω, there exists a ball Bρ0(y) contained in CΩ such that x ∈ ∂Bρ0(y).

We point out that since we are using a ϕ that is smooth and compactly supported, all functions
Iαβε u are uniformly smooth (for given ε > 0) even if u is only L1

loc. Therefore, if u ∈ L1
loc, the

function infβ supα Iαβε u will be locally Lipschitz. This allows us to understand the notion of
subsolutions and supersolutions in a classical distributional sense. Even for u ∈ L1

loc, we can make
sense of

λ

2
4u+ inf

α
sup
β
Iαβε u ≥ f(x)

in the sense of distributions since the second term is just a Lipschitz function.

Lemma 3.1. If u ∈ L1
loc is a supersolution (resp. subsolution) of the equation:

λ

2
4u+ inf

β
sup
α
Iαβε u ≤ f(x) (resp. ≥ f(x)) in Ω

then u is lower semicontinuous

Proof. From the equation we see that locally 4u is bounded above. It is a classical result that
this implies that u has a lower semicontinuous representative.

We now prove the strong comparison principle.

Lemma 3.2 (Comparison principle). Assume Ω is a connected domain. Let u and v be a subso-
lution and a supersolution respectively. If u− v has an absolute maximum at some interior point
in Ω, then u− v is constant in Ω.

Proof. Assume u − v assumes a positive maximum at some interior point x ∈ Ω. Then for any
indexes α, β, we would have

Iαβε (u− v)(x) =
1

εn+2 detBαβ

∫
δ(u− v)(x, y)ϕ

(
B−1
αβ

y

ε

)
dy
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But we see that since u− v achieves its absolute maximum at x, then δ(u− v)(x, y) ≤ 0 for every
y ∈ Rn. Moreover, either u = v in a neighborhood of x or Iαβε u ≤ −η0 for any α, β (with η0

depending on the function u− v and the ellipticity constants λ and Λ).
Assume the latter, then inf sup Iαβε u ≤ −η0. And this is a Lipschitz function so it must be

negative in a neighborhood of x. This means that 4(u− v) > 0 in a neighborhood of x, which is
clearly impossible since u− v has a maximum at x.

Thus we conclude that u must be equal to v in a neighborhood of x. By the classical connect-
edness argument, u = v in the whole domain.

The uniqueness of the solution to the equation (2.1) is an immediate consequence of the
comparison principle. We will also use it to prove existence of solution by following a more
or less classical Perron’s method approach.

Let u be the infimum of all supersolutions

Eεv ≤ f in Ω
v ≥ g in (∂Ω)Qε

We will prove that u is the solution to equation (2.1) provided that f and g are continuous. As
usual for Perron’s method, we divide the proof in showing that u is a solution to the equation
inside the domain Ω and showing that u achieves continuously the boundary values on ∂Ω.

First of all, we must make sure that the infimum u is well defined.

Lemma 3.3. Assume that g and f are bounded continuous functions. The function u above is
well defined and bounded.

Proof. We must find an upper and lower bound.
Let M = sup |f | and N = sup |g|. Let R be a large enough radius such that the ball BR

contains an ε neighborhood of Ω. Then it is an elementary computation that the functions

b±(x) = M(R2 − |x|2)± ±N

are respectively a supersolution and a subsolution of equation (2.1) since they are second order
polynomials and thus the value of Eεb± coincides with F (D2b±).

By the comparison principle (Lemma 3.2), every supersolution v is larger than b− in the whole
domain Ω.

On the other hand, for every supersolution v, the function min v, b+ is also a supersolution.
So u is equal to the infimum of all functions min v, b+, which are all bounded below and above by
b− and b+. Thus b− ≤ u ≤ b+.

Theorem 3.4. The function u above satisfies Eεu = f in Ω, u = g in (∂Ω)Qε and it is continuous.

Proof. We can consider only supersolutions v that are bounded above and below by b+ and b− as
in the proof of Lemma 3.3. Let M be the maximum value of |b±|, so that all v satisfy |v| ≤M .

By the boundedness of v and the smoothness of ϕ, inf sup Iαβε v is uniformly bounded and
Lipschitz. In particular, there is a constant C such that for every supersolution v

λ

2
4v ≤ − inf sup Iαβε v ≤ C.

We first prove that u is still a supersolution. It follows from Greens formula that a constant
upper bound on the laplacian is equivalent to the inequality

v(x) ≥ 1
|Br|

∫
Br(x)

v(y) dy − Cωnr2
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for any ball Br(x) ⊂ Ω, where ωn is a dimensional constant and C is the same constant as in the
inequality above.

This condition is clearly preserved by taking infimum, so 4u is also bounded above by the
same constant and u is lower semicontinuous. Moreover, let vk be a sequence of supersolutions
such that at a given point x, vk(x)→ u(x), then for each α, β,

Iα,βε vk(x) =
1

εn+2 detBαβ

∫
(vk(x+ y) + vk(x− y)− 2vk(x))ϕ

(
B−1
αβ

y

ε

)
dy

≥ 1
εn+2 detBαβ

∫
(uk(x+ y) + uk(x− y)− 2vk(x))ϕ

(
B−1
αβ

y

ε

)
dy → Iα,βε u(x)

Let D = lim infk→∞ inf sup Iαβε vk. From the above discussion, D ≥ inf sup Iαβε u. Since all
these functions are uniformly Lipschitz and f is continuous, for any η > 0, we can find a small
radius r0 > 0 such that for k large and any r < r0,

vk(x) ≥ 1
|Br|

∫
Br(x)

vk(y) dy − (2
−D + f(x)

λ
+ η) ωnr2

Again, this condition is preserved by taking infimum, thus λ
24u ≤ −D + η in Br0(x). We are

proving that for any x in Ω and η > 0, there is a neighborhood around x such that λ
24u +

inf sup Iαβε u ≤ f(x) + η. Therefore, λ
24u+ inf sup Iαβε u ≤ f(x) in Ω and u is a supersolution.

Now we have to show that u is also a subsolution by proving the opposite inequality. Since
u is a supersolution of (2.1), we know that f − inf sup Iαβε u − 4u is a nonnegative measure µ.
Assume µ is nonzero. So there must be some point x0 and η > 0 where µ(Br(x0)) ≥ ηrn if r is
small enough.

Since inf sup Iαβε u is a Lipschitz function and f is continuous, we can find an r > 0 such that

sup
Br(x0)

| − inf sup Iαβε u+ f + inf sup Iαβε u(x0)− f(x0)| < cη.

for c arbitrarily small.
Let us substitute u in a tiny ball Bρ(x) by the solution to

λ

2
4ū = − inf sup Iαβε u(x0) + f(x0)− 2cη in Bρ(x0) (3.1)

ū = u on ∂Bρ(x0) (3.2)

so that in Bρ, 4(ū − u) ≥ µ − 3cη with µ(Bρ/2(x0)) ≥ ηρn/2n. If we choose c small enough (by
making ρ small) this implies that ū < u in Bρ(x0).

Since ū ≤ u inside Bρ(x0), ū = u outside Bρ(x0), and Eεu ≤ 0, then also Eεū ≤ 0 outside
Bρ(x0).

On the other hand, the value of the difference of the integral terms |Iαβε u− Iαβε ū| can be made
arbitrarily small by taking ρ small enough (ρ� ε). In particular, it can be made smaller than cη.
Therefore ū will also be a supersolution of (2.1) inside Bρ(x0) if ρ is very small. But then ū ≥ u
and this is a contradiction.

The contradiction came from assuming that f − inf sup Iαβε u −4u was non zero. So u must
be a solution in Ω.

By construction u ≥ g in (∂Ω)Qε. Let us show that u = g in (∂Ω)Qε and u is continuous on
∂Ω.

6



Since all v are uniformly bounded, then every integral operator Iαβε v is uniformly bounded
depending for each ε > 0 (depending on ε). That means that we can find a simple supersolution
and a subsolution by solving the following problems

4s±(x) = ∓C in Ω
s = g in (∂Ω)Qε

where C is the upper bound for all |Iαβε v|. Therefore the functions min(s+,M) and max(s−,−M)
(recall |v| ≤M) are a supersolution and a subsolution respectively which have the same value on
(∂Ω)Qε and are continuous on ∂Ω. Therefore u must be in between the two, which implies that
u = g in (∂Ω)Qε and u is continuous on ∂Ω.

4 Smoothness

We start this section by pointing out that for every ε > 0, the solution u of

Eεu = f in Ω
u = g̃ in (∂Ω)Qε

is a C2 function. Indeed, from construction it is a continuous function. But since ϕ is smooth
and compactly supported, the integral operators Iαβu are all uniformly Lipschitz. Therefore the
term inf sup Iαβu is Lipschitz. Thus 4u is Lipschitz which implies that C2,α for every α < 1 by
the classical estimates for the Laplace equation.

The estimate above on the C2 norm of u depends on the value of ε. In this section we will
prove that an interior C1,α estimate can be obtained independently of ε. The fact that u ∈ C2 for
every ε > 0 means that we are only dealing with classical solutions.

We will obtain a C1,α estimate for u by applying the following proposition to incremental
quotients.

Lemma 4.1. Let 0 < λ ≤ Λ and ε > 0. Let u be a solution to the following equation

λ

2
4u+

∫
Rn
δu(x, y)

1
εn+2 detB(x)

ϕ
(
B(x)−1 y

ε

)
dy = f(x) in B1

where B : B1 → Rn×n is a matrix valued function such that for every x,
√
λI ≤ B(x) ≤

√
ΛI and

f is a bounded function. Then u satisfies the estimate

||u||Cα(B1/2) ≤ C(||u||L∞(B1+Qε) + ||f ||L∞(Ω))

where C depends on λ, Λ and n, but not on ε or on any modulus of continuity of B.

Instead of proving Lemma 4.1, we will prove a more general result. Because of the bounds
from above and below for the eigenvalues of B(x), for every x the function ϕ

(
B(x)−1 y

ε

)
(as a

function of y) is nonnegative and supported in some ball BQε. So Lemma 4.1 is a particular case
of the following lemma.

Theorem 4.2. Let Q > 0 and ε > 0. Let u be a (classical) solution to the following equation

Lεu := 4u+
∫
BQε

δu(x, y)k(x, y) dy = f(x) in B1 (4.1)

where k(x, y) is a nonnegative function such that k(x, y) ≤ ε−n−2 if |y| < Qε and f is a bounded
function. Then u satisfies the estimate

||u||Cα(B1/2) ≤ C(||u||L∞(1+Qε) + ||f ||L∞(Ω))

where C depends on Q and n, but not on ε or on any modulus of continuity of k.
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The proof of Lemma 2 uses the classical idea of showing that the oscillation in diadic balls
decreases geometrically. For that we will show a growth lemma, whose proof depends on the scale
even though the estimate is uniform in scale at the end.

We recall the scaling of the equation. If u is a solution of Lεu = f for some operator Lε as in
Theorem 4.2, then ū(x) = su(tx) is a solution of L̄tε(u) = st2f where L̄tε is also an operator as
in Theorem 4.2 but with tε instead of ε.

There are two different scales in this problem. When looking at a scale larger then ε, the
ellipticity of the integral part of L plays a role. When looking at a finer scale than ε, then
the integral term in the equation can be considered just a smooth perturbation for the Laplace
equation.

If we want to prove a Hölder continuity result, we must be able to show that the oscillation of
the function decreases at all scales. When looking at a fine scale, we must consider rescalings of
the original function of the form ραu(x/ρ), which will solve an equation for an operator Lε/ρ with
ε/ρ large if ρ is smaller then ε.

In the next few Lemmas, we write e instead of ε to stress that we will apply the lemmas at
different scales. If we apply it at scale ρ, we would need to consider an operator Lε/ρ as above for
which e = ε/ρ may be large.

Lemma 4.3. Assume e > e0 (for a large e0). There exists an η0 > 0, 0 < µ < 1 and M > 1
depending only on Q and n such that if

4u+
∫
BQe

δu(x, y)k(x, y) dy ≤ η0 in B1

u ≥ 0 in B1+Qe

inf
B1/2

u ≤ 1

then |{u > M} ∩B1/4| ≥ µ.

Proof. Let v = min(u/M, 1). Since e > e0, we can control the L∞ norm of the integral term.∫
BQe

δu(x, y)k(x, y) dy ≥ −
∫
k(x, y) dy ≥ −Ce−2

0 ≥ −η0 if e0 is large enough

Thus, we obtain an estimate for the plain Laplacian of the function

4v ≤ 2η0 in B1

On the other hand, since infB1/2 u ≤ 1, then infb1/2 v ≤ 1/M . Therefore the set {v ≥ M}
cannot cover a large portion of ∩B1/4 if η0 is small, i.e.

|{v < M} ∩B1/4| ≥ µ

Lemma 4.4. Assume e < e0, where e0 is the one from Lemma 4.3. There exists an η0 > 0,
0 < µ < 1 and M > 1 depending only on Q and n such that if

4u+
∫
BQe

δu(x, y)k(x, y) dy ≤ f(x) in B1

u ≥ 0 in B1+Qe

inf
B1/2

u ≤ 1 and

||f ||Ln(B1) ≤ η0

then |{u < M} ∩B1/4| ≥ µ.
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In order to prove the lemma above, we prove the following version of Alexandroff-Backelman-
Pucci estimate at a coarse scale.

Lemma 4.5 (coarse ABP estimate). Assume e ≤ e0. Let u : B1 → R be a function such that
u ≥ 0 in (∂B1)Qe0 = B1+Qe0 \B1 and

4u+
∫
BeR

δu(x, y)k(x, y) dy ≤ f(x) in B1

for some nonnegative function f with the same assumption in k as in Theorem 4.2.
Let us extend u as zero outside B1 and let Γ be the convex envelope of u in B1+Qe0 . Then the

classical ABP estimate holds:

−min
B1

u ≤ C

(∫
{u=Γ}

f(x)n dx

)1/n

Proof. As in the classical proof of the ABP estimate

−min
B1

u ≤ C|∇Γ({u = Γ})|1/n = C

(∫
{u=Γ}

det(D2Γ)n dx

)1/n

For every point x ∈ {u = Γ}, the integral term in the equation is nonnegative∫
BeR

δu(x, y)k(x, y) dy ≥ 0

since all incremental quotients are nonnegative if u(x) = Γ(x) (because e < e0). Therefore we
have 4Γ(x) ≤ 4u(x) ≤ f(x).

On the other hand, since D2Γ(x) cannot have a negative eigenvalue, then by the arithmetic-
geometric mean inequality 4Γ(x)/n ≥ det(D2Γ)1/n. Thus

−min
B1

u ≤ C

(∫
{u=Γ}

det(D2Γ)n dx

)1/n

≤ C

(∫
{u=Γ}

f(x)n dx

)1/n

Proof of Lemma 4.4. We observe that for large p, a smooth function b(x) given by (|x|−p − 1)+

outside of B1/8 and some smooth extension inside B1/8 is a subsolution Lb ≥ 0 outside B1/4, and
Lb is bounded independently of e (e > e0) inside B1/4.

Now we apply ABP to u− b and we proceed as in the proof in [1], chapter 4 (Lemma 4.5).

By combining Lemmas 4.4 and 4.3, we have that the pointwise estimate holds at every scale.
We have the corollary that holds for any value of e.

Corollary 4.6. There exists an η0 > 0, 0 < µ < 1 and M > 1 depending only on Q and n such
that for any e > 0, if

4u+
∫
BQe

δu(x, y)k(x, y) dy ≤ f(x) in B1

u ≥ 0 in B1+Qe

inf
B1/2

u ≤ 1 and

||f ||L∞(B1) ≤ η0

then |{u < M} ∩B1/4| ≥ µ.
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Proof. We apply either Lemma 4.4 or Lemma 4.3 depending on whether e ≥ e0 or e < e0.

The previous result implies the Lδ estimate.

Corollary 4.7. There exists an η0 > 0, δ > 0 and C depending only on Q and n such that for
any e > 0, if

4u+
∫
BQe

δu(x, y)k(x, y) dy ≤ f(x) in B1 and

u ≥ 0 in B1+Qε

||f ||L∞(B1) ≤ η0

then
|{u < t} ∪B1/4| ≤ Ct−δ inf

B1/2

u

for some constant C depending only on Q and n.

Proof. We follow the proof in [1] chapter 4. The Lδ estimate is proved using only an estimate like
Corollary 4.6 at every scale.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. First of all we point out that we can rescale the equation to make ||f ||L∞
as small as we wish, and this estimate will be preserved by the Cα scaling thought the proof.

We will prove a decay in the oscillation of balls around the origin.

osc
B4−k (0)

u ≤ C(1− θ)k||u||L∞(B1/2+Qε) (4.2)

for a universal θ > 0, which immediately implies the result with α = − log(1− θ)/ log 4.
We prove (4.2) by induction. For k = 0 it is true with C = 1.
Assume if is true for some k ∈ N with C = 1. We consider two cases, either 4kQε < 1/8 or

4kQε ≥ 1/2.
Let us first discuss the case 4kQε < 1/2.
We use a classical idea of De Giorgi. The values of u remain in an interval [a, b] for x ∈ B2−k

with b− a ≤ (1− θ)k||u||L∞(B1/2+Qε). For every x ∈ B4−k−1 , u is either above or below (a+ b)/2.
So in at least half of the points (in measure), u will have in one side of (a+ b)/2. Without loss of
generality, let us say that it stays above in at least half of the ball:

{u ≥ (a+ b)/2} ∩B4−k−1 | ≥ 1
2
|B4−k−1 |

So, we rescale by considering

v =
2

a+ b
(u(2−2k−1x)− a)

so that v solves an equation like (4.1) but with 22k+1ε instead of ε and v ≥ 0 in B2. In this case
22k+1Qε < 1, so B1+22k+1Qε ⊃ B2. Then we can apply corollary 4.7 and obtain

inf
B1/2

v ≥ c|{v ≥ 1} ∩B1/4| ≥ c

for some universal constant c. Scaling back to u, this means that u ≥ a + ca+b
2 in B4k+1 , so we

the inductive step is proved with θ = c/2 and C = 1.
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The previous iteration will continue for as long as 4kQε < 1/2. Let k be the smallest integer
such that 4kQε ≥ 1/2. The previous iteration process will reach k, so that we have

osc
B4−k (0)

u ≤ (1− θ)k||u||L∞(B1/2+Qε).

Let v = (1− θ)−ku(4−kx). So that v satisfies

osc
B1

v ≤ 1

osc
B4

v ≤ (1− θ)−1 < 2

4v +
∫
B1

δv(x, y)k̃(x, y) dy in B1 = 0

where k̃(x, y) = k(4kx, 4ky) ≤ Q−n−2 if |y| ≤ 1 and zero otherwise. But then the integral term in
the equation is bounded by a universal constant C (depending only on Q and n, recall that θ is
also universal). So |4v| ≤ C in B1.

Therefore, by the Cα estimates of the Laplace equation, there is a universal constant C such
that

osc
Br

v ≤ Crα.

Scaling back, (4.2) holds for some universal constant C for all positive values of k.

We now state the C1,α estimate.

Theorem 4.8. Let u be a solution of

Eεu = f in B1

u = g in B1+Qε \B1

where g is a bounded function. Then u satisfies the estimate:

||u||C1,α(B1/2) ≤ C (‖g‖L∞ + ||f ||L∞)

where α and C are universal constants (they depend on λ, Λ and n, but not on ε).

Note that the above result can be scaled to obtain that if Eεu = f in Br then

||u||C1,α(Br/2) ≤ C
(

1
r1+α

‖u‖L∞(Br+Qε)
+ r1−α||f ||L∞(Br)

)
Proof. Theorem 4.8 is a standard consequence of Lemma 4.1. The main point of the proof is
that if Eεu1 = f1 and Eεu2 = f2 then Lε(u1 − u2) = f1 − f2 for some operator Lε as in Lemma
4.1. Thus we can apply Lemma 4.1 to incremental quotients of u. First we apply Lemma 4.1 to
obtain an estimate for u in Cα. Then we can iteratively obtain estimates with higher exponents
by applying Lemma 4.1 to incremental quotients of the form v(x) = (u(x+he)−u(x))/hβ for any
unit vector e and h > 0. In this way we can pass for an estimate in Cβ to an estimate in Cβ+α

as long as β + α ≤ 1. Thus, after a finite number of steps we obtain an estimate of the Lipschitz
norm of u, and finally we apply 4.1 to all directional derivatives ue and finish the proof.

The details of this (by now standard) procedure can be found in [1] (Corollary 5.7).
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5 A Lipschitz estimate almost up to the boundary

In this section we obtain a uniform Lipschitz estimate in the points inside Ω whose distance to
the boundary is at least of order ε. This would become an up to the boundary regularity estimate
as ε→ 0.

In order to obtain this estimate, we construct barriers to be used in domains with the exterior
ball condition. In order to get regularity estimates almost up to the boundary that are uniform in
ε, we would need to construct barriers that work for every ε (small enough). This is the purpose
of this section.

We recall that Ω has the uniform external ball condition if there exists a ρ0 such that for every
point x ∈ ∂Ω, there exists a ball Bρ0(y) contained in CΩ such that x ∈ ∂Bρ0(y).

If Ω has the external ball condition for a radius ρ0 > 0, then when we consider the ε neigh-
borhood (∂Ω)Qε, it also has the exterior ball condition if ε is small, since the exterior boundary
of (∂Ω)Qε is the parallel surface of ∂Ω at distance Qε which has the exterior ball condition with
radius ρ0 −Qε.

We apply Corollary 2.4 to the function v = −|x|−p with p a large universal constant. If
|x| > Qε we obtain that Eεv(x) ≥ 0. We will use this fact to create a barrier of the form
v(x) = a− b|x−x0|−p outside of a ball Bρ(x0) which touches (∂Ω)Qε from the exterior. Naturally
this is possible assuming that ρ ≤ ρ0−Qε and ρ > Qε. So, let us say that ρ = ρ0/2 and ε is small
enough. Adding an extra quadratic term, we can also make barriers with a nonzero right hand
side:

Eε

[
a− b|x− x0|−p −

c

λ
|x|2
]
≤ −c outside Bρ(x0)

We apply this barrier function to prove the following Lemma.

Lemma 5.1. Let u be a solution to (2.1). Assume Ω has a uniform external ball condition and
g ∈ C1,1.

There is a small universal ε0 such that if ε < ε0 and x, y ∈ Ω be such that dist(x, ∂Ω) ≤ 2d
and dist(x, y) ≤ d, then |u(x)− u(y)| ≤ C(d+ ε) for a universal constant C.

Proof. Let z0 be the closest point to x on the exterior boundary of (∂Ω)Qε: z0 ∈ CΩ and
dist(x, z0) ≤ d + ε. Since Ω has the exterior ball condition (and thus also does the exterior
boundary of (∂Ω)Qε) there is a ball Bρ(x0) tangent to ∂(∂Ω)Qε from the outside. The functions

A(x) = g(z0) + bρ−p − b|x− x0|−p −
c

λ
|x|2

B(x) = g(z0)− bρ−p + b|x− x0|−p +
c

λ
|x|2

satisfy EεA ≤ −c and EεB ≥ c in Ω. So if we choose c = max |f | and b depending on the
C1,1 norm of g, then A will be a supersolution and B a subsolution to the problem (2.1). Thus
B ≤ u ≤ A. But the oscillation of A and B as well as |A − B| in Bd(x) is bounded by C(d + ε)
where C is a constant depending on λ, Λ, n and ρ. Therefore |u(x)− u(y)| ≤ C(d+ ε).

Theorem 5.2. Let u be a solution to (2.1). Assume Ω has a uniform external ball condition and
g ∈ C1,1.

There is a small universal ε0 such that if ε < ε0 and x ∈ Ω such that dist(x,Ω) ≥ Qε, then
|∇u| ≤ C for a constant C depending on λ, Λ, n and ρ0.

Proof. Let d = dist(x, ∂Ω)/2. From the assumptions, we know that Qε < d < diam(Ω). From
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Lemma 5.1, oscBd(x) u ≤ Cd. Let us consider the function ū(z) = 1
du(x+ dz). Then ū satisfies

Eε/dū(z) =
λ

2
4ū+ inf

β
sup
α
Iαβε/d(ū) = df(x+ dz)

osc
B2Q

ū ≤ C

We can apply Theorem 4.8 and from the interior estimate on the gradient conclude that
|∇ū(0)| ≤ C for some constant C depending on λ, Λ, n and Ω but not on ε. But that implies that
|∇u(x)| ≤ C, which finishes the proof.

6 Rate of convergence

In this section we prove that the solution uε to the approximate problem (2.1) approaches the
solution u to the original equation (1.1) uniformly with a rate of the form Cεα for some small
α > 0. We state this in the following theorem.

Theorem 6.1. Assume g ∈ C1,1 and f is a Lipschitz function. There exists a universal constant
C and α > 0 (depending only on λ, Λ, n and the exterior ball condition ρ0 of the domain) such
that

||uε − u||L∞ ≤ Cεα(||g||C1,1 + ||f ||Lip||

This result can be proved as an application of a general result from [2]. We start by recalling
the notion of δ-solutions.

Definition 6.2. Fix δ > 0. We say that a continuous function v is a δ-supersolution (resp. δ-
subsolution) of (1.1) in Ω if, for all x0 ∈ Ω such that Bδ(x0) ⊂ Ω, a polynomial P such that
|P | ≤ Cδ−σ, for some universal C, σ > 0, and P ≤ v (resp. P ≥ v) in Bδ(x0) can touch v from
below (resp. above) at x0, i.e., P (x0) = v(x0), only if F (D2P ) ≤ 0 (resp. F (D2P ) ≥ 0). Finally,
a continuous function v is a δ-solution if it is both δ-supersolution and δ-subsolution.

This definition is relevant since the solution to our approximated equation (2.1) is aQε-solution.
We prove that in the following lemma.

Lemma 6.3. If u solves (2.1), then u is a Qε-solution of (1.1).

Proof. If a quadratic polynomial P touches u from above at a point x then on one hand4P ≥ 4u.
On the other hand, if P ≥ u in BQε(x) then P ≥ u in the full domain of integration of every
integral, so Iαβε P ≥ Iαβε u for every α, β. Therefore EεP ≥ Eεu.

Since P is simply a quadratic polynomial, the value of EεP coincides with the value of the
original second order elliptic operator inf sup aαβij ∂ijP . Thus u is a Qε-solution.

The following theorem is proved in [2].

Theorem 6.4. Let Ω be an open subset of Rn with regular boundary and consider a solution
u ∈ C0,1(Ω) of (1.1). Assume that v+ ∈ Cγ(Ω) (resp. v− ∈ Cγ(Ω)) is a δ-subsolution (resp.
δ-supersolution) of (1.1) for some fixed γ ∈ (0, 1). If v+ ≥ u + cδᾱ (resp. v− ≤ u − cδᾱ) on ∂Ω
for some positive constants c and α, then there exist uniform constants C > 0 and α ∈ (0, ᾱ) such
that, for δ sufficiently small,

v+ ≤ u+ Cδα (resp. v− ≥ u− Cδα)
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Combining theorem 6.4 with Theorem 5.2, we can prove Theorem 6.1. Nevertheless, for com-
pleteness, we will provide a detailed sketch of the proof of Theorem 6.1 using the ideas from
[2]. The proof uses somewhat sophisticated regularity results for fully nonlinear elliptic equations
which can be found in [1]. Since we do not aim at the level of generality as in Theorem 6.4 but
only to the particular case of the approximated solutions of this paper, we are able to simplify a
few steps in the proof.

Proof of Theorem 6.1. By multiplying f , g and u by an appropriate constant, we can assume that
||g||C1,1 = ||f ||Lip = 1. We have already shown that the approximation uε is uniformly Lipschitz
Qε away from ∂Ω.

The solution u separates from the boundary value g linearly from the boundary (depending on
the exterior ball condition). From Lemma 5.1, the approximation uε separates from the boundary
value less than Cε in a Qε neighborhood of ∂Ω. So |uε − u| ≤ Cε for all points x ∈ Ω such that
dist(x, ∂Ω) ≤ Qε.

Since u is a solution of the fully nonlinear uniformly elliptic equation (1.1), all first derivatives
ui = ∂iu are in the class of solutions to equations with measurable coefficients. More precisely, for
every index i, we have M+(D2ui) ≥ 0 and M−(D2ui) ≤ 0 (where M+ and M− are the extremal
Pucci operators). There is a result saying that the Hessians of functions in such class are in Lθ for
some small θ > 0 (See [4] or [1], Proposition 7.4). In other words ui ∈ W 2,θ(B1), more precisely,
for every t > 0, every derivative ui has a paraboloid of opening t tangent from above (or below)
except in a set of measure t−ε.

In terms of the value of the function u itself, this means that for every t > 0, except in a
singular set of measure t−ε, the function u has a second order Taylor expansion meaning that for
some second order polynomial Px (depending on the point x) such that ||P ||C1,1 ≤ t,

|u(x+ y)− Px(y)| ≤ Ct|y|3.

In this regular set, that we will call R, we can obtain an estimate of Eεu. Recall that EεP =
F (D2P ) = 0. So the error comes from the integral term in Eε applied to the cubic part, which is
of order Ctε. Thus |Eεu(x)| ≤ Ctε except in a set of measure t−θ.

Let us choose t = εα−1 for some α ∈ (0, 1) to be determined later. So we have |Eεu(x)−f(x)| ≤
Cεα except in a set of measure εθ(1−α).

So we have that |Eεu(x)| is small except in a set of small measure. The question is how to
fill that gap. We will use a sup-convolution to regularize the solution u and from the regularity
estimates in u we will estimate its difference with the sup-convolution u∗.

Let u∗ be the sup-convolution of u:

u∗(x) = max
y∈B1

u(y)− ε−α|x− y|2.

Since u is a Lipschitz function, for every x ∈ Ω, the maximum in the sup-convolution is
achieved at some y∗ ∈ Ω, i.e. u∗(x) = u(y∗)− ε−α|x− y∗|2, for which |x− y∗| < Cεα. Moreover,
u∗ ≤ u+ Cεα. On the other hand, it is clear by definition that u∗ ≥ u since y = x is a candidate
for the maximum.

Let M ⊂ Ω be the set of all points y ∈ Ω such that for some x ∈ Ω, u∗(x) = u(y)−ε−α|x−y|2.
From this definition, at every such point y the graph of u has a tangent paraboloid from above
with opening ε−α. Since u is a solution to the uniformly elliptic equation 1.1, Harnack inequality
implies that it also has a tangent paraboloid from below with opening −Cε−α for a universal
constant C. Therefore u is differentiable at every point y ∈ M , and ∇u is Lipschitz in M with
Lipschitz constant Cε−α. From the fact that y is the point where the maximum in the definition
is achieved, the gradient must satisfy ∇u(y) = −2ε−α(y − x). Therefore the map X(y) := x is
well defined and Lipschitz, with Lipschitz constant bounded above by a universal C.
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We will estimate the minimum of the function v = Cε−α+uε−u∗. By choosing C appropriately
we can make sure that v ≥ 0 in a Qε neighborhood of ∂Q. For the interior, we will use the ABP
estimate from Lemma 4.5.

For every x ∈ Ω, x = X(y) for some y ∈ M , and Eεu∗(x) ≥ Eεu(y) in the sense that there is
a translation of the graph of u around the point y which is tangent from below to the graph of u∗
at the point x.

We will estimate Eεu∗(x) depending on whether x is the image by X(y) of a point y in the
regular set R or not.

If x is the image X(y) of some point y ∈ R, then Eεu∗(x) ≥ Eεu(y) ≥ f(y)−Cεα ≥ f(x)−Cεα
(using that f is Lipschitz).

If x is any generic point in Ω (not necessarily the image by X(y) of a regular point), then just
by the definition of the sup-convolution, u∗ has a tangent paraboloid from below with opening
Cε−α and thus Eεu∗(x) ≥ −Cε−α.

Therefore, the sup-convolution u∗ satisfies the following equation in Ω,

Eεu∗ ≥

{
f(x)− Cεα in R

−Cε−α outside R

Therefore the function v is a subsolution of the linearized equation

λ

2
4v +

∫
Rn
δv(x, y)

1
εn+2 detB(x)

ϕ
(
B(x)−1 y

ε

)
dy ≤

{
Cεα in R

Cε−α outside R

where the matrix B(x) satisfies point-wise the ellipticity estimates
√
λI ≤ B(x) ≤

√
ΛI but may

be discontinuous respect to x.
We apply Lemma 4.5 in the set Ω0 = {x ∈ Ω : dist(x, ∂Ω) ≥ Qε} and obtain

min−v ≤ C
(∫

R

εαn dx+
∫

Ω0−R
ε−αn dx

)1/n

≤ C(εαn + εθ(1−α)−αn)1/n.

We can choose α = θ/(2n + θ) and obtain v ≥ −Cεα. But this implies that u∗ − uε ≤ Cεα,
which in turn implies that uε − u ≤ Cεα since |u∗ − u| ≤ Cεα.

We finished the proof that uε − u ≤ Cεα. The other inequality follows in the same way.

We note that even in the case when the solution u to the limiting problem has C2,δ estimates
for some small δ > 0 (as in the convex case) we cannot expect a much better rate of convergence.
Indeed, from u ∈ C2,δ(Ω), we could estimate u−uε at every point x ∈ Ω. We would have a second
order polynomial Px such that

|u(y)− Px(y)| ≤ C|x− y|2+δ.

Therefore |Eεu(x) − F (D2u(x))| ≤ Cεδ for every point x. But from here we would only obtain
|u− uε| ≤ εδ. On the other hand, in the convex case, if F is smooth (C1,α) then u is C3,α (from
Schauder estimates on the first derivatives) and we may gain a factor of ε in the rate of convergence
in a smooth domain after using this extra regularity.
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