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Abstract

In this paper we deliver improved C1,α regularity estimates for solu-

tions to fully nonlinear equations F (D2u) = 0, based on asymptotic prop-

erties inherited from its recession function F ?(M) := lim
µ→0

µF (µ−1M).
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1 Introduction

Regularity estimates for viscosity solution to a given fully nonlinear uniformly

elliptic equation

F (D2u) = 0 in some domain Ω ⊂ Rn (1.1)

has been a primary important line of research since the work of Krylov and

Safonov [10, 11] unlocked the theory. By formal linearization, both u and its

first derivative, uν , satisfy linear elliptic equations in non-divergence form, thus

Krylov-Safonov Harnack inequality, implies that solutions are a priori C1,β for

some universal, but unknown β > 0. The language of viscosity solutions al-

lows the same conclusion without linearizing the equation, see [4]. The question

whether a viscosity solution is twice differentiable, i.e. classical, turned out to

be truly challenging. The first major result in this direct was obtained indepen-

dently by Evans [6] and Krylov [8, 9], see also [4, Chapter 6]. This is the contents

of the Evans-Krylov C2,α regularity theorem that assures that under concavity

or convexity assumption on F , viscosity solutions to F (D2u) = 0 are of class

C2,α for some 0 < α < 1. After Evans-Krylov Theorem, many important works

attempted to establish a C2,α regularity theory for solutions to special classes

of uniform elliptic equations of the form (1.1), see for instance [2] and [19].

Recently Nadirashvili and Vladut, [12, 13] showed that viscosity solutions to

fully nonlinear equations may fail to be of class C2. They have also exhibited

solutions to uniform elliptic equations whose Hessian blow-up, i.e., that are
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not C1,1. The regularity theory for fully nonlinear equations would turn out

to be even more complex: Nadirashvili and Vladut quite recently showed that

given any 0 < τ < 1 it is possible to build up a uniformly elliptic operator

F , whose solutions are not C1,τ , see [14, Theorem 1.1]. These examples are

made in high dimensions. In [15] and [16], they showed an example of a non C2

solution in five dimensions. This is the lower dimension for which such result is

available. In two dimensions, however, it is well known that solutions are always

C2. For dimensions n = 3 and n = 4, the regularity of viscosity solutions to

uniformly elliptic equations without further structural assumptions remains an

outstanding open problem.

After these stunning examples, it becomes relevant to investigate possible

special hidden structures on a given elliptic operator F which might yield further

regularity estimates for solutions to (1.1). In this paper we turn attention to

an asymptotic property on F , called the recession function. For any symmetric

matrix M ∈ Rn×n, we define

F ?(M) := lim
µ→0

µF (µ−1M). (1.2)

The above limit may not exist as µ → 0. In that case, we say that a recession

function F ? is any one of the subsequential limits.

Heuristically, F ? accounts the behavior of F at infinity. Recently recession

functions appeared in the study of free boundary problems governed by fully

nonlinear operators, [17, 1]. The main result we prove in this paper states that

the regularity theory for the recession function F ?(M) grants smoothness of

viscosity solutions to the original equation F (D2u) = 0, up to C1,1− .

Theorem 1. Let F be a uniformly elliptic operator. Assume any recession

function

F ?(M) := lim
µ→0

µF (µ−1M)

has C1,α0 estimates for solutions to the homogeneous equation F ?(D2v) = 0.

Then, any viscosity solution to

F (D2u) = 0,

is of class C
1,min{1,α0}−
loc . That is, u ∈ C1,α

loc for any α < min{1, α0}. In addition,

there holds

‖u‖C1,α(B1/2) ≤ C‖u‖L∞(B1), (1.3)

for a constant C > 0 that depends only on n, α and F .

An immediate Corollary of Theorem 1 is the following:

Corollary 2. Let F : S(n)→ R be a uniform elliptic operator and u a viscosity

solution to F (D2u) = 0 in B1. Assume any recession function F ?(M) :=

lim
µ→0

µF (µ−1M) is concave. Then u ∈ C1,α
loc (B1) for every α < 1.
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Clearly the corresponding regularity theory for heterogeneous, non-constant

coefficient equations F (X,D2u) = f(X) is, in general, considerably more deli-

cate. Nevertheless, in this setting, L. Caffarelli in [3] established C1,α, C2,α and

W 2,p, a priori estimates for solutions to

F (X,D2u) = f(X) ∈ Lp,

for p > n, under appropriate continuity assumption on the coefficients. Caf-

farelli’s results are, nevertheless, based upon the regularity theory available for

the homogeneous, constant-coefficient equation F (X0, D
2u) = 0. Therefore, it

is essential to know the best possible regularity estimates available for equations

of the form (1.1). Of course, combining Caffarelli’s regularity theory and Theo-

rem 1 it is possible to establish the sharp regularity estimates for heterogeneous

non-constant coefficient equations.

An application of Corollary 2 concerns local regularity estimates for singular

fully nonlinear PDEs:

F (D2u) ∼ u−γ , 0 < γ < 1. (1.4)

In [1] it has been proven that nonnegative minimal solutions are locally uni-

formly continuous and grow precisely as dist
2

1+γ away from the free boundary

∂{u > 0}. Notice that such an estimate implies that u behaves along the free

boundary as a C1, 1−γ1+γ function. In particular, if γ is small, such an estimate

competes with the (unknown) C1,αF a priori estimate. By knowing the re-

cession function, which governs free boundary condition of the problem, it is

possible to show that u is locally of the class C1, 1−γ1+γ and such an estimate does

not deteriorate near the free boundary.

Corollary 3. Let u be a minimal solution to F (D2u) ∼ u−γ , in Ω ⊂ Rn, with

0 < γ < 1. Assume the recession function F ∗ is unique and has a priori C2,α∗

estimates. Then u is locally of class C1, 1−γ1+γ in Ω.

The proof of Corollary 3 will be delivered in Section 4. Finally, we would

like to point out that Theorem 1 provides eventual gain of smoothness beyond

universal estimates only up to C1,1− . Nevertheless, such a constrain does not

come from limitations of the methods employed here. In fact, Nadirashvili

and Vladut built up an example of a fully nonlinear operator F that admits a

viscosity solution φ ∈ C1,1 \ C2. Thus, we could deform F outside B‖φ‖C1,1
⊂

S(n) as to assure that F? is linear, say F? = ∆. Nevertheless, φ would still be

a C1,1 \ C2 solution to an elliptic equation whose recession function is linear.

The final result we prove gives C1,Log-Lip estimates under the uniform limits

and under the assumption that F ∗ has a priori C2,α? interior estimates. More

precisely we have
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Theorem 4. Let F : S(n) → R be a uniform elliptic operator and u a vis-

cosity solution to F (D2u) = f ∈ BMO in B1. Assume the recession func-

tion F ?(M) := lim
µ→0

µF (µ−1M) exists and has a priori C2,α? interior esti-

mates. Assume further that the limit lim
µ→0

µF (µ−1M) is uniform in M . Then

u ∈ C1,Log-Lip
loc (B1), i.e.,

|u(X)− [u(X0) +∇u(X0) · (X −X0)]| ≤ −C|X −X0|2 log |X −X0|.

2 Preliminaries

In this section make few comments about the notion of recession function.

Throughout this paper, Br denotes the ball of radius r > 0 in the Euclidean

space Rn and S(n) denotes the space of all real, n × n symmetric matrices. A

function F : S(n) → R will always be a uniformly elliptic operator, as in [4].

That is, we assume that there exist two positive constants 0 < λ ≤ Λ such that,

for any M ∈ S(n) there holds

λ‖P‖ ≤ F (M + P )− F (M) ≤ Λ‖P‖, ∀P ≥ 0. (2.1)

We will further assume, with no loss of generality, that F (0) = 0.

A key information we shall use in the proof of Theorem 1 is the fact that

solutions to (1.1) are locally C1,ε for some universal ε > 0. Furthermore

‖u‖C1,ε(B1/2) ≤ C‖u‖L∞(B1),

for a universal constant C > 0. As mentioned in the introduction, Nadirashvili

and Vladut have proven that C1,ε is the best regularity theory available for

general fully nonlinear elliptic equations. The objective of this paper is to show

that further smoothness could be assured if we have information on the recession

function of F , defined in (1.2)

Let us discuss a bit about recession functions for fully nonlinear elliptic

equations. Initially, it is straightforward to verify that for each µ, the elliptic

operator

Fµ(M) := µF (µ−1M)

is uniformly elliptic, with the same ellipticity constants as F . Thus, up to a

subsequence, Fµ does converge to a limiting elliptic operator F ? as µ→ 0. Any

limiting point F ? will be called a recession function of F . This terminology

comes from the theory of Haminton-Jacobi equations, see for instance, [7].

Initially, let us point out that recession functions may not be unique, as

simple 1-d examples show. Nevertheless, if the recession function is unique, it

is clearly homogeneous of degree one, that is, for any scalar t, we have

F ?(tM) = tF ?(M).
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Also, if F is homogeneous of degree one, then F = F ?. In some applications, it

is possible to verify that

lim
‖M‖→∞

Di,jF (M) =: Fij . (2.2)

That is, F has a linear behavior at the ends. Under such condition, it is simple

to check that F ? is a linear elliptic operator, and, in fact,

F ?(M) = tr (FijMij) .

A particularly interesting example is the class of Hessian operators of the form

Fι(M) = fι(λ1, λ2, · · ·λn) :=

n∑
j=1

(1 + λιj)
1/ι,

where ι is an odd natural number. For this family of operators, we have

F ?ι = ∆.

A priori Fµ converges pointwisely to F ?. However, the following is a more

precise description of how the limit takes place.

Lemma 5. If F is any uniformly elliptic operator and F ?(M) = lim
µ→0

µF (µ−1M)

for every symmetric matrix M , then for every ε >, there exists a δ > 0 so that

||µF (µ−1M)− F ∗(M)|| ≤ ε(1 + ||M ||), (2.3)

for all µ < δ.

Proof. Since the function F is uniformly elliptic, we have that F (X + Y ) −
F (X) ≤ Λ||Y || for some constant Λ and F is Lipschitz. This Lipschitz norm

is conserved by the scaling µF (µ−1M). By the Arzela-Ascoli theorem we have

that up to a subsequence µF (µ−1M) converges uniformly in every compact set.

Since µF (µ−1M) converges pointwise to F ∗, then all its subsequential limits

must coincide with F ? and therefore it converges to F ? uniformly over every

compact set.

That means that for every ε > 0 there exists a δ > 0 so that

||µF (µ−1M)− F ?(M)|| ≤ ε,

for all matrices M such that ||M || ≤ 1 and all µ < δ. This already shows that

(2.3) holds if ||M || ≤ 1.

Now let M be a matrix with ||M || > 1. For any µ < δ, we can consider also

µ1 = ||M ||−1µ < µ < δ. Therefore∥∥∥∥µ1F

(
µ−11

M

||M ||

)
− F ?

(
M

||M ||

)∥∥∥∥ ≤ ε,
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Observing that µ−11
M
||M || = µ−1M , and using that F ∗ is homogeneous of degree

one, we obtain ∥∥µF (µ−1M)− F ? (M)
∥∥ ≤ ε||M ||.

This proves (2.3) for ||M || > 1.

A model case though is when F equals F ? outside a ball BR ⊂ Sym(n), for

some R� 1. In this case, the convergence Fµ → F ? is uniform with respect to

M – compare with the hypothesis of Theorem 4.

3 C1,α−0 estimates

In this section we prove Theorem 1. We start off the proof by fixing an aimed

Hölder continuity exponent for gradient of u between 0 and α0, more precisely,

we fix

0 < α < min{1, α0}. (3.1)

We will show that u ∈ C1,α at the origin. It is standard to pass from pointwise

estimate to interior regularity. Initially, as mentioned in the introduction, it

follows from Krylov-Safonov Harnack inequality that u ∈ C1,ε for some universal

ε > 0. We may assume, therefore, by normalization and translation, that

|u| ≤ 1 in B9/11 (3.2)

u(0) = |∇u(0)| = 0. (3.3)

Our strategy is based on the following reasoning: proving that u ∈ C1,α at

the origin is equivalent to verifying that either there exists a constant C > 0

such that

sup
Br

|u(X)| ≤ Cr1+α, ∀r < 1/5,

or else, by iteration, that for some ` > 0 and some r > 0, there holds

sup
Br

|u(X)| ≤ 2−(1+α)` sup
B

2`·r

|u(X)|,

see [5], Lemma 3.3 for similar inference. Therefore, if we suppose, for the pur-

pose of contradiction, that the thesis of the Theorem fails, there would exist a

sequence of viscosity solutions F (D2uk) = 0, satisfying (3.2) and (3.3), and a

sequence of radii rk → 0 such that

(sup
Brk

|uk|)−1 · r(1+α)k −→ 0 (3.4)

sup
Brk

|uk| ≥ 2−(1+α)` sup
2`·rk
|uk|. (3.5)
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For notation convenience, let us label

sk := sup
Brk

|uk|.

In the sequel, we define the normalized function

vk(X) :=
1

sk
uk(rkX).

Immediately, from definition of vk, we have

sup
B1

|vk| = 1. (3.6)

Also, it follows from (3.5) that vk growths at most as |X|1+α, i.e.,

sup
B

2`

vk ≤ 2(1+α)`. (3.7)

In addition, if we define the uniform elliptic operator

Fk(M) := (s−1k · r
2
k)F

(
(sk · r−2k )M

)
,

we find out that vk solves

Fk
(
D2vk

)
= 0, (3.8)

in the viscosity sense. By uniform ellipticity and (3.4), up to a subsequence, Fk
converges locally uniformly to a recession function F ?. Thus, letting k →∞, by

C1,ε universal estimates, vk → v∞ locally in the C1,ε/2(Rn) topology. Clearly

v∞ is a viscosity solution to

F ?(D2v∞) = 0 in Rn.

Taking into account (3.3), (3.6), (3.7), we further conclude that v∞ satisfies

v∞(0) = |∇v∞(0)| = 0, (3.9)

sup
B1

|v∞| = 1, (3.10)

|v∞(Y )| ≤ |Y |1+α. (3.11)

Hereafter let us label

κ := min{1, α0} − α > 0.

Recall any recession function F ? is homogeneous of degree one for positive mul-

tipliers. Therefore, fixed a large positive number `� 1, the auxiliary function

V∞(Z) :=
v∞(`Z)

`1+α
,
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too satisfies

F ?(D2V∞) = 0.

From (3.11) we verify that V∞ is bounded in B1 and, hence, from the regularity

theory for the recession function, F ?, there exists a constant C?, depending on

dimension and F ?, such that

|∇V∞(Z)| ≤ C?|Z|α+κ, ∀Z ∈ B1/5. (3.12)

Finally, estimate (3.12) gives, after scaling,

sup
B `

5

|∇v∞(Y )|
|Y |α+κ

= `−κ sup
B 1

5

|∇V∞(Z)|
|Z|α+κ

= o(1),

(3.13)

as `→∞. Clearly (3.13) implies that v∞ is constant in the whole Rn. However,

such a conclusion drives us into a contradiction, since, from (3.9), v∞ ≡ 0 which

is incompatible with (3.10). The proof of Theorem 1 is concluded.

4 Proof of Corollary 3

In this Section we comment on the proof of Corollary 3. Given a point X ∈
{u > 0}, with

d := dist(X, ∂{u > 0}) < 1

2
dist(X, ∂Ω),

we consider Y ∈ ∂{u > 0}, such that d = |X − Y |. Applying Corollary 2 we

can estimate

[u]
C

1,
1−γ
1+γ (Bd/4(X))

.
1

d
2

1+γ

(
‖u‖L∞(Bd/2(Z)) + d2 · ‖u−γ‖L∞(Bd/2(Z))

)
. (4.1)

It then follows by the optimal control

u(ξ) ∼ dist(ξ, ∂{u > 0})
2

1+γ ,

see [1, Theorem 9], that we can estimate, in Bd/2(Z),

‖u‖L∞(Bd/2(Z)) . d
2

1+γ , (4.2)

‖u−γ‖L∞(Bd/2(Z)) . d
−2γ
1+γ . (4.3)

Plugging (4.2) and (4.3) into (4.1) gives

[u]
C

1,
1−γ
1+γ (Bd/4(X))

. 1,

and therefore u is locally of class C1, 1−γ1+γ , up to the free boundary. The proof is

complete.
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5 Proof of Theorem 4

For this section we assume that limµ→0 µF (µ−1M) exists and equals F ∗(M) for

every matrix M . It is also part of our assumption that the limit is uniform in

M . In particular, given ε > 0, we can find δ > 0, such that

|Fµ(M)− F (M)| ≤ ε, ∀M

provided 0 < µ ≤ δ.

Lemma 6. Assume F and F ∗ are two fully nonlinear uniformly elliptic opera-

tors such that

|F (M)− F ∗(M)| ≤ ε, for any symmetric matrix M. (5.1)

Assume moreover that F ∗(0) = 0 and F ∗ has C2,α∗ estimates in the form that

any solution u∗ of F ∗(D2u∗) = 0 in B1 satisfies

||u∗||C2,α∗ (B1/2) ≤ C∗||u||L∞(B1). (5.2)

Then there exist two constants ε and r (depending only on the ellipticity con-

stants, dimension, C∗ and α∗) so that for any solution u of F (D2u) = f in B1

with ||f ||L∞ ≤ ε and ||u||L∞ ≤ 1, there exists a second order polynomial P , such

that ||P || ≤ C and ||u− P ||L∞(Br) ≤ r2.

Proof. The value of r will be specified below in terms of the C2,α∗ estimate (5.2)

only. For that value of r, we prove the lemma by contradiction. If the result

was not true, there would exist a sequence Fn, F ∗n fn, un so that

|Fn(M)− F ∗n(M)| ≤ 1

n
for any symmetric matrix M,

||fn||L∞(B1) ≤
1

n
,

||un||L∞(B1) ≤ 1,

Fn(D2un) = fn in B1,

Fn and F ∗n have uniform ellipticity constants λ,Λ,

where F ∗n has C2,α∗ estimates as in (5.2) but such polynomial P cannot be found

for any un.

Since the F ∗n are uniformly elliptic, in particular they are uniformly Lipschitz.

Up to extracting a subsequence, they will converge to some uniformly elliptic

function F ∗ which will also have C2,α∗ estimates (5.2). Thus, we can assume

that all F ∗n are the same by replacing them by F ∗ (and taking a subsequence if

necessary).

Since the Fn are uniformly elliptic, the functions un are uniformly Cα in the

interior of B1 and there must be a subsequence that converges locally uniformly
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to some continuous function u∗. We extract this subsequence, and by abuse of

notation we still call it un. Since un → u∗ locally uniformly, Fn → F ∗ locally

uniformly, and fn → 0 uniformly, we have that F ∗(D2u∗) = 0 holds in the

viscosity sense. From the C2,α∗ estimates (5.2), if we choose P to be the second

order Taylor’s expansion of u∗ at the origin we will have

||u∗ − P ||L∞(Br) ≤ C∗r
2+α∗ .

We choose r small enough so that C∗r
α∗ < 1/2. Note that this choice depends

on C∗ and α∗ only. We thus have

||u∗ − P ||L∞(Br) ≤
r2

2
.

However, since un → u∗ uniformly in Br, then for n large enough we also have.

||un − u∗||L∞(Br) ≤
r2

2
.

Combining the last two previous inequalities we obtain that

||un − P ||L∞(Br) ≤ r
2,

and so we arrive to a contradiction since we were assuming that such polynomial

P did not exist for any n.

Proof of Theorem 4. We prove the result for x0 = 0 and assuming f ∈ L∞ – see

[18] for the adjustments requested when f ∈ BMO. From uniform convergence

hypothesis, we can find δ > 0 so that for all µ < δ the inequality

||µF (µ−1M)− F ?(M)|| ≤ ε,

holds, where ε > 0 is the number from Lemma 6. We start off now with a

convenient rescaling of the problem. We find an r0, depending only on ||u||L∞
and δ, and consider the scaling

u0(x) = εmax{1, ‖u‖L∞ , ‖f‖∞}−1u(r0x).

We choose r0 ∼
√
δ, where δ is the number above. For this choice we have

‖u0‖L∞(B1)
≤ 1;

µF (µ−1D2u0) = f̃(x),

for a µ < δ and ‖f̃‖∞ ≤ ε. Now we proceed to show that u0 is C1,Log-Lip at

the origin. The strategy is to show the existence of a sequence of quadratic

polynomials

Pk(X) := ak + bk ·X +
1

2
XtMkX,
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where, P0 = P−1 = 0, and for all k ≥ 0,

F ?(Mk) = 0, (5.3)

sup
Q
rk

|u0 − Pk| ≤ r2k, (5.4)

|ak − ak−1|+ rk−1|bk − bk−1|+ r2(k−1)|Mk −Mk−1| ≤ Cr2(k−1). (5.5)

The radius r in (5.4) and (5.5) is the one from Lemma 6. We shall verify (5.3)–

(5.5) by induction. The first step k = 0 is immediately satisfied. Suppose we

have verified the thesis of induction for k = 0, 1, · · · , i. Define the re-scaled

function v : B1 → R by

v(X) :=
(u0 − Pi)(riX)

r2i
,

It follows by direct computation that v satisfies |v| ≤ 1 and it solves

µF
(
µ−1

(
D2v +Mi

))
= f̃(rix).

If we define

Fi(M) := F (M +Mi) and F ?i (M) := F ?(M +Mi),

it follows from uniform convergence that

Fi is close to F ?i .

Furthermore, since F ?(Mi) = 0, the homogeneous equation

F ?i (D2ξ) = 0

satisfies the same conditions as the original F ?. We now apply Lemma 6 to v

and find a quadratic polynomial P̃ such that

‖v − P̃‖L∞(Br) ≤ r
2. (5.6)

If we define

Pi+1(X) := Pi(X) + r2iP̃ (r−iX)

and rescale (5.6) back, we conclude the induction thesis. In the sequel, we

argue as in [18]. From (5.5) we conclude that ak → u0(0) and bk → ∇u0(0), in

addition

|u0(0)− ak| ≤ Cρ2k (5.7)

|∇u0(0)− bk| ≤ Cρk. (5.8)
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From (5.5) it is not possible to assure convergence of the sequence of matrices

(Mk)k≥1; nevertheless, we estimate

|Mk| ≤ Ck. (5.9)

Finally, given any 0 < r < 1/2, let k be the integer such that

ρk+1 < r ≤ ρk.

We estimate, from (5.7), (5.8) and (5.9),

sup
Qr

|u(X)− [u(0) +∇u(0) ·X]| ≤ ρ2k + |u(0)− ak|+ ρ|∇u(0)− bk|

+ ρ2k|Mk|
≤ −Cr2 log r,

and the Theorem is proven.
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[4] Caffarelli, Luis A.; Cabré, Xavier Fully nonlinear elliptic equations. Amer-

ican Mathematical Society Colloquium Publications, 43. American Math-

ematical Society, Providence, RI, 1995.

[5] Caffarelli, Luis; Karp, Lavi; Shahgholian, Henrik Regularity of a free bound-

ary with application to the Pompeiu problem. Ann. of Math. 151 (2000),

no. 1, 269–292.

[6] Evans, L. C., Classical solutions of fully nonlinear, convex, second-order

elliptic equations. Comm. Pure Appl. Math. 35(3), 333–363, 1982.

[7] Y. Giga, M.-H. Sato On semicontinuous solutions for general Hamilton-

Jacobi equations. Comm. Partial Differential Equations 26 (2001), 813839.

[8] Krylov, N. V. Boundedly nonhomogeneous elliptic and parabolic equations.

Izv. Akad. Nak. SSSR Ser. Mat. 46 (1982), 487–523; English transl. in

Math USSR Izv. 20 (1983), 459–492.

12



[9] Krylov, N. V. Boundedly nonhomogeneous elliptic and parabolic equations

in a domain. Izv. Akad. Nak. SSSR Ser. Mat. 47 (1983), 75–108; English

transl. in Math USSR Izv. 22 (1984), 67–97.

[10] Krylov, N. V.; Safonov, M. V. An estimate of the probability that a diffusion

process hits a set of positive measure. Dokl. Akad. Nauk. SSSR 245 (1979),

235–255. English translation in Soviet Math Dokl. 20 (1979), 235–255.

[11] Krylov, N. V.; Safonov, M. V. Certain properties of solutions of parabolic

equations with measurable coefficients. Izvestia Akad Nauk. SSSR 40

(1980), 161–175.

[12] N. Nadirashvili and S. Vladut, Nonclassical solutions of fully nonlinear

elliptic equations. Geom. Funct. Anal. 17 (2007), no. 4, 12831296.

[13] N. Nadirashvili and S. Vladut, Singular viscosity solutions to fully nonlinear

elliptic equations. J. Math. Pures Appl. (9) 89 (2008), no. 2, 107–113.

[14] N. Nadirashvili and S. Vladut, Nonclassical Solutions of Fully Nonlinear El-

liptic Equations II. Hessian Equations and Octonions. Geom. Funct. Anal.

21 (2011), 483-498

[15] Nadirashvili, Nikolai; Tkachev, Vladimir; Vladut, Serge A non-classical so-

lution to a Hessian equation from Cartan isoparametric cubic. Adv. Math.

231 (2012), no. 3-4, 1589–1597.

[16] Nadirashvili, Nikolai and Vladut, Serge Singular solutions of Hessian ellip-

tic equations in five dimensions. J. Math. Pures Appl. (9) 100 (2013), no.

6, 769–784.

[17] G. Ricarte and E. Teixeira Fully nonlinear singularly perturbed equations

and asymptotic free boundaries. J. Funct. Anal., 261, vol. 261, Issue 6, 2011,

1624–1673.

[18] Teixeira, E. Universal moduli of continuity for solutions to fully nonlinear

elliptic equations. Arch. Rational Mech. Anal. 211 (2014), no 3, 911–927.

[19] Y. Yuan A priori estimates for solutions of fully nonlinear special La-

grangian equations. Ann. Inst. H. Poincaré Anal. Non Linéare, 18(2) 261–
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