A GENERAL ALGEBRAIC APPROACH TO STEENROD OPERATIONS

by

J. Peter May

1. Introduction. Since the introduction of the Steenrod operations in the coho-

mology of topological spaces, it has become clear that similar operationé exist in
a variety of other situations. For example, there are Steenrod operations in the
cohcn"nology of simplicial restricted Lie algebras, in the cohomology of cocom-
mutative Hopf algebras, and in the homology of infinite loop spaces (where they
were introduced mod 2 by Araki and Kudo [3] and mod p, p>2, by Dyer and Lashof
[6]).

The purpdse of this expository paper is to develop a general algebraic setting
in which all such operations can be studied simultaneously. This approach ailows
a single proof, applicable to all of the above examples, of the basic properties of
the operations, including the Adem relations. In contrast to categorical treatments
of Steenrod operations, the elegant proofs developed by Steenrod [25-30] actualiy
simplify somewhat in our algebraic setting. Further, even the most general exist-
ing categorical study of Steenrod operations, that of Epstein [7], cannét be applied
to iterated loop spaces. ~

We emphasize that this is an expository paper, Although a number of new re-
sults and new proofs of old results are scattered throughout, the only real claim to
originality lies in the basic context, We have chosen to give complete proofs of all
results since a large number of minor simplifications in the arguments allows a
substantial simplification of the theory as a whole, We have also included a number

of topological results which should be well-known but appear not to be in the litera-
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ture. ‘yIn particular, in section 10, we give a gquick 'complete calculation of the

' ! modp cohomology Bockstein spectral sequence of K(m,n)'s and show that Serre's
ksimple proof [23] of the axiomatization of the mod 2 Steenrod operations applies
with only slight modifications to the case p > 2.

The general theory is presented in the first five sections. Most of the proofs
in sections 1,2, and 4 are based on those of Steenrod [25~30], and those of section
3 are simplifications of arguments of Dyer and Lashof [6 ]. Via acyclic models
aﬁd a lemma due to Dold [5], the theory is applied to several simplicial categories
and to topological spaces in sections 7 and 8. The standard properties of the
Steenrod operations in spaces, except P° = 1, drop out of the algebraic theory,
and P° =1 is shown to follow from these properties. In contrast, we prove that
P° = 0 on the cohomology of simplicial restricted Lie algebras. The theory is
applied to the cohomology of coc;ommutative Hopf algebras in section 11; the opera-
tions here are important in the study of the cohomology of the Steex;rod algebra h
'[13,18]. The present analysis arose out of work on iterated loop spaces, but this
application will appear elsewhere. The material of sections é and 9, Which is
peripheral to the study of Steenrod operations, is presented here with a view

towards this application.
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1. Algebraié preliminaries; equivariant homology

Let . A Be a commutative (ungraded) ring. By a A-complex, we understand a
Z—gfaaed differential A-module, graded by su}:;scripts, with differential of degree
minus one. We say that a A-complex K is positive if Kq =0 for g< 0 and
negative if Kq =0 for g>0. We use Z-graded complexes in order that our
theory can be applied equally well to homology and to cohomology. The exposition
will be éeared to homology, where the notation is slightly simpler, and the nota-
tions appropriate for cohomology will be given in section 5. We give some ele-
mentary homological lemmas in this section; these extract the slight amount of
information about the homology of groups that is needed for the development of the
Steenrod operations.

If m is a group, we let A%r denote its group ring over A. We shall generally
speak of Am-morphisms rather than w-equivariant A-morphisms, and we shall
speak of ﬂ—morphismAs when A is understood. Let Zr denote the symmetric group
on r letters, and let 7 C Zr. For qe Z, let A(q) denote the Am-module which
is A as a A-module and has the Aw-action determined by o\ = (-l)qs(o-))\, where
(_l)s(cr) is the signof oce¢ mw . If M is a Am-module, let M(q) denote the Amw-
module M@ A(q) with the diagonal action o(m@®X\) = om® o\ (where ®=®A).
If K is a A-complex, let K' = K®...®K, r factors K. Via permutation of
factors, with the standard sign convention, K' becomes a Aw-complex for
TC 2, and K'(q) is defined.

Let I denote the A-free A-complex which has two basis elements e, and e

1
of degree zero, one basis element e of degree one, and differential d(e) = e - e
If T" is a Hopf algebra over A and I is given the trivial I'-module structure,
va= €(y)a for yeI and a e I, then the notion of a I'~-homotopy h:f = g, where

f,g: K—+1L are morphisms of I'-complexes, is equivalent to the notion of a

I'-morphism H:I® K==L such that H(e1®k)=f(k) and H(e k) = g(k), where
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I® K is given the diagonal I'-action. In fact, H determines h by h(k) = H(e® k)
~ and-conversely,
With these notations, we have the foilowing lemma. In all parts, Am acts

diagonally on tensor products.

Lemma 1.1. Let wC Er and let V be a positive Amw-free complex.
(i) There exists a Am-morphism h:I®V —> V®1° such that
h(eo®v) = v®e‘: and h(ei®v) =v® eir for all ve V.
(1i) If f,g: K—> L are A-homotopic morphisms of N -complexes, then
1Q fr, 1® gr: VOK — VR LY are Am-homotopic morphisms of Am-complexes.
(iii) If A is a field and K is a A-complex, then 'K is A-homotopy equivalent
to H(K) and VQ® K’ is Am-homotopy equivalent to V@& H(K)".
(iv) Let ve V satisfy dv®1)=0 in V®1TA; let K be a A-complex and let
a,b e Kq be homologous cycle‘s. Then v@® a’ and v® b’ are homologous cycles

of V @WKr(q),

Proof. (i) Let &£:I—>A be the augmentation @.(eo) =1= e,(ei), and let
7= Ker(gY), 15— AT = A, Define kiV—>V®J by kiv)=v®(e, - e ).
Since H(J) =0, H(V®J) = 0. Define a Am-homotopy s:V —> V®J from kto the
zero map by induction on degree as follows. Let S 4= 0; given

. . . . ) -
Si=1°vi-1 (V® J')i,we find easily that di(ki si_idi) 0. Let {xj} be a

Am=- ) ° = -
m-basis for Vif for x e {xj}, choose si(x) such that di—!—isi(x) ki(x) Si-ldi(x)’

and extend s, to all of Vi by n—équivariance, The desired Aw-morphism h is

obtained by letting h(e®v) = s(v) for ve V.

ing composite is a Am-morphism which determines a Am-homotopy from 1® £ to
1® g].::
T
I@ve k' 28l ve 1 e k188 L veuer) L8t L veLT,

where w1 @K' —> (I®K)" is the evident shuffling isomorphism.

(ii) Let t:I® K —> L determine a A-homotopy from fto g. Then the follow-
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(iii) Define f:H(K) —> K by sending each element of a basis for H(K) to a
chbsbe’pi;je;r‘esenta’cive cycle, K =2Im {® Coker f as a A-complex and Coker f is
acbyvrclic and therefore contractible since A is a field, The first half follows and
implies the second half by (ii).

(iv) Define a morphism of A-complexes f:I—> K, of degree q, by’ f(ei) = a,

fle )= b, and f(e) = (ni)qc, where d(c) = a-b in K (the sign ensures that

C
af(e) = (-1)%d(e)). Let F: IQV —> VK (g) be the composite
r
IRV h o v I ﬁ—-—% V®Kr(q)e A check of signs shows that f is a

Am-morphism, hence that F is a morphism of Am-complexes of degree qr. By
(i), we find that
Fle,®v) = 1@y ®e]) = (-1)37 % Yy @1(e)”, i=0or 1.

Since w operates triviallyon I and d(v®1)=0 in V® A, we have that
T .

d(e®v)=(e, -e )®v inI® V. Thus, in V® K'(q),
o p , -~

1

qr(degv+1)(v® 2T - v ®bY),

dF (e ®v) = (-1)qu(e1 Qv - eO®V) = (-1)
and this proves the result.

We now consider the cyclic group w of prime order p. We recall the defini-

tion of the standard Am-free resolution W = W(p,A) of A,

Definition 1.2, Let m be the cyclic group of prime order p with generator. o,

+ ozp—i and

Let Wi be Aw—free_on one generator ei, i>0, Let N=1+4+a+...
T = a-1 in Aw. Define a differential d, augmentation £, and coproduct on W

by the formulas

- - Je V=1
(1) d(e.?.i-}-i) TeZi and d(e2i) NeZi-i ;. Efe eo) 13
yle,.,,) = g e..®e + E e . , Rae and
2i+1 ket 2j 2k+1 k=i 2j+1 2k
r s
= + °
bleyy) .E. °i @ T Z. > @ eyt @ ey
jtk=1 jtk=i-1 0L r<s<p

Then W is a differential Aw-coalgebra and a Aw-free resolution of A. When

necessary for clarity, we shall write W(p,A) for W. Of course,
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W(p, ) = W(p, Z) @ A, The structure of W(p, Zp) shows that

(Tr° P) = H(W(p, Zp) ®“Zp) is given, with its Bockstein operation B and copro-

duct |, by the formula

. e C s -
(2) H*(Tr, Zp) has Zp basis {e,li i >0} such that B(e_Zi) €1 and

_ . _ .. - ) S
QJ(ei) z . ej ® ey if p=2oriisodd, Lp(ez_l) 2 e2j®62k if p>2.
jtk=1 jtk=1

We embed w in Zp by a(t,...,p) =(p ,1,...,p-1), where Ep acts on {l,.c.,P}-

- We then have the following lemma.

Lemma 1.3. Let W( 2 W be the n-skeleton of W = W(p,Z ). Let G
i<n P A
be any set of left coset representatives for 7 in Ep, Let K bea Zp—module with

totally ordered basis {XJ]J e J} . Let AC KP have basis {ij | je T}and let

\ s L e Ty
[N ~fzJ

P e i<
B € K" have basis {x )I\{e ,31__,.,_Jp, 3y Jp}, Then

n

(1) o Py - ' CW
H(W ®WK) = (ie:'aoei®A) @(eO®B)€B(Kerdn®.B), dn,Wn >Wn_1,,

Proof, It is easy to see that KP is isomorphic as a pr—module to
A® (Zp'rr ® B), where m acts trivially on A and acts on pr ® B by its left
| | RPN J
action on Z m. Since H(W''Q A) = H(W ®-rr p)®A and
m

H(W(n) ®ﬂpr® B) = H(W(n))@‘B, the result follows.

Recall that if 7 is any subgroup of Z andif Y e N(mw), the normalizer of w
in X, then cohjugation by vy defines a homomorphism V,: H(mw; M) —> H%(Tr; M) for
any AZ-module M. v, is the map induced on homélogy from

@\/ W@ M—> W® M where W is any Am-free resolution of A and
Yy W —> W is any morphism of A-complexes such that \/#( ow) = Yoy '\(#(W) for
cem™ and we W, (It is easy to verify that y# exists and that Yy is independent
of the choice of W and of \ .) Clearly y, =1 if ye ™ since we may then

define \(#(w) = yw so that

(Y#®WY)(W®m)=yw®ym=w®m, we W and me M,
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I CpCZ and ye N(m A N(p), then the following diagram commutes:

j*
H,(m M) = H,(p s M)
Y:}: Y>::
j*
H=v<(1T; M) . H;::(p ; M)

. In fact, if W is any Ap-free resolution of A, then W is also a Aw-free resolution
of A, and the above diagram results from the observation that j, is induced from

W@wM - W®p M. In particular, j, =j,V, if vep.

e
bR

Lemma 1.4, Let 7 be cyclic of prime order p> 2 andlet ge Z, Consider

j.sH (m Z -—> H (Z ;'Z . Then
I 2« p(q)) o253 2 (a))

(1) If q is even, j*(ei) =0 unless i= 2t(p-1) or i= 2t(p-1)-1.
(i1) If q is odd, j*(ei) =0 unless i= (2t +1)(p-1) or i=(2t+1)(p-1)-1.
Proof. Let k generate the multiplicative subgroup of Zp’ kp“1 =1. Let
Zp operate on Zp and define v ¢ Ep by vy(i) = ki. Then \(cw“i = a/k and vy is an

odd permutation in N(w). Define Yy W —> W by
i ;b t
Vplegy) =key s vyleyyy) =k J:Z;; @eyyyi Yyloe) = Yoy vyle,), e

Then \{#d= dy# and y#®y induces the conjugation v, on H,(m; Zp(q)), Since

v € Zp s JyYy = Jg» hence j*(ei - y*ei) =0 for all i, vy operates by (-1)? on

Zp(q) and therefore
i+l

Z (G d - (.14
vleyy) = (-1)7 ke, and yy(e), ) (1)K e -

0 unless 1 - (—1)qk1

i

) = 0 unless

I

Thus j*(GZi) 0 modp and j(e

2i+1
q, i+l _ i_ . P ‘

1 -(-1)%"" = 0modp. Clearly k = 1 mod p if and only if i = t(p-1) for some

t and k.= -1 mod p if and only if 2i = (2t+1)(p-1) for some t. The result

follows easily. ‘
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2. The definition and elementary properties of the operations

| , ___’V\:f‘-e'now define a large algebraic category [ (p,n) on which the Steenrod
‘opérations will be defined. Steenrod operations will be obtained for particular
categories of interest by obtaining functors to ;’(p,n), The interest of the integer
n in the following definition lies solely in the applications to iterated loop spaces.
For all other known appiications, only the case n = oo is relevant.

Definitions 2.1. Let A be a commutative ring, let r be an integer, and let

.o Be a subgroup of Zr° Let W be a Am-free resolution of A, let V be a AEru
free resolution of A, andlet j: W —>V be a morphism of Am-complexes over A,
Assume that Wo = Am with generator e Let 0£n<oo andlet W(n) and V(n)
denote the n-skeletons of W and V. Define a category Qf(w, n,A) as follows.

The objects of ;m('n, n,A) are pairs (K,9), where K is a homotopy associative

differential A-algebra and ©: W(n)® K'— K is a morphism of Am-complexes
g P

such that
T
(i) The restriction of 6 to e0® K~ is A-homotopic to the iterated product
K'— K, associated in ®me fixed order, and

(ii) 8 is Am-homotopic to a composite W(n)® K" —']‘8;1—> V(n)® K" -—-g——> K,

where § is a morphism of AZr-complexes,

A morphism f:(K,0) —> (K',0') in g(w, n,\) is a morphism of A-complexes

f: K —> K' such that the diagram

W(n)®Kr (¢] ' K
1 f
W(n)®(K')r 9! S

is Am-homotopy commutative, A morphism f is said to be perfect if

r . ' . @
(1 ® £ ) = £8, with no homotopy required, and (m,n,A) denotes the sub-
category of E (w,n,A) having the same objects (K,8) and all perfect morphisms

between them. A is itself an object of { (m,n,A), with
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0=EQ 1;-W(n)®Ar —> AT = A, and an object (K,90) ¢ C(w,n,A) is said to be
um’callfK has a two-sided homotopy identity e such that n:A —> K, (1) = e,
1s ’aL-"mlorphism in & (m n,A). The tensor product of objects (K,0) and (L,8') in
£ (w,n,A) is the pair (K® L, g), where ® is the composite

w® @ xe L)TM v e wP e ke LT 19181, y(ngrreow® g Lt

890 v L

Here U is the evident shuffling isomorphism, T(x®vy) = (_l)deg x degy y®x ,
and : W —>W®W is any fixed Am-morphism over A; conditions (i) and (ii)
are clearly satisfied by the pair (K@ L,%’), An object (K,0) e & (m,n,A) is said
to be a Cartan object if the product KQ K —> K is a morphism in C(m,n, ).
When 7 is cyclic of prime order p, we agree to choose W to be the explicit
resolution W(p,A) of Definition 1.2, and we abbreviate {(m,n, Zp) to ¢&(p,n)
and @ (m,n, zp) to ®P(p,n). An object (K,8) ¢ E(p,n) is saidto be reduced
mod p if (K,8) is obtained by reduction mod p from an object (?(,é") e &(m,n, Z)
such that f% is a flat Z-module.

We can now define the Steenrod operations in the homology H(K) of an object
(K,0) ¢ &(p,n). Observe that if x ¢ H(K) and 0<i<mn, then ei® «F is a well- ‘
defined element of I—I(W(n)®WKp) = H(W(n)®TFH(K)p) by Lemmas 1.1 and 1.3; here
(iv) of Lemma 1.1 applies, since wC Zp contains only even permutations, and
shows that ei® <P is represented by ei® aP e W(n)® 1TKp for any representative

cycle a of =x.

Definitions 2.2. Let (K,6) ¢ {(p,n) andlet x ¢ Hq(K) For 0<i<n,

. D "
define i(x) € Hpq-!—i

fine P : —> K <
de£1ne s Hq(K) H_q+8( ) for s < g+n by the formula

(1) Ps(x)=0 if s<q ; P (x)=D_ (x) if s2q.

s s-q

If p> 2, define PS:Hq(K)—-—> (K) for 2s(p-1)< q(p-1)+n and define

Hq+28(p-1)

(K) by Di(x) = G*(eiﬁx), 9>:'<:H(W(n) @TT KP) — H(K)., If p=2, &
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BPS‘: Hq(K)———-—> Hq+2s(p=1) _ 1(K) {Eor 2s(p-1) < g(p-1)+n+l by the formulas
(ii) : P;(x) =0 if 2s<q; Ps(x) = (-1)° v(q)?(zs_q)(p_l)(x) if 2s > q and
B (s) = 0 if 25543 pP () = (.4)5v(q)D(Zs_q)(p_l)ml(x) if 28 > q,

. g . . .
where v(2j+€) = (—1)‘](m.';) , j any integer, €=0or 1, m= %(p»l),
m+l

')

(- 1)¢l(q"1)m/.2' (m')q'

2
or, equivalently since (m!)” = (-1) mod p , v(q) =

Observe thét; if n= oo, the PS and, if p>2, the ﬁPs are defined for all
integer.s s and that BPS is a single symbol which is not a priori related to any
Bockstein operation. The Ps and [3Ps are appropriately defined for applications
to homology; as shown in section 5, the appropriate fo rmulation for cohomology is
obtained by a simple change of notation.

The following p;‘oposition containg most of the elementary properties of the
Di’Ps’ and (SPS, In particular, if p> 2, it shows that the PS' and 6PS account
for all non-trivial operations Di and that BPS is the composition of PS an«% the

Bockstein B provided that (K, 0) is reduced mod.p.

’

Proposition 2.3. Let (K,90) ¢ g’(p,n) and consider Di: Hq(K} —> Hpq+i(K).

(1) If f:K —> K' is a morphism in £ (p,n), then Dif* = f*Di
(ii) If i< mn, then Di is a homomorphism.
(iii) Do is the p-th power operation in the algebra H(K) and if (K, 9) is unital,
then Di(e) =0 for i# 0, where ec¢ HO(K) is the identity.
(iv) If p>2 and i<n, then D, = 0 unless either
(a) g is even and i= 2t(p-1) ’or i = 2t(p-1) -1 for some t, or
(b) q is odd and i= (2t+1)(p-1) or i= (2t+1)(p-1) -1 for some t.
(v) 1If (K,0) is reduced mod p and P is the Bockstein, then
(a) BDZi = DZi-l if either p > 2 or q is even, and 2i<n

(b) BDZi-H = DZi if p=2 and q is odd, and 2i+1 < n,
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M;f Pazt (i) is immediate from the definitions and from Lemma 1.1 (iv),
énd part kiii) is immediate from the definitions.
(ii) Let a,be Kq be cycles and define Ala,b) = (a-l-b)P -aP - bP e KP. A(a,b) is
a sum of monomials involving both a's and b's, and T permutes such monomials
freely. Let c e KP pe a sum of monomials whose permutations under w give
each monomial of A(a,b) exactly once. Then Aa,b) = Ne. If i is odd, then
d(ei”.@ c) = ei®Nc and if i is even, then d(TptzeiH@ c) = ei® Nc in
W(n)®WKp, i< n, since Tpm1 =N in Zpﬂ., Thus ei® A(a,b) is a boundary and
therefore Di is a homomorphism, i< n. |

(iv) In the notations of Definition 1.1, we have that 6 is homotopic to a composite

W(n) @T‘_Kp —lﬁ%v(n) ®1'er —> V(n) ®E KP —g—*> K, Since nothing is changed
P
by tensoring with two copies of Zp(q), this composite can equally well be written as.

n Q1 n
W)@ 1Pl —ELs v @, K@) L k.
P
Let a e Kq be a cycle. Then, bythe definition of Kp(q), aP is a basis for a

trivial T -subcomplex of KP(q). Therefore, if j(ei) = d(f) in

V(n)® szp(q) = V(n)(q)® szp’ then d(f®ap) - j(e,l)® 2P in V(n)(q)®Zpr(q)°

For i< mn, j induces j,: I—Ii(w; Zp(q)) — Hi(Zp; Zp(q)), and the desired conclusion -

now follows immediately from Lemma 1. 4.

(v) Let (K,0) be the mod p reduction of (f(,é') Let a ¢ Kq satisfy d(a) = pb.

£

An easy calculation demonstrates that, in Kp,
a(ab) = pl\Tbap“1 if p>2 or q is even;
d(a®) = 2Tab if p=2 and q is odd.
In the former case, if 2i < n, then, in W(p, Z)(n) ®W?§p,
P - N P p_l
d(621®a) eZi—1® a +peZi®Nba

= p[eZi—l ®aP + d(Tp-Ze ®bap—1)} mod p2 ,

2i+l

since Tp —15 N mod p. In the latter case, if 2i+1 <n, then

® ab)] mod 4.

2 2 _ 2
d(e2i+1®a ) = eZi® Ta - ZeZi+1®Tab = Z[e2i®a - d(

€2i+2
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Thus, in H(W(p, zp)(n)®“1<p, if 3 is the mod p reduction of a, then
kﬁ{ ®Ep} {e ®Ep} in case (a) and P{e ®‘a’fz = {e @EZ} in case (b)
2i-1 2i+l1 2i ‘

Sincé 0 is the mod p reduction of the map 0: W(p, Z)(n) ®ﬁKp —> K, B6, = 0,6,
and the result follows.

Of course, (i) and (ii) imply that the PS and BP_ are natural homomorphisms
(except, if n< oo, for the last operation), A check of constants gives the following
corollary of part (iii).

"Corollary 2.4. Let (K,0)c¢ ép(p, n). Then Pq(x) = <P if p=2 andxe Hq(K)

orif p>2 and xe¢ H (K). If (K,6) is unital, then Ps(e) =0 for s#0.

29
The implications of (iv) and (v) for the P and BP  are clear if p>2. If -

p = 2, we have the following corollary of (v).

Corollary 2.5. If (K,8) ¢ £(2,0) is reduced mod 2, then BP o+l SPSe
The following result is the external Cartan formula.

Proposition 2.6.  Let (K,0) and (L, 0') be objects of £ (p,n). Let

X e Hq(K) and y e I—Ir(L)q Consider x®y ¢ H(K)®H(L) = H(K® L).

(i) If p=2, then D (x®y) = >, D.x)®D (y) for i<n.

jHk=1i
(ii) If p> 2, then D ( ®vy) =( mqr 2 D x)®D (y) for 2i<n, and
jtk=1 :
Dy (3@ = (- DT ST (D, (R ® D () + (-1)TP I @Dy (y) o

jHe=1
2i+1 Sn,

Proof. By Lemmas 1.1 and 1.3, we may work in W(n) @W[H(K)®H(L)]p.
Since w operates trivially on (x® y)p, we may compute 6>,:(ei®(x® y)p) by means

of the indgced coproduct on W(n) ®WZP, as given in (2) of Definition 1.2. The re-

sult follows by direct calculation from

0,(c, ® (x®y)P) = (6,®01)(18 T® (4@ U)(e, ® (x® ).




- 165 -

A trivial verification of constants, together with part (iv) of Proposition 2.3,

kyiieyldys‘ the following corollary.

Corollary 2.7. Let (K,0) and (L,06') be objects of g(p,n)a Let x ¢ Hq(K)

and vy ¢ Hr(L)., Then P (x®vy) = E P ®P(y) and, if p> 2,
itj=s

P, (=@ ) = %2 (PP, (=) ® P,(y) + ()P (x) ® BP, 4 (9)-

Of course, if (K,0) is a Cartan object in { (p,n), then the corollary and the
naturality of the operations imply that the Ps and, if p > 2, the BPS on H(K)
satisfy the intermal Cartan formulas

xy) Z P and

itj=s
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3. Chéin level operations, suspension, and spectral sequences

In this section., we define chain level Steenrod operations and use them to prove
that the homology operations commute with suspension. The chain level operations
~can also be used to study the behavior of Steenrod operations in spectral sequences

and, in particular, we shall prove a general version of the Kudo transgréssion

theorems.

Theorem 3.1. Let (K,0) e (p,o). Then there exist functions

P:K — K if p=2 and P:K —K
s° q 5 q

P:K —>
qts and_ﬁs q

K
qt+2s(p-1) gq+2s(p-1) -1

if p > 2 which satisfy the.following properties.

() dP =Pd and dpP = -pFd

(ii) If a is a cycle which represents x ¢ H(K), then Ps(a) and L3Ps(a) are
cycles which represent Ps(x) and 5Ps(x)u

i) I £:(K,0) —> (K',0') is a morphism in (P (p, ), so that 0 = 01(1® F),

then fP = P f and fpP_= BP_f.
s s s s

Proof. Let a e Kq and write b =d(a) e K In the case p = 2, define

q-1°

: 2
(1) Ps(a) = 0(c), where c = es_q+1®b®a + es—q® a®a ¢ W@WK .

The verification of (i), (ii), and (iii) is trivial. Thus assume that 'p > 2. Let (a,b)
denote the subcomplex of K with basis a and b, so that (a, b)pC KP, Define
s:(a,b) —> (a,b), of degree one, by s(a) = 0 and s(b) =a. Then ds +sd=1 on
(a,b). Let S= 1]‘3—1 ®s on (a, b)p. Then dS +Sd=1 on (a,b)p and S is given
explicitly by S(ea) = 0 and S(eb) = (_l)deg ®ea for ec (a, b)p-l. Define t, (a,,b)p
for 0 <i<p by the inductive formula -

(2) t =bp;t =bp~'1a;t = S(a 't

o 1 2k = S(Nt,

2k-1 Far-1) ¥ tareet K -
Since dS +Sd = 1, an easy calculation demonstrates that

-1
(3) d(tl) =t s d(t2k) = (e - 1)t2k_1 and d(tZk_H) =Nt, , 1<k<m.

A straightforward induction, which uses the explicit formula for S, yields
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; kq iy 2 %2 .2, ik 2
«(4) "i’:zk;: 2 (—1) -1)!'b a’b °bka , 1< k< m, summedover all

I
k-tuples 1= (11, eooy 1k) such that }:, 1j = p»—Zk ; and

i i i
kq,,, 1_2 k 2, ktl -
= :_>: - oo o £k
t2k+1 (-1) 7 *k!b a b ab a, 0£k< m, summed over all

(k+1)-tuples I=( 1,“., Lk+1 such that z i = p-1-2k.

= (-1)™%m! 2P (

a

In particular, tp‘ 2l

since each ij = 0)., Now let
j=(2s -q}_+1)(p-1) and define chains c¢ and c¢' in W@pr by the following

formulas (where, by convention, e =0 if i< 0):

1
m m .
k -1 p-2

(6) c= Z (-1)"e, E b -1)" "t

=, J—Zk bkl ” = ®j+1-2k 2k N

m K ) m L

P = -

(1) e 1%( 1)7e €i-1- k@t t gl 21c® tax

Then an easy computation, which uses Definitim 1.2 and (3), gives
(8) dle) = e, ®b° and dle!) = -e; ;@Y (5= (25 - aD(p-1)

In calculating d(c), the salient observations are that th = 0, that
o./ei@t = ei® o 1‘c for te KP by the very definition of a tensor product, and that

@'-1)P N i Z . Finally, define

(9)  P.(a) = (-1)°v(g-1)8(c) and BP(a)=(-1)"v(a-1)8(c") .

s

If a isacycle, b=0, then t =0 for i<p and t = (-1)"%m! 2P, hence

_ m( +1) " m(q+l)
(10) c= (-1)™ 4 te(2g-q)(p- 1)®ap and c'=(-1) 4 m°e(25-q)(p—1)-1®ap°

+1)
It is easy to verify that v(q) = (-1) (4 ”ml v(q-1) and now (ii) is obvious from
(9) and (10) and (i) follows from (8), (9), and (10), applied to the cycle be Kq x

Part (iii) is immediate from (9).

The remaining results of this section are corollaries of the theorem and its

proof, We first define and study a very general notion of suspension.
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Definition, Let f:K'—> K and g:K—> K" be morphisms of A-complexes
such that g:'f'= 0. Define o Kber £, —> Coker g, by the formula o{b'} = {g(a)},
v}héré’ B! répresents {b'} ¢ Ker f, and d(a) = f(b') in K, It is trivial to verify
tha£ o is Well-defined, and we call o the sﬁspensionu

We can now prove that the Ps commute with suspension. We remark that
if n = o, the hypotheses of the next theorem simplify to the requirement that £
and g be morphisms in #(p, ®) suchthat gf =0. For n< oo, the stated

hypotheses arise in practice in the study of iterated loop spaces.

Theorem 3.3. Let (K',8") ¢ &(p,ntl) andlet (K", 0") ¢ &(p,n). Let

K bea Zp=complex and let f:K' —> K and g:K-—> K" be morphisms of com-

(n+1)

a4
plexes such that gf = 0, Define a subcomplex K of W ® KP by

fadd

% - wie g P + T @ P tox + W e kP,

== +
where W(nH) = W(n)@ Z e (that is, e ntl)

p nt+l for

— (n+1) i —(
n+1eW but ozenﬂgw
i< i< p). Suppose given a m-morphism 9:?5———> K (where, by convention, m does

not acton e ., ® f(K')p—1® K) such that the following diagram is commutatives

1@ " 1Q®g°

W(n+1)® (K')p W(n) ® (Kn)p

0! gn

rh
= e N
D

K!' > g > Kn

(Here g\'f = 0 ensures that (1® gp)(l’%) C W(n)® (K”)p .) Observe that Ker f, is
closed under the Ps and ﬁPS and that there are well-defined induced PS on
Coker g,. Let ﬁce Ker f,. Then chS(x) =Pscr(x) and crf3Ps(‘x) = -{3Pscr(x) when-
ever PS(X) and ﬁSPs(x) are defined.

Proof. Let deg(x)= q-1 andlet b'e K' represent x. Let b= f(b') and
let d(a) =b in K, so that g(a) represents o{(x). The hypothesis guarantees that
if s is such that Ps(x) or ﬁPS(x’) is defined, then the chain level operation Ps(a)

or SPS(a) constructed in the previous proof is also defined. Of course, this is
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e i i £ i

clear if n = o3 if n <o, we need only verify that all elements involved in the

definition of Ps(a) or BPS(a) are present in K, For example, if p= 2, the last

operation Ps(x) occurs for s = q+n and then Ps(a) = 0(c), where

~
c = en+1® b®Ra + en® a® a, and c is indeed in K. Now our diagram ensures

that fPs(b‘) = Psf(b'), hence fPS(b‘) = dPs(a), and that gPS(a) = Psg(a).

o-Ps(x) = Pscr(x) follows from the definition of ¢, and the proof that U{BPS(X) =

-{3PScr(x) is equally simple.
Note that if p > 2 and all objects are reduced mod p, then op = -fa,
which is consistent with the theorem. The theorem implies that O‘(Xp) =0 and
that crﬁPS(x) =0 if p>2 and deg(x)= 2s-1; if (K",8") is reduced mod p, the
| latter statement becomes ﬁo-(x)p = 0, The operation [SPS(X)9 deg(x) = 2s - 1, plays
a special role in many applications; the following very useful technical result about
\ ‘about this operation is known as the Kudo transgres sion theorem. It applies to the
Dyer-Lashof operations in the homology Serre spectral sequence of the path-space

1

: - -1
Vi) fibration Q"X — P X — o X, to the Steenrod operations in the cohomology

Serre spectral sequence of a fibration ¥ —> E —> B (with K'—> K—> K" being

oJs
»

c'(B)—> C (E)—> C'(F), graded by subscripts) and to the spectral sequence of

Adams [1, p. 210] for cocommutative Hopf algebras.

Theorem 3.4. Assume, in additidn to the hypotheses of Theorem 3.3, that

K has an increasing fitration {FlK} , that HO(K‘) = Zp = HO(K“), and that there is

a mérphism of complexes m:K® £(K') —> K such that either
(1) K',K, and K" are positively graded, FiK =0 if i<0, FiKi =K if i>0,

f(KY) C FOK , W(FiK® i(K")) € FiK’ and f and g induce isomorphisms
_ 2 5 ELK

£ Hj(K') —> EOjK and E g K —> Hi(K") and 7 induces a morphism

2

ok

2
K— E,
i

| BB K®E
? * 15 , jHk

K such that the composite morphism

- 2
Ezn[(EZg) ! ® Ezf]: Hi(K")® HJ.(K') — Eij K is an isomorphism; or
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(ii) K%, K, and K" are negatively graded, FiK =K if i>0, Fi»lKi =0 if i<0,
o f (K;_) CFiK, TI'(FiK® f(K;)) - Fi-!-jK’ and f and g induce isomorphisms

2 .
Ezf: I—Ii(K') -— Ef' OK and EgZ:on K—> Hj(K") and 7 induces a morphism
g2
E21r° E2 K& EZ K—> EZ K such that the composite morphism
T ko 14K, j P P
2

E n[(Ezg)nl ® EZf]: Hj(K") ® I—Ii(K‘) —_— EZJ.:jK is an isomorphism,

t t
, . —d: S s
Let T be the transgression, T dt EtoK —3 EO,t»—lK in (i) and

r=a B 'R—>E

-t g (t<0) in (ii)., Then T is the inverse additive
1-t° ot t-1,0 ) :

relation to ¢, and if y ¢ Hq(K") transgresses to xe¢ H 1(1{'), then Ps(y) and

if p>2, BPS(y) transgresses to PS(X) and —ﬁPS(x), whenever the operations

p-1

are defined, Moreover, if p> 2 and q = 2s, then vy B @ x transgresses to

—ﬁPS(x) (that is, (Yp=l ®x)= -ﬁPs(x) in case (i) and |

da(p-1)
p-l = : «s .
dl—qt(pml)(Y ®x) = “ﬁPS(X) in case (11))prov1ded that

(iii)  if ay ¢ F, K, then 0(e, ®2a;®... ®ap) ¢ F.K i= > ij+k, and
j

(iv)  The restriction of 6 to eo® gP-1 ® f(K') induces a morphism
2 - 2 -
Eze:(E*OK)p 1®Eo‘,<K —> B®K in (i) and E%6: (Ein)p 1®EEOK > E%K
- 2 -
in (ii) such that EZO = EZTr[(EZg) 1¢(E g)p 1@ 1], where

VK I—I(K")p"1 —> H(K") is the iterated product.

Proof, Let ye Hq(K“). By the definition of the differentials in the

spectral sequence of a filtered complex, 7(y) is defined if and only if y is

represented by g(a) for some a e Kq such that d(a) = £(b') for some cycle

b' e Ka-l’ and then x = 7(y) = {b'}. Thus the first statemc?nt follows from the
propertiés of the chains Ps(a) and 5PS(a). For the second statement, consider
;3Ps(a), q = 2s. Since dBPS(a) = —ﬁPSf(b'), a and b' as above, it suffices to
prove that ﬁPs(a) represents ypﬁl ®x in EZK, ﬁPS(a) = -m!08(c') by (9) of the
proof of Theorem 3.1 and the observation that v(g-1) = ¥(2s-1) = (—1)Snlm5 .

In the definition (7) of c', the term with k = m in the first sum involves e_, (since




|
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g = 25 implies j = p-1) and is therefore zero. The term with k = m in the

o m=-1 _, .

" second sum is (-1)"e Rt where, by (4), t = (m-1)! z a21baz(mn1> ,
ST o< p-1 p-1 P20
b= d(a). It is easy to see that

m-1 m

\ - - _Q -.1 .‘s
g aZIba&(m i . P(oz)ap b , where P(e)= E a/21 ! ,
i=0 _ i=1

and direct calculation shows that P(a) = m+ Q(e), in pr, where
m

2j 2jt+ -1
Aa)= S ieP + ). Let o= (-1)(m-1)te, ®0Q2)a" "@b e WRKP. Then
- j=1 _
c' - d(c") = (=l)mm£ eo® aP lb plus a linear combination of terms ei® g such
that g has i+l factors b and p-i-1 factors a. Condition (iii) ensures that
=1
each G(ei® g) has lower filtration than does e(eo® aP b) and condition (iv)
) p=]_ p*l 2 .
ensures that 9(e0®a b) represents y° Q@xe E'K, Since ﬁPs(a) and

-m!0(c' - d(c")) = e(eo® apnlb) represent the same element of EZK, the proof

is complete.,

The following proposition gives a general prescription for the study of |
Steenrod operations in spectral sequences; it will be useful in the study of the
cohomology of the Steenrod algebra in [18]. In the applications, the determination
of the function f is often quite difficult and depends on how the given 6 was con-
structed,

Proposition 3. 5. Let (K,0) be an increasingly filtered object of { (p, o)

Suppose given a function £(i,j, k) such that

(1) If ateFiKi_I_, , where zit=i and zji=j, then
t 't %t

0 oo ;
(¢ ®2,® ®ap) € Fe, 1,10 im0 0
(ii)  £(i, j, k) > f(i-r, j¥r-1,k+1), r>1; and

(iii)  £(i, j, k) > r + f(i-pr, j+p(x-1), ktp-1), = > 1.

Let ye EIing° Then there exist elements Ps(y) € E; K and, if p>2,
y

1
BP (y) € Et'  such that d'P (y) =P dr(y) and d BP (y) = -BP dr(y), where
s kig! s S s S
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(iv) If p=2, then k= £(2i,2j,8-i~j), £ =itj+s-k, and

Lt =k-f(2i-27,2jF2(r-1),8+1-i-]),

(v) If p>2, then k= f(pi, pj, (28-1 - j)(p-1)), L = i+j+2s(p-1) -k, and

t = k-£(pi-pr,pjtp(r-1), (2s+1-i-j)(p-1))

(vi) If p> 2, then k'= £(pi,pj,(2s-i-j)(p-1)-1), L' =i+j+2s(p-1)-1-k, and

' = k' - £(pi-pr,pjtp(r-1), (2s+1-i-j)(p-1)-1).

Proof. Let ac¢ FiKi-l-j represent y and let b = d(a) ¢ Fi—rKi-l-j—l .

Consider the chain Ps(a) constructed in Theorem 3.1. By (ii), all summands of

Ps(a) other than that involving en® aP (for the appropriate n) have lower
,2 ;‘ phe

o

filtration than k and, by (i), e(en® aP) has filtration k. Since dPs(b), where

Nk

Ps(b) € Fk tK by (i) and k-t = r by (iii), the statement about Ps(y) follows.

The proof for ﬁPS(y) is similar,

4, The Adem relations

We here show that the Adem relations are valid for the Steenrod operations
in H(K) if (K,0)e¢ C(p,) satisfies certain hypotheses. The general alge-
braic context is distinctly advantageous in the proof. We are able to exploit a
trick (Lemma 4.3) used by Adem to prove the classical Adem relations, and this
trick would not be available in a categorical approach to Steenrod operations since
it depends on the usage of objects of C’(p, 00) which are not pfesent in many

categories of interest, such as infinite loop spaces and cocommutative Hopf alge-

bras.

We require some notations and definitions before we can proceed to the
proof.

Let = ) act as permutations on  {(i,j) |1gigp, 1£j<p }. Embed
T in Z 5 by lF;tting a(i, j) = (i+1,j). Define a, ¢ = 2 1<i<p, by |

P P
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ozi(i,j) = (i,j+1) and ozi(kgj) =(k,j) fork# i, and let p = @ c--a 5O that

: [S(i;»j') ...="7(i5 j+1). Then

= ° = ° a = .
(1) aa, oz_chz,aiozj ozjai,an aB = Ba

Let o, generate ™ and B generate v, so that ™ and v are cyclic of order p.
Let o=mv andlet T be generated by the a, and @, Then cc7,T is a
p-Sylow subgroup of X 5 and T is a split extension of =

P
Let W1=W and W

leu,wp by .

5 = W regarded, respectively, as w-free and v-free

:;’esolutions of Zp' Let v operate trivially on W_, let 7w operate trivially on WZ’

15
and let o operate diagonally on Wl ® W2° Then W1 ®W2 is a o-free resolution

of Z ,
P

If M is any v-module, let T operate on MP by letting @ operate by cyclic
permutation and by letting @, operate on the i-th factor M as does B . Let a;

operate trivially on W

1° Then T operates on W1 and we let T operate diagonally
on W1 @ MP, In particular, Wl ®W2p is then a T-free resolution of Z .
2
Let K be any Zp—complexo We let = 2 operate on KP by permutations
[

with the (i, j)-th factor K being the j-th factor K in the i-th factor KFP of
2 : '
KP = (Kp)p. We let v operate in the standard fashion on WZ® KP (B acting

as cyclic permutation on Kp), By the previous paragraph, this fixes an operation
of T on W1 ®(W2® Kp)p°

Let Y be any = Z—free resolution of Z.p and let W3W1®Wp~—-> Y be

2
P
any T-morphism over Zp° w exists since Y is acyclic, and any two choices

of w are T-homotopic.

With these notations, we have the following definition.

Definition 4.1. Let (K,0) ¢ £ (p,n). We say that (K,0) is an Adem

2 .
object if there exists a 2 ,-morphism g:Y(n)® KP —= K such that the follow-
P

ing diagram is T-homotopy commutative:
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w1 . y(0) g b’

py(n) pZ
(W1®WZ) K

1®U K

:
el

& P
1®6 S Wl(n)®Kp

(n) (n)
W e (W, ® KP)P

Here U is the evident shuffle map, and is clearly a T-morphism (Z 5 acts
trivially on K and @, acts trivially on Wl(n)® Kp), ’
For clarity, we only treat the case n= oo below, The relations obtained
will be valid for operations on Hq(K), A (K,0) an Adem object of ¢ (p,m), pro-
vided that n is sufficiently large relative to q.
We first show that the tensor product of Adem objects is an Adem object
and then use this fact to show that any relations valid on Hq(K) for all Adem

i A
objects (K, 08) and suitable q; will necessarily be valid on Hq(K) for arbitrary

qo

Lemma 4.2. I (K,0) and (L,0') are Adem objects of ((p, ), then"

(K® L,fé’) is an Adem object of (p, 00).
J P
Proof. © is as defined in Definitions 2.1. By hypothesis, we are given

£ and £' such that (K,£) and (K,n') are objects of & (= Z,CO,ZP), hence we
p

A e
may define £ as in Definitions 2.1 so that (K® L, §¢) ¢ cE= 55 0, Zp). We must
P
show that the diagram of Definition 4.1, for K® L, is T-homotopy commutative,

and this follows easily from a simple chase of a large diagram and the definition
~ ~ . . . . . P .
of © and. £. The crucial point is the observation that since W1 ® W2 is T-free

and Y®Y is acyclic, the following diagram is T-homotopy commutative where

V is the evident shuffle and ¢ :Y —>Y® Y is any given = 5
p

-coproduct:
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e p g@ggp p_V p p
ngwz > W, @W, @ (W, @W,)" ——— W,8W, 0w, @ W,

W lw@w
Y L Y®Y

Let Fp denote the free associative algebra generated by {Psls ¢ Z}
and, if p>2, {5135[ se Z}, Let JPC, Fp denote the two-sided ideal consisting
of all elements a ¢ Fp such that ax =0 for all x e H(K) and all Adem objects
(K,8) ¢ C(p,oo). Let Bp = Fp/[fp, Bp is a universal Steenrod algebra. Both
tllle classical Steenrod algebra énd the Dyer-Lashof algebra [17] are quotients

of B .,
P

Lemma 4.3, Let ac¢ Fp° Let {qil i> 0} be a strictly decreasing

sequence of integers., Suppose that ax =0 for all x e Hq (K), i>0, and all Adem
' i

objects (K,0) ¢ & (p,oo). Then ace Jp,

Proof, Let K be an Adem object in ?(p,m) and let x e Hq(K) We
must prove that ax = 0. Choose r <0 such that q+r= 4 for some i. There
exists an Adem object (Lr’ 6r) e (p, ®) and a class ye¢ Hr(Lr) such that

Po(y) =y, Ps(y) =0 for s # 0, and BPs(y) =0 for all s. Such an object can

easily be constructed explicitly, but it is quicker to appeal to the results of section
8, which show that the singular cochains of a (-r)-sphere, graded by non-positive
subscripts, provide such an object. Now (K® Lr,g) is an Adem object of ¢ (p,c0)
by the previous lemma. By the external Cartan formula, Corollary 2.7,

a(x®vy) = ax®y. Since x®y e Hq (K® Lr)’ a(x® y) = 0 and therefore ax = 0,

as was to be shown.

The Adem relations will be proven by chosing the diagram of Definition 4.1,

and we shall need some information about the homology of 0,7, and = 20 Let

p

¢2W1®W2 —> V\/'1®W2'p be a o-morphism over Zp° Define vy ¢ = , by

P
v(i,j) = (j,i). Observe that \(2=1 and ve= By. For qe Z, conjugation by v
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gives a commutative diagram

Hy(os 2 (a)) —> Hy (1 Z (q)) —— , 3 Z
Y, |
¢>’= W~'
H, (o3 ZP(Q)) ——> H, (73 ZP(CL)) —>H, (2 P2

pt
Thus w,(#, - #,v,)= 0. The following lemmas compute \(*' and §f,. Note that

H, (132 (q)) = H,(7; Zp) since T contains only even permutations.

.0

. u.+
Lemma 4.4, v, is givenon H*(cr; Zp(q)) by Y*(ei® ej) = (-1)¥ mq‘ej®e

Proof. Define y# : W1 ® W2 —_ W1 ® W2 by the formula

V(e @p'e) = (-1)0de @B, .

Then d\(# =y#d and y#(p,x)= (ypy-i)y#(x) for . € 0 and x ¢ W1®W2. Thus
y#@ ve (W1®W )® Z (q)— (W W )® Z (q) induces Yy Since the sign of

vy is (-1)™, vel= (-1)mCl in Zp(q), and the result follows.

Before computing Qf*, we fix notations concerning binomial coefficients.
"

Notations 4. 5. Let iandj be integers. Define (i,j) = (i+j)!/iljl if i>0 and
j>0 (0! =1) and define (i,j)=0 if i< 0 or j<O0. Recallthatif i>0 and

. . . o KoL L K

j>0 have p-adic expansions i= > a,p and j= 2 WP then

’bk) # 0 mod p if and only if a

(i,j) = [] (a.,b,) modp. Clearly (a
k£ K K

<
K +bk P

k .
hence (i,j) # 0 mod p if and only if E(ak+ bk)p is the p-adic expansion
of i+j.

- Lemma 4.6, H,(7; Zp) = H (m;H (v Zp)p) and f: H*(cr;‘Zp) —> H,,
is given by the following formulas (with sums taken over the integers).

. — — 2 M
(i) 1 p=2, ﬁ*(er®es) = %(k, S—Zk)er+2k-s®es-k ; and

3 _ k b
(i) If p> 2, ¢*(er®es) = Zk:(-l) v(s)(k, [s/2] - pk) er+(2pk—s)(p-1)®es—2k(p—1)

) k s=1 p .
-6(x)o(s1) 321 Wo-1)06 57218100 oy (oot - )(pm1 B -2k(pe1)-1”
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where v(2j+€) = (-1)3(1'1’1!,)g and &(2j+€) =€ , jany integer, E=Oorl.

“ ;}3;1.:9_9.’:;" Let V_V; = W2®v Zp = H*(v : Zp)° By the definition of the action of

T on W1'® sza we ‘have that (Wl @sz) @T Zp = W1 @T‘_W; as a Zp=complex,
and the first part follows. Of course, I—I*(T; Zp) is now computed by Lemma 1.3,
Qf* could be computed directly, but it is simpler to use topology. Let

K(Zp, 1) = Ev/v' , where v operates properly on the acyciic space E, so that, by
[14,1V 11], C*(E) = va® C*(E/v ), with Zp coefficients., Let D:E —> EP be
the iterated diagonal. Then 1& D: W1 R C (E) — W1 ® C'*(Ep) is a v -morphism,
and we shall obtain a c-morphism @: W1 ® C*(Ep) —_— W1 ® C*(E)p in Lemma 7.1,
| Let d= &(1®D) and let £ W‘Z —> C,(E) be a v-morphism over qu Since

W1 & WZ is o-free and W1 ® C},{(E)p is acyclic (and T-free, with the evident

T-action), the following diagram is o-homotopy commutative,

g _ P

W1®W2 Wl@WZ
1® £ 1® £P
W, © Oy (E) —————> W, ®C, ()

1

Therefore ;Zf>,= =d,:H (o3 Zp) —_ H*(’r; Zp), and this can clearly be computed from

the quotient map d:W1 ® o C*(E/ v) —> W1 ® WC*(E/v)p., We shall prove the

following formulas in Proposition 9.1.

’ k 2
(a) I p=2, dfe ®e)= kZeHZk_S@% (e )" s and

k

( = s)e k e p
(b) If p>2, d=:<(er®es)~ %(—1) v(s) r+(2pk—s)(p-1)®P>1< ( s)

- 5(x) %(—1)kv(s-1)er+p+(2pk_s)(p_1)® 2 ple )P .

B3
Here the P*k' are the duals to the Steenrod operations in H (K(Zp, 1); Zp) =

H (vs Zp)° The latter operations satisfy P° = 1 and the internal Cartan formula,
hence, by (1.2), if w, is dual to e, then

hence P}:(es) = (k, s-=-2k)eS : and

“k?

A k
(c¢) If p=2, P (wt) = (k, t—k)wkﬁ,
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(d) If p>2, Pk<wt) = (k,[t/2] - k)wt-l-Zk(p—l) , hence

P;kk(es) = (k,[s/2]-pkle 1 (po1)

Combining (a) and (c), we obtain (i), Combining (b), (d), and 6(61) = 6(ia1)ei~1,
we obtain (ii).

Theorem 4.7. The following relations among the Ps and BPS are valid

on all homology classes of all Adem objects in € (p, o).

(i) If p=2 and a>2b, PR = ?(21-a,a—b-1-1)Pa+b_iPi

ati
(

ii > > PP = -1 i —a.a-(p-1)b-i-
(ii) If p>2 and a> pb, A S (-1) pi-a,a-(p-1)b-i-1)

P P
b T atb-i i

_ a+i, . _ ]
and ﬁPanv— ;2(4) (]':>1-an,a«(p—l)b»—l»-l)ﬁ]?av_;_]:)_i]{“i

ati
S - ) . 1 Veos
(iii) If p>2 and a2 pb, P?— BR, ig (-1)" "(pi-a,a - (p-1)b 1)‘3Pa+b_ipi

- > -1)*pi-a-1,a-(p-1)b-1)P_ PP,

i
i

and

BP BP, = - zi:(—l)a-’_.(pi -a-1,a- (p—l)b—i)BPa_'_b_iﬁPi

Proof. Note first that the second relations of (ii) and (iii) are implied by
the first for objects which are reduced mod p, but are logically independent in our
general setting, Let (K,6) be an Adem object in C(p, o) andlet x¢ Hq(K)
Definition 4.1 implies that we have a Zp-homotopy commutative diagram

2 2
W, ewPe_ K () — 21> ve, K ()

1@®u PZ \\i\“"

P\ P 1®6p P
W1®W(WZ® KF) "(q) ————> W, ® _K(q)

K(q)

2 2
Since xP is Z 5 invariant in KP (q), we have, for all r and s,
p

2 2
(a) £ wB®1)fe ®ePOxF ) =t (w(c ®c)®=F).
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In the other direction, U introduces the sign (-=1)1'nq‘-S and we have
P s} 2 mgs
) 0,1®0P) (18U),(c ®eP®xP) = (-1)"D D ().
Since W*Q\,{ = W*Qf},: Yoo Lemma 4.4 gives the formula
' _ rs +mgq
(C) W;{:ﬁ*(er@ eS) - (-1) W*g*(es® er)°

Combining formulas (a) and (c), we obtain the formula

2 » 2
(@) £ (w@1),(fle @)@ ) =(-1)" MY (w®1),(f, (e @ )@= ).

In view of (b), (d) gives relations on iterated operations, and these relations are
explicit since Qf* is known. We prove the three parts of the theorem successively
In all parts, the statements about binomial coefficients are verified by writing out
the p-adic expansions of the relevant integers and appealing to the remarks in
Notations 4. 5.

(1) By (b) and (d), Lemma 4.6 implies the formula
y —

(e) %(k,sdk)D 2D = 'Z(Jz r-21) +2£°rDr_£(x) .

Formula (e) is valid for all r and s, and we set r=a-2q and s =b-q for our
fixed a >2b. If we then change variables to j=b-k and i=a- g-{ and apply

Definition 2. 2, we obtain
i 25 bhog)P P - e i P .

The condition a > 2b guarantees that the same terms do not appear with non-zero
coefficients on both sides of (f). Now suppose that gq = b—2t+1 for some t> 0.

Then, if j # b, .
(b-j, 2j-b= @) = (b-j, 2" -1-2(b-j)) = O.

On the right side of (f), Pa+b—ipi(x) = (0 unless Zt—l = b-q > 2i-a, while if

t
2 > 2i-a, then

(a-g-i, 2i-2) = (Zi—a,a—b—i-l-l-zt) (2i-a,a-b-i-1).

1

Thus (f) reduces to the desired relation (i) when q p-2t41 for some t> 0. By

Lemma 4. 3, it follows that (i) holds for all q.
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(ii) -Observe that pw, = w,p and that, by the proof of part (v) of Proposition 2.3,
. the ‘Bockstein operation B in H*(Tg Zp) is given by ﬁ(ek® ef) = 5(ek)® ei ,

where Ble, ) = 8(k-1)e Now since (c) holds with ¢\,, replaced by ﬁﬁ*, so does

k k-1

(d); that is,
2 2
(av) "é*(w® 1)*(]3¢*(er® es)® %P ) = (_1)rs+mqg*(w® 1)*(557;*(65 ® er) ®Xp ).

Replace rand s by 2r and 2s in (d) and (d') and let €= 0 or 1; then, by (b)

and Lemma 4.6, (d) and (d') imply the following formula for E=0and € =1,

_ respectively.
k
(g) %\/('1) v(28)(k, -PK)D, o ok-26)(p-1)-¢ Ps-2k(p-1)*)

5 f4+mg
= ; (-1) v(2r)(L, r-p! )DZS +(2pt -27r)(p-1)-¢ DZIﬁ -21 (P"l)(X).

In (g), set r=a(p-1)-pam and s = b(p-1)-gm and change variables to j = b-k
1

and i=a-mq-£. Let ﬁOPs = Ps and B Ps = ﬁPS, by abuse; then, by Definitions
2.2 and a check of constants, we obtain

b+j ..
(n) S0P (0-4, pi-b-ma) € B, Pi(x)

F atb-j j
=S (-1)*a-mq-i,pi-a)f P, )

: ’ ath-i 1

Again, a > pb ensures that the same terms do not appear on both sides of (h).

t-1
Now suppose that q=2b-2(1+p +... +p ), t>0. Then (b-j,pj-b-mgq) =0

&

unless j = b and, onthe other side of (h), pP P (x) = 0 unless

ath-ii

1+... +pt_1 = b-q/2 = pi - a, when pt>pi-a implies

(a - mq-i, pi-a) = (pi-a,a-(p-1)b + pt- 1-i) = (pi-a, a-(p-1)b-i-1).
Thus (h) reduces to the desired relations (ii) when q = 2b-2(1 +... + pt-l) for
some t> 0. By Lemma 4.3, it follows that (ii) holds for all q.
(iii) Replace rand s by 2r and 2s-1 in (d) and (d'); then, by (b) and Lemma

4.6, (d) and (d') imply the following formula for € =0 and £&=1, respectively.
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. — ki+mq
G i‘g("l) W2s-1)(k, S“1'pk)D2r+(2pk-2s+1)(p~1)-gD2s-1-Zk(p—l)(x)

(1 -¢) E (—1)JZ +mqv(2r)(ﬂ ) I‘A-Pﬂ )DZS_H(zp;z =Zr)(p—1)D2r-ZJZ (p—l)(x)

!
; (-1 W2r-1)(E, 710D, yio0s oprip-1)-e D2r-1-21 (p-1)

In (i), set r = a(p-1)-pam and s = b(p-1)-gm and change variables to j = b-k
and i = a-mg-£f. By Definitions 2.2, we obtain

4 E(l Hb-j, pj-b-ma-1)¢ . BR(x)

a+b -j

= (1-&) E (—1)a+i(a~mq—i, pi—a)BPa+b_iPi(x)

i
ati é
_ _ i s P
E;f;( 1)*"(a-mq-i,pi-a-1)p P, B (x)
Again, a > pb ensures that the same terms do not occur on both sides of the
equation, Now suppose that ¢ = Zb—Zpt, t>0. Then (b-j,pj-b-mg-1) =0 unless

j =b. On the other side of (3), P(x) = 0 unless p > pi-a, when

BE atb-1 i
(a-maq-i, pi-a) = (pi—a,a-(p—l)b-i+(p-1)pt) = (pi-a,a-(p-1)b-i),

and f3 P ﬁP( ) = 0 unless pt> pi-a-1, when

(a-mqoi, pi-a-1) = (pi-a-1,a-(p-1)b-i+(p-1)p) = (pi-a-1,a-(p-1)b-1)

Thus (j) reduces to the desired relations (iii) when q= Zb—Z.pt for some t< 0,

and Lemma 4.3 implies that (iii) holds for all q.

Remark 4. 8. It should be observed, for use in section 9, that the relations (f),
(h), and (j) derived in the proof above are valid for arbitrary integerﬂs aand b
(without the restrictions a’> pb or az pb). Indeed, these conditions on a and
b were only required in order to obtain disjoint non-trivial terms on the two

sides of the cited equations.
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5. Reindexiﬁg for cohomology.

| We have geared our discussion to homology, but the reformulation appro-
priate to cohomology’ is obtained by a minor and standard change of notation. Thus
let K be a Zp—complex Z-graded by superscripts, with d of degree plus one. If
we regrade K by K-q = Kq, then the theory of the previous sections applies.
Equivalently, we can regrade W by nononsitive superscripts and reformulate
the theory. Obviously, this in no way changes the proofs. Let (K,0)¢ ( (p,®),
With K and W graded by superscripts, a;ad let x ¢ Hq(K) Then

Di(x) = 6,.<(e”1® xp) € Hpq-l(K), 1> 0, and we may define P°(x) = P S(x) and, if

p>2, pP°(x)=pP _(x). Explicitly, P%(x) and BP°(x) are defined by the
formulas

(1) If p=2, P(x) = D, () € 138 (K), where D, =0 for i<0; and

s

(2) 1 p>2, P26 =(-1)° v(-q)D, ) « m3F2eletg)

g-25)(p-1)* and

BP%(x) = (-1)° v, 1) e pat2e Pt ) ere

j 3
D,1=O for i< 0 andif gq=2j-€ , €=0o0r 1, then v(»q)=(—1)3(ml) .

s
Of course, if p = 2, we should write PS = Sq in order to conform to

standard notations, but we prefer to retain the notation PS,' In this way, the
Cartan formula and Adem relations are formally the same in the cases p = 2 and
p> 2,
The P° and BPS are natural homomorphisms and are defined for all

integers s. If (K,8)e¢ (€(p,oo) and xe Hq(K), then

s . q 2
(3) If p=2, P (x)=0 if s>q and P*x)=x ; and

S/ _ A - S,y _ o~ . s p. '
(4) If p>2, P (x)=0 if 2s>q, PP (x) =0 if 2s > q, and P (%) = x" if 25 = q.
Note that we do not claim that Ps(x) =0 if s <0 or that PO = 1: these formulas
are not true in general. If (K,8) is unital, then Ps(e) =0 for s #0. If (K,B6)

is reduced mod p, then
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s~-1 s s . s s .
(5) pP° " =sP if p =2 and PP is the composition of P~ and the Bockstein
. pif p>2.
The external Cartan formula now reads

(6) Px@y) = S P()®P(y) and, if p>2,
itj=s .

ey - S (P L@ Py +(-1)2°E P @ pPI (),
i+ =s

s
We have oP° = P°% and opP = —ﬁPScr and of course the Kudo transgression
theorem takes on a more familiar form with grading by superscripts in case (ii).

s
The Adem relations, reformulated in terms of the P, take on the form given in

the following corollary.

Corollary 5.1. The following relations among the P° and ﬁPs are

valid on all cohomology classes of all Adem objects in Qa(p,oo)

(1) If p>2, a<pb, and E=0or 1 if p>2, 6=0 if p =2, then

€ + e i
8¢ p?pP = S-1*"a - pi, (p-1)b - ati-1)B path-ipt
i
(ii If p>2, a<pb, and € =0o0r 1, then
p p
g® pPepP = (1-2) E(—l)ah(a— pi, (p-1)b - a+izn)pp2 PPt

i
- 2(-1)a+i(a—pi—l,(p—l)b—a-l-i)ﬁg path-igpl

1
(where, by abuse of notation, ﬁoPs = P° and ﬁlPs = ﬁPS)a

While the two forms of the Adem relations given in Theorem 4.7 and the
corollary are completely equivalent, they wo rk out quite differently in practice.
The relations of Theorem 4.7 apply to positive complexes, in homology, with
a,b>0; but a,b>0 in Theorem 4,7 corresponds to a,b <0 in the corollary,
which is designed for use in cohomology with a,b>0, For this reason, the Dyer-
Lashof algebra [ 417], which operateé on the homology of infinite loop spaces, is a

very different algebraic object than the classical Steenrod algebra.
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6. Cup-i products, Browder operations, and higher Bocksteins.

We here discuss \aimproducts and certain homology operations of two
variables, which were first studied b:y Browder in [4]; these operations occur in
the presence of a un—prodﬁct and the absence of a gn+1-product and are central
to the study of the homology of (n+l1)-fold loop spaces. We shall also obtain a
very useful result, Proposition 6.8, on higher Bockstein operations. In section
10, we shall show that this result suffices to give a complete computation of the
mod p cohomology Bockstein spectral sequence of K(m,n) for any Abelian group
w and any prime p.

Throughout this section, /A is a commutative ring, w is the cyclic group of
order 2 with generator «, and W is the canonical Amw-free resolutionof A. Let

A =at (—1)1 e Aw, so that d(ei) = Aie_

; i1 for i>1, If (K,8)e &(mn,A), then

we may assume that the restriction of 6 to eO®K® K agrees with the given
product on K by (i) of Definition 2. 1.

Definition 6.1. Let (K,08)e¢ £(m,n,A) andlet xe Kq and y ¢ Kr, For
| —;«i(i-i-l)
0 <i<n, define x y v =(-1) G(ei® x®vy). Then v, is the product on K
i

and if i > 0, then Vi: K@K —> K is a chain homotopy of degrée i from Vi

)i—l

to (-1 v. .- a ; thatis,

i-1

(1) by y) = (D) ey + (D)% yaly) by vk -1y o =

If A= ZZ and x e Kq is a cycle, then Pi-ﬁq{X} = Di{X} = {xu.lx},
which, in cohomology, was Steenrod's first definition [25] of the squares. We now

define the Browder operations for (K,9) e € (m,n,A).

Definition 6.2. Let (XK,0) ¢ é’ (m,n,A), n<oo, and let x ¢ Hq(K) and

v e Hr(K) Observe that if a and b are representative cycles for x and y, then

2
AN en®a®b is a cycle in W(n)®K whose homiology class An

n+1 en®X®y

+1

depends only on x and y. Define )\n(x, y) € Hq-!-r-}'n(K) by
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Xn(x, y) =" (_1)nq+1e=’<(An+16n® x®y). Note that we have chosen not to pass to
; e‘qﬁis}*a’ri-an‘t homology; of course, we can do so, and, in W(n) @T‘_Kz9
+1 )
)P e ®@a®b= (-1)"Pe @a@b - (-1)" e @b®a.
n+l n n n

ngin + -l-n(n+1)

Thus )\n(x, y) is represented by (-1) 2 (aunb - (_1)n+qrb , a).

The following proposition contains many of the elementary properties of

the )\n; its proof is immediate from the definition.

Proposition 6.3. Let (K,8)e g’(ﬂ, n,A), n <o, and consider

: —_— . .
)\n Hq(K) X Hr(K) Hq+r+n (K)

; - i A :H (K K) — K
(i) )\n induces a homomo rphism 0 q( )®Hr( ) Hq+r+n(

(ii) If £:K—> K' is a morphism in C(w,n,A), then )\n(f*® £,) = £ 0
(iii) If © is the restriction to W(n)® KZ of 0% W(n+1)® KZ —> K, then 7\n= 0
(iv) If n=0, then )\O(x, y) = xy - (;l)qryx
(v) If (K,0) is unital and the restriction of © to W(n)®(e® K+K®e) is
homotopic to €® @, @ the product, then )xn(x, e)=0-= )\n(e, y).
(vi) )\n(x, y) = (_1)qr 1 +n(q+r+1)>\n(y’ x) and, if 2= 0in A, )\n(x,x) =0
(Note that the first part implies an(xsx) =0 if n+q is even.)

The )\n' satisfy the following analog of the external Cartan formula.

Proposition 6.4. Let (K,0) and (L,9') be in €(m,n,A), n <co and

A a field. Let x ¢ I—Iq(K), x' e I-Ir(K), y e HS(L) and y' e Ht(L), Then

“r(s+n) r+t+n)

M (x®y, x'®y') = (-1) xx' @2 _(y, y')+(-1)s( NG x) @yl

Proof. Let a,a',b,b' represent x,x',y,y' respectively. Let

c = (_1)n(q+s)+1 g(A en®a®b®a‘®b'), so that ¢ represents ?\n(:x®y, '@ vy').

n+l
By (1) of Definition 1.2,
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n . '
z ej®a3en i in W, and the definition of 06 shows that

Lp(e j)’, =
=0

(pretpe)ilaty ©.@2)® (e, @O D)

M= M

(ml)rs—!-n(r"'s) - j(q+r)6(ozej Ra®2")® e‘(a/j+1en_j® b®b')
0

.
1]

et o= S (-1)*’5“(’:‘”)'(5”)(q+r)e(ej®a®a')®e'(o)en+

®b®Db') . Then
j=1 ™

1

a straightforward calculation demonstrates that
_ r(s4n)tsnin N @ ar :
c+d(e) = (-1) e(eo®a®a)®6(An+len®b®b)
s(r4n)tgnin . ,.ntl \
+(-1) 6(An+1en®a®a)®6(a eo®y®y),

+1
Since L is homotopy commutative for n >0, 6'(a” eo®b®b') represents

(—1)Sty'y for any n, and the result follows.

We next prove that the )\n commute with suspension.

Proposition 6. 5. Let (K',0') ¢ C(w,ntl,A) and (K", ") e ((m,mn,N).
Let K be a A-complex and let f:K' —> K and g:K—> K" be morphisms of

complexes such that gf = 0. Define

2 - wet garn® + T @) QK + w @ x?,

—(n+1)

_ wn) —(n+1)
where W =W +Aen_|_1 (ozem_H { W ).

Suppose given a T-morphism

~
9: K —> K such that the following diagram is commutative:

W(n+1)®K,®K, 1®f®f\% 1®g®g

wit) @ xn @ K
el 9 e“

K £ &

~

> Kll

L <K : N ,y) = ) C .
et x,ye¢ Ker f,. Then o n+1(x ¥) )\n((rx oy) ¢ Coker g,

Proof. Let a'e K:i.l and b' e Kfr represent x and y respectively. Let

= ! = ' =
a=f(a') and b= £(b') and choose ue¢ Kq+1 and ve K . such that d(u) = a
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and d(v) = b, Define c ¢ K by

en® u@v - (-—1)n+qe +l®a®v - (»l)r(q+1)en+l®b®ua

n

_yd
c= (-1 4,

Then a straightforward calculation demonstrates that

aa:em1®a®b+@nmq%m1®b®a=(de ®a®b

n+25n+1

(n+1)g+1 nt+1)(q+1)

Thus (-1) fo1(n ®a'®@b) = (-1) d6(c) and

n+2°n+1

(nt+1)(q+1 n(q+1)+1
() o) = I ana e © gu)® glv)),
by our commutative diagram, and this proves the result.

The analog for the Browder operations of the Adem relations is the follow-
ing Jacobi identity: let x ¢ Hq(K), y e Hr(L)’ and z ¢ HS(K); then, under appro-
priate hypotheses,

(g+n)(s+n) (r+n)(gtn)

(-1) N (y,2) + (-1) (v (2,%))

L G Gy = o,

and, if 3=0in A and gtn is odd, )\n(x, ?\n(x, %x))=0, We omit the proof as an
easier geometric argument can be obtained for the homology of (nt+1)-fold loop
spaces. This identity, and the identity of (vi) of Proposition 6.3, lead to a notion
of )\n—algebra which generalizes that of Lie algebra (or )\O-algebra). There is
also a notion of restricted )xn—algebra which is important for the applications, In
the case A = ZZ’ the restriction is already present in our algebraic context; it is
the last Steenrod operation for an object (K, 6) ¢ €(2,n). The following addendum
to Proposition 2.3 gives some properties of this operatioﬁ that are needed in the

study of (nt+1)-fold loop spaces.

«H (K)—H
qtn q( ) 2gq+n

(K).

Proposition 6.5. Let (K,0)e¢ £(2,n). Let gn = P
Then

(1) & (x+y)=¢ (%) +& (v) +1 (%), and
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(ii) l~f:3§n(x) = (q+n~1)Pq_m_l(x) + )\n(x, px) if (K,0) is reduced mod 2

Proof. For (i), if a and b represent x andy, then, in KZ,

(a+b)2 = az F b2+ A 12Ps and the error term & 1en® a®b yields the stated

+ +

deviation from additivity of {:,n., Part (ii) follows from a glance at the proof of
(v) of Proposition 2. 3.

We now relate the )\n to the Bockstein operations on H(K) when
(K,8) e ¢ (mmn, Zp) is reduced mod p. In contrast to the Steenrod operations,

the higher Bocksteins are all of interest,

Proposition 6.7, Let (K,8)e & (m,n, Zp) be reduced mod p. Let
x,y ¢ H(K), deg(x) = q. Assume that ﬁr(x) and (3r(y) are defined., Then
ﬁrkn(x, y) is defined and, modulo indeterminacy,

B (ey) = A (Bxy) + (17D (5 8).

Proof. Let (K,8) = (ﬁ@ Zp’g® Zp)., Let a,b ¢ K be such that their
mod p reductions Z,be K represent x and y. We may assume that d(a) = p a'
and d(b) = prb'; the mod p reduction a' and b' of a'and b' represent f3r(x)
and B_(y). In W™ @ %2, aa

en® a®b) = (»1)nprA en®(a'®b+(=l)qa@b‘)u

n+l n+l

By reduction mod p and a check of signs, this implies the result.

Surprisingly, the following fundamental result appears not to be in the
literature, although it is presumably well-known. It allows complete calculation
of the mod p homology Bockstein spectral seﬁuence of QX =lim Q"s"X for any
space X and, as we shall show later, the mod p cohomology Bockstein spectral
sequence of K(w,n). Together with the previous result, it also suffices for the

computation of the mod p homology Bockstein spectral sequence of QnSnX, n>1.

Proposition 6.8. Let K bea Z-graded associative differential ring

which is flat as a Z-module, Let K have a ul—product such that

dega, Y a(b) +ab - (1)

() dla .y b) ==d(a) y b = (-1) dega deghb,
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and, for case (ii), such that the Hirsch formula (b) holds

degbdegc
(a v c)b .

(p) by c= (-1)%°8%a(b Y c) +(-1)
Let p_ denote the r-th mod p Bockstein on H(K® Z'p)a By = B Let
y e qu(K® Zp) and assume that ﬁr-l(y) is defined, r =2. Then ﬁr(yp) is de-

fined and, modulo indeterminacy,

. ) ) 5
(1)4 If p= ,2‘ and T =2, B,(y) é(v)v + quﬁ(y)

m . .
(1) 1t p>2 and =2, Byly") = By S jkl(ﬁ(v)vrl, B(y)y
j=1

p-1

(iti) If p=2 and T 23, 6r(vp)= B vy .

r-1
Proof. Let be qu be such that its mod p reduction b represents y.
-1
We may assume that d(b) = pr a, and then a is a cycle whose mod p reduction

a represents ﬁr—l(y)° Clearly we have
-1 . .
d(bp) = pr i:bl 1abp Y, and
i=1

1

-1 pP™ modp™ T, 2<i<p.

d(abp-lul pily = 2Pt - b han

i-1 2r-2

Therefore d(bp +pr—1 iabp-lul b ) = praprm1 mod p .

i=2
If r>3, then 2r-2> r and part (iii) follows. Thus let r = 2: we must now take

-i -1
into account the terms arising from d(b) = pa in d(abp 1V1 ' "Y). If p=2, then

2
d(b +2a v b) = 4ab +day a

Since the mod 2 reduction of a2y, 2 represents quﬁ(y), this proves (i), Thus

assume that p > 2. Then

d(bp +p i ab? Y bl—l) = pzabpn1 + ch + pzc' ) where
i=2
-1 Rl g1 peiqj el E G gl iegel
c = % ab’ abP ] “ b and c' = abP v BT apt T
i=2 j=1 1<j<igp

By the Hirsch formula, and a separate reindexing of the two resulting sums, we

find that
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c = E [(ab" 7 o b7 )apP ™ L apP i ap I L i),

2<j<igp !

‘ . i1 .
Therefore if e = g abP ™ty (ab1 RN 1), then
. 1 1
25j<izgp

iy . ol ieie
d(e) = -c + E abP lul (ab1 . B! apt l) mod p .
2Lj<i<p

Comparing d(e) to c', we easily find that
2

- -1 -
d(bp +p 2 ab® lul b+ pze) = pzabp L +p
i=2 i=2

m
2 - -j-1 j-1 j-1
= p ab® ! +p2 -_>E j(abp J v ab’ -ab! Tty
j=1

1
By Definition 6.2 , this implies (ii) and so completes the proof.

Of course, the terms: involving \. in (ii) are zero if K admits a .

1
m=;2'=-proc1uc1:e The general result is needed for second loop spaces. The Hirsch
formula is valid for the cochains of a space [8, 16], for the chains of a second

loop space [10], and for the dual of the bar construction of a cocommutative Hopf

algebra [16]. In connection with this formula, we make the following remarks,

Remarks 6,9. Let K be an associative differential Zp—algebra, p~> 2, with a

w. ~-product which satisfies the Hirsch formula, Define

1
p
<>:H —> H K . L H
Zsal(K) Zspnz( ) as follows et a re}:rlesent X € Zs-l(K) and
1
. = L < i< -
defn;el a, =7 a, ;v a for 2<i<p, Then d(ai) jzi a2, and
3= ajap j is a cycle. A computation demonstrates that if {ai l 1i<p}
=1 :
is any set of elements of K such that a' represents x and

1

-1
d(ai) = a3 ai i for 2<i<p, then 3' = & a'.al':)__j is homologous to 2. Thusthe
j=1

class of a depends only on x; and we define <x>P = {Z}. In the applications, it
is often the case that if (K,0) ¢ ¢ (p,p-2), then <x>F = —ﬁPS(xL Kraines [11]

has proven this result for the cohomology of spaces, where it reads
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1
<x> ‘-=[3P %(x) for xe pest (

K), and Kochman [10] has proven it for the homo-
) 1ogy of 1tera‘ted loop spaces. A general proof within our algebraic context should

bé possible, but appears to be difficult.

7. The category of simplicial A-modules

We here develop some machinery that will allow us to apply the theory of
the previous sections to a large simplicial category 194, . We shall specialize
to specific categories of interest in the next section, We assume familiarity with
the basic definitions of the theory of simplicial objects and of acyclic models
(see, e.g., [15,§1,2,28,29]). Let A bea commutative ring, and let a., g/
and 4 denote the categories of (ungraded) A-modules, positively graded
A-complexes, and simplicial A-modules, Let C: ,jﬂ———> EO. be the normalized
chain complex functor (for K¢ J@ , C(K) is the quotient of K, regarded as a
chain complex with d = z (—1)idi, by the subcomplex generated by the degenerate
simplices). Define H(K) = H(G(K)) and H (K) = H(C (K)), where
C*(K) = HomA(C(K),A) is given the differential &(f)(k) = (—1)q+1f(dk) for

fe CHK) and ke C . (K), The following key lemma is based on ideas of

q+l
Dold [ 5 ]
Lemma 7.1, Let m be a subgroup of Zr and let W be a Aw-free

resolution of A such that Wo = Am with Amw-generator e Let

Kl 5000 Kr e Jo ° then there exists a morphism of A -complexes

3:WRC(K, ®... 0K )—> WOC(K)®... ®C(K )

which is natural int he Ki and satisfies the following properties:
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(i) ‘fFor o ¢ 7, the following diagram is commutatives

@
W GC(K, X ... X K ) ————> WOC(K)®...®C(K)

lg .

o)
W®C(K¢(1) Xooa X Kg(r))—————> W® C(Kq(l))® coe ®C(K6(r)),

(ii) ® is the identity homomorphism on W& Co(Kl X oo X Kr)°

- é : - . - l- -
(iii) "(eo®k1®°“®kr) eo® g(kl®.“®kr) if kie Ki is a j-simplex,

where § ZC(Kl X ooo X Kr) —_ C(Kl)® oo R C(Kr) is the Alexander-Whitney
map.

(iv) | (W C (K X ... X K ) C > WO[C(K

Moreover, any two such @ are naturally equivariantly homotopic
Proof. Since (KX L)j = Kj® Lj . formﬁlas (ii) and (iii) make sense.

ite A, = X.oo XK B, =
Write i C_(K1 r) and i [C(K1

j 1®... R C(Kr)]j° We construct

® on W1®Aj by induction on i and for fixed i by induction on j. Formula (ii)
defines ® for j=0 andall i and formulas (i) and (iii) define @ for i =0 and
all j. Thus let i>1 and j=1 andassume that @ is defined for i'<1i and for
the given i and j'< j. Choose a An-basis {wk} for Wi° It suffices to
define @ on w®x for w « {Wk} and x € Aj’ since @ can then be uniquely
extended to all of Wi®Aj by (i). Let AA[j] denote the free simplicial
A-module generated by the standard simplicial j-simplex [15,p. 14]. Then the
functor w@® Aj is represented by the r-fold Cartesian product AA[j]r, and

W& B(AA[j]r) is acyclic. Therefore 2&(w® Aj ®...0 Aj) can be defined by
choosing a chain whose boundary is 2d(w® Aj® oo @ Aj), and @ can be carried
over to arbitrary W®k1 Q..o ®kr by representability, Now (i), (ii), and (iii) are
clearly satisfied and (iv) follows from the fact that Ck(AA[j]) =0 for k>j. The

proof that @ is unique up to natural equivariant homotopy is equally simple.
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Remarks 7,2. Define ¥:WQ® C(Kl) B... R C(Kr) — W® C(Kl X oo X Kr) by

¥ =1®n where 0 :C(K)® ... ®C(K ) —> C(K, X ... XK ) is the shuffle map.
Since 1 , unlike £, is commutative, ¥ is equivariant, By an easy acyclic
models proof, @¥ and ¥? are equivariantly homotopic to the respective identity

maps.

7

We shall only be interested in the case K1 S .. = Kr; here

W C(K) — W® C(K)r is a natural morphism of Aw-complexes, The
.genéral case was required in the proof in order to have the representability of the
functors Aj., Starting with objects of the following category 9 , we shall use
® to obtain diagonal approximations and so to pass to the category

P(m,00,A) C E(r, 00,A) defined in Definitions 2. 1.

Definitions 7.3. Let IOt denote the following category. The objects of

VA are pairs (K,D) where Ke M and D:K—> KX K is amdrphismih a
such that (D I>< 1)h= ('1 X D)D and tD =D, where t(x®y)=y®x. The morphisms P
f:(K,D) — (K',D‘) in (J(L are those morphisms f:K —> K' in A such that
(f X £)D = D'f,
Each Ke 0 admits the natural diagonal D(k) = k@®k, and ,J(L is there-
by embedded as a full subcategory of e However, an object Ke % may
admit other interesting diagonals, For example, if K is a simplicial cocom-
mutative coassociative A-coalgebra, then the coproduct ¢ :K—>KXK isa
pernﬁssible diagonal; that is, (K, ¢) e ,{fﬂz . The following remarks will be of

use in the study of relative and reduced cohomology.

Remarks 7.4. (i) ¥ L CK in 4L, define Hy(K,L)= H(C(K/L)) and

H (K,L) = H(C (K/L)). If (K,D) e and D(L) is contained in LXK + KX L,
then K/L admits the diagonal D induced from the composite

T™X

D
K—>KXK > K/L X K/L, where m:K—> K/L is the projection, and

then 7 is a morphism in HA-
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~
(i1) Let A = AAJO] € . : thus An = A for n>0, each di and s, is the identity,

~

~and; C(A) = co(?f_) = A, Give A the natural diagonal° We say that (K,D) e KL
' is unital if we are given a monomorphisrﬁ v :X —> K in ML and an-epimorphism
g:K——>7§ in JCL such that & =1 and (€ X 1)D = (1 X€ )D (where
AXK=Ks= KX?'\_). If (K,D) is unital and IK = Ker €, then K= V(X) @ IK and
for ke IK, D(k) = k® v(1) + v(1)®k +D(k), where D(k) ¢ IKXIK, Clearly,
(IK, D) is isomorphic to (K/V(K),E) in 00 |

If (K,D)e OL , then C*(K) is an associative differential A-algebra, with
cup product defined as the composite

% sk * sk g F3
1) e K)® C ) 2 [cK) @ cK)] £ c¥(x x K) =—>C(K).

‘ d degk
Here @ is the natural map, o(x® y)(k®1L ) = (-1) CEYCCER (k)y(1 ), and & is
the Alexander-Whitney map. If (K,D) is unital, then C"(K) is unital (via v*)
and augmented (via €.

We now define a functor I': WL —> P (m, 0,A) and then show how to use

T to apply our general theory to H (K) for (K,D)cMQ in the case A = Zp°

Definitions 7. 5. Let (K,D) e O0L  and write D for the iterated diagonal

K —> Kr, Let mC Er and let W be a Aw-free resolution of A with W0 = A,
Define Az WQ® C(K) — C(K)r to be the composite

2 mwe o L85 we oK) —— W CK) s C(K)”

Let o C*(K)r —> [C(K)r] ¥ be the natural map and define a Aw-morphism

0: WQR C*(K)r — C*(K) by the formula

3)  o(w® (k) = (-1)38V IEF o(x)(A(w®K)), we W, xe C¥(K)", ke C(K),
Since 9 may be defined for m= Er and then factored through j:W —V as in
Definition 2.1, and the resulting composite is Aw-homotopic to the original 6 de-
fined in terms of W, 0 satisfies condition (ii) of Definition 2.1, By Lemma 7.1,

formula (3) specializes to give

(4) e(eo®x)'= D" g*a/(x) for any x e Ca‘(K)r, and
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(5) 6(W® x) = g(W)D*a(x) if xe CO(K)r and we W,

By(l)and (4), © satisfies condition (1) of Definition 2.1, Since © is natural on
N irnorpi'xisms in 90 | we thus obtain a contravariant functor I's Pl —> P (7, 00,7)
by letting I'(K,D) = (C*(K), 8) on objects aﬁd T'(f) = C*(f) on morphisms. By (5),
if (K,D) is unital in ¥0- then I'(K,D) is unitalin & (m,00,A), IfA = zp, T is
cyclic of order p, and (K,D) = QI’%@ Zp,%@ Zp) where fé is a Z-free simplicial
Z-module, we agree to choose 6 for K to be the mod p reduction of 8 for E H
'then' T'(K,D) is reduced mod p (since C(E) is Z.-=‘free and therefore C*(E) is
Z-flat, as required by Definition 2, 1).

Observe that, by Definition 6.1, we now have wu, -products in C*(K) for
any (K,D) e B0 ., When A = Zp, the results of Proposition 2.3 will clearly apply
to the Steenrod operations P° defined on the cohomology of objects (K, D) e 90,
If (K,D) and (L,D') are objects of PO , then KX L admits the diagonal
D= (1 XtX1)}(D X D'); if D and D' are the natural diagonals, then so is 'E)’ Thus
(C*(K X L), 0) is defined in € (7,00,A). The following lemma compares
(C*(K X L), 08) to (C*(K)® C*(L), 8) and will imply the applicability of the ex-
ternal Cartan formula to H*(K X L) when A = Zp°

Lemma 7.6 . For any objects (K,D) and (L,D') in G , the following
diagram is Am-homotopy commutative

0

wecT(kx 1)’ > ¢¥(K % L)
189 (&%) || 1@ (9" ’ £ L n
we[c (®®c*L)” > cFry®@c¥(L)

That is, 11* and £¥ are morphisms in the category & (m, 00,A).
v
Proof. By the definitions of 6 and 8= (6® 0)(1Q® T® 1)(y & U), it suffices

to show that the following diagram is Aw-homotopy commutative;
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A=(ER1)H1® D)

W ®C(K X L) > G(K X L)
1®q] 1®e - _ n* "
W ® C(K) ® G(L) JUARA)(I1Q@TRNWYRI®I) S [C(K)@C(L)]r

Since (I@D®1I®DH(IQ®TR®LYR1®1)=(1QTR1)Y®1R1)(1®DA D), if
welet ¢ =E®1)& andlet us K'x LY — (KX L) be the evident shuffle, so that

P
D= u(D X D'), then this diagram becomes

WQC(KX L) 18D XDy c(k*x LY) 1Qu, wec(x x L) N C(R X L)"

r

1®1 ® & 1®n 1®¢ yl 3

WRCE)BS(L)LBEODY wec k™ )pc(L’)- LIRS TONUBIIN, (o1 @ (L )IF

The left-hand square commutes by the naturality of 7 and §¢. Since the diagonals
are not involved int he right-hand square, we can prove that it commutes up to
Am-homotopy by an acyclic models argument, with K® ana L" replaced by

K X,”XKr and L

1 Koo X Lr so as to have domains given by representable

1
functors for fixed w € W, On zero simplices, the diagram commutes for any

we W andon e ¢ W, as the simplices vary, the diagram is A-homotopy com-
mutative by a standard acyclic models argument. This starts the inductive con-

struction of the desired homotopies, and the proof is completed precisely as was

the proof of Lemma 7,1,

Corollary 7.7. If (K,D)e PO | then I’(K,D) is a Cartan object of

€ (m, @, A).

Proof. Since D:K —> K X K is commutative and associative, it is a
morphism in 9L . Therefore the cup product (1) is a morphism in ({7 (w, 0, A),

as required,
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Lé'mma 7.8, If (K,D)e OQL , A= zp, then I'(K,D) is an Adem object

Of Gp ps

Proof In the notations of Definition 4, 1 (with YO = ZpZ 2), it suffices to
P

prove that the following diagram is T-homotopy commutative:

2 w® 1 2

~

W e, Po c* k)P 7 y&c¥(x)P

1®U

i * /
PP —2 > W @ct(x? °

All maps 0 are as defined in Definition 7.5; by dualization, it suffices to prove

that the following diagram is T-homotopy commutative

2
W, ® W P®C(K) w81 .v®c(K) 2 > G(K)P

Q1 AP
wPew, ®c(K —&5 wPecr)® ——s0r,® c(K)"

2 2
Let @ =(E®1)® anddefine a= f(w® 1):w1®w2p® c(xP ) —> ¢(K)P . Since

2

= (1 ® D), Alw®1) = ¢(1® 1@ D), D:C(K) —> C(KP ). By the naturality of f,
the following diagram is commutatives
W1®WZP®C(K)—:FQB—> WZF’®W1®C(KP)—1—@Q—> W§®C(K)p AN (W2®C(K))p

1®1®D 1R1®D 1®@DP | aeD)P

2 2
W1®WZP®C(KP ) ISL o W§®W1®C(Kp 187 \Arzp<8>c:(}<p)p Y >(W2®C(Kp))p

2 2
Let B = ¢pU(1x¢)(T>< 1);W1 X sz X C(KP ) —= C(K)P . By the diagram above,
APU(1 x AT X 1) = B(1 X 1 X D), Thus it suffices to prove that « and p are

T-homotopic. Since @ and B do not involve the diagonal, this can easily be shown

by acyclic models precisely as in our previous proofs.
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The following theorem summarizes properties of the Steenrod operations
. that are valid for arbitrary objects of the category PL , A= Zpw Of course, we
use the notations of section 5 since we are dealing with cohomology.

Theorem 7.9. Let (K,D)e RO, A= Zp° Then there exist natural

homomorphisms P° and, if p> 2, ﬁPS defined on each I—Iq(K); degree (P%) = s
if p=2 and deg(ﬁéps) = 2s(p-1)+€& , €=0orl, ifp> 2. These cohomology
operations on OO, satisfy the properties

(i) 5&PS 0 if <0 orif p=2 (€=0)and s>gqgorif p>2 and 2s+€ > q.

(ii) P°(x) XZ if p=2ands=q; Ps(x)=xp if p>2 and 2s=4q

(1) I (K, D)= (K® zp,ﬁ@ Z ), where % is Z-froe, then BP° 1 = sP° ifp=2
and ﬁPs is the composition of p and P° if p> 2.
(v) P°= S P ®P°" and PP’ = S (prte P plgpp® ) on H (KX L)
the internal Cartan formula is satisfied in H*(K)
(v) If f:K'—>K and gtK—> K" are morphisms in OO  such that gf =0,
then o-ﬁEPS = (-1% BE'PSO' , where o HYK") —> anl(K') is the suspension

e

ssociated with C (K1) —> C (K) —> G (K").
. €8 £ £S5
(vi) I¥f LEC K and D(L) €L X L, then 8P = (-1)BP & where
q qt+l . . .
5 HYL)—> H (K,L) is the connecting homomorphisms.
(vii) The ﬁEPS satisfy the Adem relations as stated in Corollary 5.1,

Proof. For (i), we must prove that 6E’PS =0 for s <0 (the rest is the

0 for i< 0); by formulas (5.1) and (5.2), it suffices to show that

convention e,
i

D_l(x) =0 for i> (p-1)q, deg(x)=gq. By (3) of Definition 7.5, it suffices to show

that A(ei®k) =0 for ke Cpq_i(K)., Now A = (E®1)®(1® D) and, by (iv) of

Lemma 7.1, if i> (p-1)q, then

Be, ®DK) < > W _®[CK)] C Ker (@ 1).
iS5 Pa j

(ii) and (iii) follow from Proposition 2.3; (iv) follows from Corollary 2. 7,

Temma 7.6 . and Corollary 7.7; (v) and (vi) follow from Theorem 3.3, noting for




(vi) that the suspension associated with C (K/L)—> C(K) —_— C*(L) is the
1 inVe_,r_s,,e additive relation to the connecting homomorphism 6 ; (Vii) follows from
‘Theorem 4.7 and Lemma 7.8.

By Theorem 3.4, the Kudo transgression theorem applies to appropriate
spectral sequences involving objects of [OQ. and, under the hypotheses of (iii) of
the theorem, Proposition 6.8 applies to compute the higher Bocksteins on p-th

E
powers of elements of H (K), (K,D) e 90.. In the next section, we shall show

how to compoute P° for arbitrary objects (K,D) ¢ BQ and shall give non-trivial

examples to show that P° #1 in general.

8. Simplicial sets and simplicial restricted Lie algebras

We shall here obtain the Steenrod operations on the cohomology of
topological spaces, simplicial sets, and simplicial restricted Lie algebras, and
shall consider the evaluation of P° on H*(K) for any (K,D) e 0L , A = Zp’

Let 3 denote the category of simplicial sets. For Ke ,J , let %I denote
the free simplicial Abglian group generated by K. Let A be a commutative ring
and define a functor A: ,X — B0 by letting A(K) = E@A with its natural dia-
gonal D; here B is as defined in Definition 7.3 and D is induced from the
diagonal k —> (k,k) on K. Composing A with T of Definition 7.5, we obtain
a functor T A: Z — ¥ ('n',oo,A) for any m C Zr, Let T denote the category
of topological spaces and let S T — ,5 be the total singular complex functor.
Then T'AS: J —> P(m,©,A) is defined. If (K,L) is a simplicial pair, define
A(K,L) = E/i@l\_. Then T'A is defined on the category iz of simplicial pairs
and T AS is defined on the catetogy TZ of topological pairs. Since the normaliz-
ed cochains with coefficients in A of a simplicial pair (K, L) and of a topoléngica;l
pair (X,Y) may be defined as C*(K, L) = C*(‘Iﬂ%/f,@l&) and
K

C (X,Y) = C (SX,SY), the results of the previous section apply to the cohomology
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of simplicial and topological pairs.
For the remainder of this section, we take A = Z_ and we let m be cyclic

- of order p. Via I'A: /52 — p(p, o), we have Steenrod operations Ps, s> 0,

hence on H (X,¥) forall (X,Y)e J.

on H (K,L) forall (K,L)c¢ ,. Of

29
course, if p= 2, P° is usually dencted by quo Theorem 7.9 gives all of the
standard properties of the p° except P° = 1, We now show that P° = 1 follows

from the previously obtained properties of the Ps.,

Proposition 8. 1. P° is the identity operation and, if p = 2, Pl is the

Bockstein operation on the cohomology of simplicial (or topological) pairs.
1
Proof. Since ﬁPO = P if p = 2, it suffices to prove that P° =1, If
(K, L) e "JZ’ L non-empty, then H*(K, L) = H"‘(K/L, P), where P is a point

~J
complex. Thus it suffices to prove that P°(x) = x for xe HY(K) = Hn(K, P),

(n)

since the result for L empty will follow trivially. If K is the n-skeleton of

~T)

K, then HYK) — 0 (K(n)) is a monomorphism, and we may thus assume that

K = K™, Then, by the Hopf Theorem [24, p.431], there exists f1K —> s"™ such

that f(ln) = x, where i’; € I'fIn(Sn) is the fundamental class of the simplicial

ES b

n-sphere. It therefore suffices to prove that Po(il;) = i;l . Now for any K, the
. . e L | ®q . .
suspension isomorphism S':H™ "(8K)—>H (K) may be defined as the composite

+1
I—IqH(SK) — H (CK,K) —> ﬁq(K), where CK is the simplicial cone of K,

ot O
b oty
b

e £
hence S commutes with the P°. Since S (in) = in ] for n>1 and

ot
b3 1

Po(i;) = (i;)p = io (where i: generates ﬁ(SO) = Zp), this proves the result,

We now use the fact that P° =1 on the cohomology of simplicial sets to
show how to compute P° on H (K) for any object (K,D) e B . In fact, we have

the following addendum to Lemma 7,1 when W is the canonical va-—free resolu-

tion of Z .
P

Lemma 8.2, Let Ki € ,XO« , 1£i<p, and let ki be a g-simplex of Kio

Then, for any 2:W®Q® C(K1 X ... X Kp) — W C(K1)® . C(Kp) which satisfies
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satisfies the conclusions of Lemma 7.1,

mq -1

(5@1)®(eq( ®kl®e,,®kp)=(m1) v(-q) k1®,a,®kp,

p-1)

. ; 3 &
where v(-q)=1 if p=2 and v(-2j+&) = (-1 (m!) , €=0or1, if p>2,

Proof, Let Aq be the fundamental g-simplex of AA[q]. Since Aq is a
Zp—basis for Cq(AA[q]), we clearly have that

i D = coo (€ .
(1) @(eq(p=1)®éq® v @Aq) yeO®Aq® @Aq mod Ker(® 1), vy« Zp‘n‘

By the naturality of @ (or by the proof of Lemma 7. 1), (i) implies

(i) (EX1)3(e ( )

q(p-1) i'q”

®k1®uo®kp) = &(\()k1®”e®kp for any kie (K

To evaluate €(y), let iq € Cq(Sq) represent the fundamental class of Hq(Sq); we
” q _ 2 .. . q 3 Aedy -
may take S* = A[q]/A[q] so that i is a basis for Cq(S ) and Ty ¢ C*s™?) is

well-defined., By (ii) and D(iq) = iq@ 0o @ iq’ Definition 7.5 gives

(iii) o

N

Py oy g P Pyr mq
eq(pm1)®1q )(1q) = a(lq N(e® 1)@(eq(p_;l)®1q)] = (-1)" “&ly).

ats e
b

_ of %y ENE ) FPy _
Since P {1q} W q)Dq(p—l){lq} iy v ( q)e(eq(p=1)®(1q) iy * Thus

(_l)mq V(=q) g(y) = 1 and the result is proven.

Coroliary 8.3. Let (K,D)e 90 . Write D(k) = E k(1)®e ] »@k(p)e Cq(Kp)
for ke Cq(K), and regard each k(i) as an element of Cq(K). Let x ¢ Cq(K) be
a cocycle, Then P°{x} is represented by that cocycle y e CcYK) such that
y(k) = E x(k(l))v oo x(k(p)) ¢ Zp for each ke Cq(K) . In particular, if

D(k) = N{ ¢ KP for each ke K, wlere N= >, o « 7,7, then P° =0 on H (K).

Proof. By formulas (5.1) and (5.2), v = v(-q)e(eq(p_l)®xp) represents
p° {x} | , and the r esult follows by an easy computation from Definition 7.5 and
the lemma.,

We now give a useful application of the theory for which the Steenrod

operations satisfy the results of Theorem 7.9 and P° =0, Let g and H denote

the categories of restricted Lie algebras and of primitively generated Hopf algebras
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over Zp Let F: L —> X denote the free restricted Lie algebra functor, let
‘ V}f-——«—-—> H  Genote the universal enveloping algébra functor, and let P:H -——>‘X
" denote the functor which assigns to He H  its restricted Lie algebra of primitive
elements, By a result of Milnor and Moore [19, Theorem 6. 11], PV(L) = L for
Le) and VPH=H for He? . By Theorems of Witt and Friedrich [9,
Theorems 7 and 9, p.168-170], extended to restricted Lie algebras, if Ke a
and T(K) is the tensor algebra of K, then V(FK) = T(K) in # and FK= PT(K)
in- ‘f . These statements clearly remain valid for the categories /A j}i and
4HM of simplicial objects in _a.. , £ , and H [see 15, Definition 2.1]. We shall need
the following algebraic lemma.

Lemma 8.4. Let L be a restricted Lie algebra and let IV(L)4= Ker &,

£:V(L) —> Zp , be its augmentation ideal. Let

Y V(L) —> V(L)P = V(L) ® ... @ V(L) denote the iterated coproduct. Then, for
each x e IV(L), there exists y e V(L)p such that y(x) = Ny,

Proof. Let wmFK—> L represent L as a quotient of a free restricted
Lie algebra. Then V(w) = V(FK) —> V(L) is an epimorphism of Hopf algebras,
and we may assume that L = FK, Clearly we may also assume that K is a finite
dimensional Zp—module, Since T(K) admits a grading under which‘ it is connected,
[19, Proposition 4. 20] implies that the p-th power operation £ is zero on the
augmentation ideal of the dual Hopf algebra T(K)*, The cocommutativity of T(K)
implies that, for x ¢ IT(K), ((x) can be written in the form
e (x) = Ny + Z Zi® cee & z, in T(K)P. By the triviality of £ on IT(K)*, each

z; = 0 and the result follows.

We now sketch a definitional framework for the study of homotopy invariants
of simplicial restricted Lie algebras. Define a category Xf%oz as follows., The
objects of xf‘,:(z are pairs (L, M) suchthat L e ,jaf and M is a restricted Lie

ideal of L and the morphisms f: (L, M) —> (L', M') in 4 RPZ are morphisms




- 203 -

fo i —> L' in ,J;( such that f(M) & M'. Two such morphisms, f and g, are
said to be Lie homotopic if there exist morphisms of restricted Lie algebras

HelL —> L ,0<i< ht (M M!
b, Lq 4t 0<i< g, such that h1(_q) c +

aH and the identities (i) - (iii)

of [15, Definition 5.4] are satisfied. Define the homotopy, homology, and coho-

mology groups of (L, M) e ;i;fz by
(1) (L, M) = Hy(L/M) and
(2) - HUL, Mj = H(IV(L/M)) and H (L, M) = H (IV(L/M))

The homology and cohomology groups on the right sides of these equations are as
defined at the start of section 7, with L/M and IV(L/M) regarded as simplicial
Zp—modules, The argument of [15, Proposition 5. 3] shows that Lie homotopic
morphisms in ﬁ;”z induce the same morphisms on homotopy, homology, and
cohomology. By [15, Theorem 22.1], TF*(L, M) and H*(L, M) are, respectively,
the homotopy groups of L/M and of IV(L/M) regarded as simplicial sets. The
Hurewicz homomorphism h: 1T*(L, M) —> H*(L, M) may thus be defined as the map
induced on homotopy from the inclusion L/M —> IV(L/M). Since

IV(L/M) = IV(L)/IV(M), we have natural long exact homotopy, homology, and
cohomology sequences on pairs (L, M) e X;”Z, and h defines a natural trans-
formation of long exact sequences. Note that H*(L, M) is the augmentation ideal
of the Hopf algebra H*(V(L/M)) if H*(V(L/M)) is of finite type. Consider
FAS™ = F(gn ® Zp),where s™ is the simplicial n-sphere. It can be proven that
-rrn(L) is the Zp—module of Lie homotopy equivalence classes of morphisms

FAS® —> L for Le 4{ andthat H (FAS") = (0 sttt

is the augmentation
ideal of the free commutative algebra on one primitive generator of degree n.

Our theory immediately yields Steenrod operations on H (L, M).

Theorem 8.5, There exist natural homomorphisms P° and ,if p> 2,

BPS defined on H (L, M) for (L,M) ¢ xffz These operations satisfy the con-
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clusions of Theorem 7.9 (except that the hypothesis of (iii) is not satisfied in
‘kg.e;l,e._‘rk;l)' and, in addition, the operation P° is identically zero.

M, We may regard C*(L,M) = C(IV(L/M)) as an object of 00, with
diagonal D= .LLT , the reduced coproduct as defined in Remarks 7.4(ii). Thus
Theorem 7.9 applies directly, and P° = 0 follows from the previous lemma and
corollary.

In [22], Priddy has given a different definition of H,(L) and H(L)., Let W
- be .the functor from simplicial Zp-algebras to 40 defined by Moore [20]. If A

is a simplicial Zp-algebra, then ”WO (A) = zp and W'q(A) =A_ ,0...84,

q-1

q>0, as Zp-modules, The face and degeneracy opem tors are as defined in
[15, p.87]. For L« ,ﬂx , WV(L) is a simplicial cocommutative coalgebra with

coproduct § given by

e ®°M®ao)= Z(a‘ql_i(&,“@a'o)@(a" ®”.®a"3),

gq-1 a-1

- } o . .
where a, ¢ V‘i(L) satisfies (ai) z ai® al' . Priddy defines
H (L) = H,(IWV(L)) and H (L)= ¥ (IWV(L)), where IWV(L) is regarded as a

simplicial Zp-moduleg For spectra, Priddy's definition and ours clearly differ

=k n+i)

b
only by a shift of degree; with his definition, H (Fas™) = H(s = 7Z . By

P
Definition 7.3 and Remarks 7. 4(ii), (C(IWV(L), ¥ ) ¢ W& and therefore Priddy's

o

H*(L) alos admits Steenrod operations which satisfy the conclusions of Theorem

7.9 (except, in general, for (iii)) and P° = o,

9. The dual homology operations; Nishida's theorem

For applications to loop spaces and to obtain a result used in the proof of the
Adem relations, we shall discuss the homology operations Pi whose duals are the

Steenrod operations on the mod p cohomology of a space X, Of course,

(H,(X), 2 ) and, if H, (X) is of finite type, Hy(X) = H (X).

H (X) = H(X) = Hom,

S |3 s ) 8. %
Define F, on H*(X) by P =(P)

ale
b3

: P,S is clearly well-defined if H_(X) is of
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finite type, and either a direct limit argument or the next proposition imply that
PS _:‘i"sv,’i';xzell—defined in general. P*S lowers degrees by s if p = 2 and by 2s(p-1)
1f p.>l 2. Our results on the p° immediately yield the dual results for the PS
We shall write the operations AP*S on the left; the order of composition in the dual
Adem relations must thus be reversed (that is, H*(X) is a left module over the
opposite algebra of the Steenrod algebra). The following proposition was used in

the proof of Lemma 4.6, Formula (2) of the proof is essentially Steenrod's defini-

tion [30] of the D_ .

Proposition 9.1. Let X be a space and let d = &(4 ®D):W®WC*(X) —

W® C(X)°.  Consider d,:H,(mH, (X)) —> H(m H,(X)P). Let xe H_(X). Then

ot e
b b

; k k
(1) If p=2, d*(er®x) = %,eHZk_s@P* =P, (%) .

(ii) If p> 2, d*(er®x) = v(s)z(—;i)
k

- 6 (1) Ws-1) > (-4) ® P, B(x)P.
k

er+p+(2pk-s)(p-1)
where v(2j+€) = (-1)%(m!)® and  s(2j+€) =&, &= 0ord.

Proof. We may assume that H,(X) is of finite type. We shall compute

B £ LS

d :H (- H (X)p) — H (nN® H (X) and then dualize. In the notations of
Lemma 1.3, H*(X)p 2A® prr ® B as a m-module, and

* * % * b
H, (m; H,(X)P) ~H, (1)®A ®B. It follows that H (v ;H (X)) = H (@A ®B .

% 5
ots

We claim first that d(B) =0, To see this, we make explicit the isomorphism
from B to the homology of (W®TI' Zpﬂ@ B)>'<. For ye B'P, define
Ye (W® z n®@B)* by
T p
Yw® o' ®@b) = &(w)y(b) for we W, 0<i<p, be B,
Then y is a cocylce and y —> ¥ induces the desired isomorphism. Define
Ve Zp'rr — Zp by v(1) =1 and v(all) =0, 1<i<p, and define y ¢ (WQ® prrr@ B)a<

for y e B by

?(W®ai®b) = &(w) v(afi)y(b) for we W, 0<i<p, be B,
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Clearly y(w@oz ®b) = FN[w® @' ®b]). Therefore
d (y)(w@x) = yd (w®x) = *(Nw® x) =0
i for we W and x e H (X) since Nw ® x is a boundary in W® H_(X) (because

) = Ne_, in W). This proves that a(B) =0,

pP-2
and 4(T e 24

dle,;) = Neos 2i+1
Co We next compute a on H(n)®A . Let ye Hq(X) and x ¢ Hpq-i(X)° By

Definition 7.5, we have the formula

(1) D)) = 8,(e,® y7)(x) = (~1)"%a €® 1) (y)(e; ® )

.(Whére the isomorphism « from the tensor product of duals to thé dual of tensor
products has been omitted from the notation).
Let W, be dual to e, Then (E® 1)*(yp) = wo® yp and therefore
~ a"(w_® yP)e,®) = (-1)"*D (y)x).
For any z € Hpq_i(X), the sign in the definition of o gives
(w, ® 2)(e, ®) = (-1)PF ().
Comparing these formulas, we see that
(2) Fw @) = = (-1)'w,®D,(y)
To compute d*(wj® yp) for j> 0, observe that if p W —> W = Zp ®1rw is the -

natural epimorphism, then we have the commutative diagram:

1 }' ' d:}:

W@ H,(X) L We H, (x)P
¢®ll 1®a. ixb@l
(WQ W) ® H,(X) —_— > (WRW) ® H(X
'p@l@ll L p®1®1
— . 1@ d;}: el P
W ((We H, (X) — > e (We_ H(X)")

o

(The upper rectangle requires an easy acyclic models argument,) Dually, d is

e

a morphism of H (m)-modules. Now wj(wo® yp) = Wj® yP and, in H (m),
w.w, =w, , if p=2 or either ior j is even and vgwi= 0 ifp>2 and iandj

ji i+j

are odd by formula (1.2). Therefore (2) implies the formulas
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(3) 1fp -2, d;F(Wj@ Yp) = ? Wi+j®Di(Y) and

@ 2, D) = S, @D - DG+ 2541450 P i V)

By formulas (5. 1) and (5.2) and a reindexing, (3) and (4) become

. _ sk Py _ k
(3 i p=2, d(w®y)= %:WJ._I_an@P (y) and

(6) i p>2 dw®y)=v(-a” %(-1)kwj+(q_2k)(p_1)®Pkw) |
§(j+1) v - %: +(q-2k)(p-1)-1 ® ﬁPk(Y)o

We now dualize. d*(H*(w)® H, (X)) € H*(TF)® A since d(B)=0. For xe HS(X),

-

we may therefore write

- P
dyle, ®@x)=20 e L q®FL, B b)e HX).

Let ye Hq(X) Using the Kronecker pairing <, >, we have

P s = (. (r+s=-q+rn)q< S
Wr+s_pq®y 2 d:k(er@X) ( 1) Y’Eqr(X) o

Since <Pk(y),x> = <y, PI:(X)> , (5) implies that if p = 2, then

(7)

o

(8) <d (w

2 s-q s=-q
. > = < > = < P >,
‘ I'+S-Zq®y ),er®x WI,@P (Y)ser®x Yo Fy (x)

Thus Eqr(x) =P, q(x) if p=2 and, with k = s-q, this implies (i). Now assume

. ! P . . .
that p> 2. By (6), d (Wr+s=pq® y") hasg a summand involving W only if

q = s-2k(p-1)-&€ , k>0 and €= 0or 1, hence Eqr(x) = 0 for other values of q.

For q = s-2k(p-1), (6) gives

ot
o

(9) <d'(w 7P, e ®x> = v(-q) (-1 <y, B>,

s
3

r+{(2pk-s)(p-1) %

By (7) and (9), Eqr(x) = (_1)k+mq v(—q)-inf(x) if q= s-2k(p-1); since
mdg -1 . . . l ..
(-1) v(-q)"" = w(q) = v(s), this yields the first sum of (ii). Observe next

that <By,x> = (_1)q+'1 <y, Bx> by the chain and cochain definitions of the

deg f+1

Bockstein and the sign convention & (f) = (-1) fd used in defining c(X).

Now for q = s-2k(p-1)-1, (6 ) gives
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g
52

(10) <d'(

Wr+p+(2pk=s)(pm1)® yp)’ er®X> = 8 l[1“)v(-C:‘L)F'1(m-i)khlﬂr(q-l-i)+q< v, Pkﬁ(x)>

‘B’y‘;(7) and (10), Eér(x) = (-pyftTima gl (r)P#kﬁ(x) if q = s-2k(p-1)-1; since

-1
§(r)=0 if r is even and (=-’l)mqv(-q) =

Wq) = v(s-1), this yields the second

sum of (ii) and so completes the proof.

Remark 9.2, The proof above used no properties specific to topological spaces
and so ap‘plies to compute

d, = @41 @ D), H,(r;H(K)) —> H(r; 1, (K)F)

, )*

in terms of P,S and BP; (where 6PS is defined by (ﬁPJ‘S = -SPS if no

Bockstein is present) for arbitrary objects (K,D) e pba .

We now give a new proof of a result due to Nishida [24], which is essential
to the computa;:ion of Steenrod operations in iterated loop spaces. Let
K(Zp, 1) = E/m where ™ operates properly on the acyclic space E; by 14,V 11],
C*(E) = an@ C*(E/n). Let ¢:E —> E/m be the projection and let f: W —> C*(E)
be a m-morphism over Zp. If W = Zp ®1TW, then f induces E— W — C*(E/‘ﬂ'), and

-fp is homotopic to of, p:W —> W. By Remarks 7.2, if n is the shuffle

map, then we have the following homotopy commutative diagram for any space X3

. |
W® C,(X) (@1 > C,(E)® C,(X) > CL(EX_X)
d 1®D é 1 XD
v f®n
- .
~W® C,(X)P C*(E)®“C*(Xp.) —0—>cC(E xﬂxp)

v
W& W ® C, (%) WRHB N, ¢ (g X E}@ C,(xP) —1—> C (Ex EX xP)

e

I
g
| Y@ 1 D®1 DX 1
|

E——

p®1@ 1. LUX{[@’.L oX 1X1
v - X
> F@w c,(x)P (f®H® n >C_(E/m xE)@ﬂC\,,(Xp) —A > C (E/rX E xﬂxp)

Let by = (p®1 ®1),(v® 1), H (s H*(X)p) —> H () @ H,(m; H>:=(X)P), The hori-

%k

zontal arrows are homology isomorphisms and we therefore have Steenrod opera-

tions P},{S on H,(m H,(X)), H, (m; I—I*(X)p), and H*(’IT)® H*('n'; H*(X)p) such that d,
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and p, commute with the Ps . The following theorem uses d, and p, to

'éValuate the Pf on H*‘(Tr; Hk(X)p), Our result differs from Nishida's by a sign;

the reason for this is that our formulas (2) and (6) in the proof above differ from

the corresponding formulas in [30, p.103 and p.149]. We were pedantic about
signs in the preceding\proofbecause of this disagreement. We shall need the

following identity on binomial coefficients in the proof of the theorem.

Lemma 9. 3. > (i,a-i)(n-i, i+b-n) = (n,a+b-n) for a>0, b>0, and n>0.
' i

Proof. The result is obvious if b = 0, when i = n gives the only non-zero
summand on the left. Using (c-1,d) + (c,d-1) = (¢, d), we find that the result for
the triples (a,b-1,n) and (a,b-1,n-1) implies the result for the triple (a,b,n).

Theorem 9.4, Let X be a space, x ¢ Hq(x)° Then, in H*(TTgH*(X)p),

. _ s 2y _ : . . i, 2

(1) If p=2, P, (er®x ) = gi (s~21,r+q~2s+21)erﬂs+2i® P*(x) .

. s Py _ v . ¢ T . i \p
> = ol T X y

(ii) If p>2, B, (er®x ) E (s p1,‘[2]+qm ps +p1)er+2(pi~s)(p-1)®'p>1< (x)

i p
pi-s)(p-1) & % P

+5(x)ala) S (s-pi-1,[555] + am-pstpile

-4

v(g-1) = -(-1)™

where a(q) = v(q) m'! and 6§(2j+&) =&, £€=0or i,

Proof, We assume that s > 0, since the result is trivial for s = 0. If r =0,
then eo®xp is in the image of H,(EX XP) — H_(E xwxp), In H (EXXP),
i i
s Py _ 1 P . .
P, (eo®x ) = E eo® P, x®...0P, (x) summed over all p-tuples (11, ceos 1p)

lies in e_ @ NH,(X)P

such that >~ ip = s, The sum of all terms with any iJ. # ik

and is thus zero in H*(E X“Xp), Therefore P>,<S(eo®xp) = 0 unless s = pt, when
S t
P*(eo®xp) = eo® P, (x)p, which is in agreement with (i) and (ii). Recall that, by

Definition 1, 2 and the proof of Lemma 4.6, we have the following relations in
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, i _ )
(B) ¥ op>2 P, (e.) P 19[;;/2 -pi)e; i(pa) 229 e ) = > 8(r,je
U where 5(r,j) =1 unless r is evenand j is odd, when 6&(x,j) = 0.
If q =0, then d*(er@x) = er® xF and therefore
s s
Pole ®x") = a,(Bie )®x) = Pile )®x";

by (a) and (b), the result holds in this case. We now proceed by induction on ¢
and for fixed g by induction on ¥. Thus assume the result for q'< g and for
'our. fixed q and r'<7r., Let z= P*s(er® x) andlet z' denote the right side of
the equation to be proven. Write z- z'= > ei® v, € I—I*(w;I-I*(X)p)° We shall
first prove that p*(z—z') = eo® (z-z'); this will imply that y, = 0 forall i>0
since if i is maximal such that Vi # 0, then ei® eo® A clearly occurs as a
non-zero summand of }.L*(z=z')° We shall then prove that Yo = 0 by explicit com-
putation and so complete the proof. We give the details separately in the cases

p=2and p> 2,

4 2 ‘
(1) p=2. Since py(z) = P*s}.t*(er®x ), we find by (a), the Cartan formula in

2
H (m)® H*(w;H*(X) ), and the induction hypothesis on r, that

(c) z) = E e ® e. ® xz) = E (i,j-Zi)ej_i® P*s-i(er_j® XZ), where
i,

e
a

=1 2
P:: l(er=j®x )= E(S“i“ZR,I‘*j'*'q—ZS'i-Zi-*-Zk)e

P ( )'2 if j>0,
" K

r-j-s+it+2
The terms with j=1i> 0 are zero éince (i, -i) = 0. Applying the lemma to those
(i,j) such that j-i= £>0, with a=1, b= r-4 +q-s, and n = s-2k, we see that
(c) reduces to the formula

(d) po(z)=e @z + g (s-2k, r+q-2s5+2kle, Qe ® P\,‘k(x)'2
b le) k.1>0 £ I‘==S+2k~'ﬂ -~
H

A glance at the right side of (i) shows that u*(z-z') = e0® (z-z'), hence y; = 0 for

i> 0. To compute Vo observe that P° = 1 and Proposition 9.1 imply

(e) e ®x = d*( r+q z e. ® *k(x)2 .
, k>0 :




‘"211’7

P Sd},< = d*Pf , the Cartan formula on H*(w) (6] H),((X), and Proposition 9.1

e
5

‘e'va:l‘ia?e: PS d>’=(er+q® %), and the induction hypothesis on ¢ evaluates

P'S(er,2k® P(x)“) for k>0, Carrying outthese computations, we find that
+2

(e) implies the formula

k4
(6 == % (s-2,vta-2s420)e, __yonin0 @5 P
9

1k
+ kAgl(s-zz ,rhqtk-2s428)e o o, OP B(x

2

(x)

)Z

In pﬁnciple, (f) must imply (i) directly, but our argument with p, shows that we
need only consider those terms involving e with 2(k+£) = s-r. Let t=ktl-s

and ¢ = q-k-£3 then these terms become

(g) E (k-t, t+c-=2k)eo® P;(P:,:S%nk(x)z + g (c+l -s,8-24 )eo® Pﬂ F;:s—l‘tﬂ’JZ (X)Z

0

k>0 {< s+
By formula (f)‘of the proof of Theorem 4.7, rephrased as in section 5 and dualized
(with ;:he order of composition reversed under dualization since we are writing the
operations Ps on the left), and by Remarks 4.8, (g) would be zero if £ = sit

were allowed in the second sum; thus (g) reduces to

, g 1 (s-r)
() (c+t,-s-2t)eo®1:;k“(x)?*:(q-s,r)%@gk/z ()2 .

Since (h) is equal to the summand of z' involving e_, it follows that y = 0.

(ii) p> 2. For brevity of notation, write d = 2(p-1). As in the case p= 2, we

find by (b) and induction on r that

(1) pulz)= > 6(r,j)(i,[j/Z]-pi)ej_di®P*Sul(er_j®xp) , where, if j> 0,
ij

s=i . r-j - k
P, (er-»j R «P) = %(s-lwpk, [——2*]-] + qm—ps+p1+pk)er=j+d<pk_S+i) P, (x)P

] ) r-jt+i ] : k P
+ - ~i=-pk=- 1m-
&(r-j) a(q) kg (s-i-pk-1,[ > J+q ps+p1+pk)er-j+p+d(pk—s+i)®P;F B(x)

The terms with j = di > 0 are zero. By the lemma, applied to those (i,]) such

that j-di=>0, with a=[2/2], b= _r_;il_] + gm-s(p-1), and n = s-pk for the
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first sum and a = [£/2], b= [-;r—:-iz—“-i—] + gm-s(p-1), and n = s-pk-1 for the second
sum9 (i) reduces to
: . r k, \p
: _ ok, [ ETrgm- 3
() wpyl=2) e0® z + }: 6 (r, 0 )(s-pk,[ 2]+qm ps+pk)e£®er+d(pk~s)=£ ® P, (x)

k,L>0
ko \P
rtptd(pk-s)-2 O B B()" .

+ E 6(r,2)6(r-2)e(q)(s-pk-1, [—Eii]-l-qm»ps-l-pk)el@ e
K, 150 2

Now &(r,2)6(r-£) = 6(x)6(r+1,£), and it follows from a glance at (ii) that
B, (z-2z') = eo® (z-z'). Thus y; =0 for i>0. To compute y_, observe that

Proposition 9. 1 implies that

p_ -1 k ko_\P
(k) er®x = v(q) d*(er+q(p-1)®x) - k% (-1) er+dpk® P, (x)
#o(r)al)) (-4 o BRBEP.

k

Precisely as in the case p = 2, we can compute P>,<S on the right side of (k);

carrying out this computation, we find

« k
(£) == g(—i)k(snl’[r/2]+q‘m—ps+pﬁ)er+d(pk+p£ =s)® P, P*jZ (x)P
k k
- 5(e)ela) Z(-) (ot [/ 2] 4 amopstpt e,y s ) B B BB, (x)°
> (-1)%(s-pL, [x/2]+k(p-1)+ +pf) ® Pl pX(x)P
Woe T b PrAITAmTPE TR pra(pkpl-5) © H Tx
k ‘ , k
- o(xlal) 35 (-0) e pt-1, (535 +ilp-)tamepstpte oo O, PR (o)

)@ ng pr(x)p :

+ 5(x)al@) S (<1)5(s-ps ,[5{1]+k(p-1)+qr§-ps+pﬁ)er totd(pletpl-s

k, £
Consider the first and third sums, with r+d(pk+pf-s) =0, Let t = Ktl-s and

c = g -d(k+£). Then these two sums become

(m) > (~1)(e-t, t4me-pk)e_® B, B M ()

<

) E (_1)s+t+£ (ﬂ+mc»s,s=p£)e ®13>5P:+t_ﬁ(x)p
I1<s+t °

Consider the remaining sums of (£), with r+p+d(pk+pl-s) = 0; r is odd, hence

6(r) = 4. Let t be as above and let c' = c-1, Then these three sums become
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(n) - afa) z (-=’i)k(k=-t9 t +mc'==pk-'l)e0 ® Pk 5P£ (x)P

k
- a(q) Z (=»'1)s+t+jZ (£ + me'-s, s—pﬂ=i)eo® P}f'fﬂ.:’*s.}‘tm!Z (x)p
1<s+t
+ a(q) 2 (-=={L)s~-!“t-}“1Z (L +me'-s, s-pl )eo ® Pi 1:1::8.:“7:_!Z ﬁ(x)p .
4

By formulas (h) and (j) of the proof of Theorem 4,7 (with &= 0), rephrased as in
section 5 and dualized, we see that (m) and (n) would be zero if £ = s+t were
allowed in the second sums. Therefore, by an easy verification, (m) and (n) re-
ciude to the following expressions, where i=k+1 = s+t

(o) (s-pi, -]23 + gm - ps+pi)eo®P=:(x)p with dpi = ds-r, and

+1 . i . R
(o) a(q)(s-pi-1, %- + gm - ps +p1)eo® P*lﬁ(x)p with dpi = ds-z-p.

Clearly (o) is equal to the summand of z' involving e, inits first sum and (p) is
equal to the summand of z' involving e, in its second sum. Thus Vo = 0 and

the proof is complete.

10, The cohomolégy of K(w,n) and the axiomatization of the p°

o,

We recall the structure of H*(K(Tr,n); Zp) = H":(ﬂ, n, Zp) and compute com-
pletely the mod p cohomology Bockstein spectral sequence of K(m, n) in this
section. We also sl;xow (as should be well-known) that Serre's proof [23 ] of the
axiomatization of the Sq_i using K(ZZ, n) can be simply modified so as to apply
in the case of oddprimes. We ghall consider only the cyclic groups m= Zpt R
1< t< o, where, by convenigion, Z o = Z, We first fix conventions on admissible

P
monomials relative to t.

Notations 10.1, (a) p= 2. For I= (s ’Sk)’ we say that I is admissible if

1’300

5. 2> 2s, and Si > 1. The length, degree, and excess of I are defined by

(1) = k, 4(1) = zsj, and, if 1= (s,J), e(I) = s-d(J). Define
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Ptl =~Pfﬁi,.,P le-1 P, k, where Pts =P° if s> 2, Pti

1
B if t< o, and P_ =0y
t co

thus; if t = co, we agree that admissibility requires Sk > 2. The empty sequence

"1 is admissible, with length, degree, and excess zero, and I determines the

identity operation.

(b) p>2. For I= (Ei’si’”'.’ &k,sk, ), 21=00r 1, we say that I is

€
k+1

admissible if sizpsi +&i+i and s, >4 orif k=0, when I=(E). Define

+1 k

21 =k, 41) = 3 e+ > ZSj(p~'1), and, if 1= (&,s,T), e(I)=2s+€&-a(J).
& 8 & s, &
1
Define PtI —plpl. . ptkp kstH , where B =1 forall ¢, ﬁ: = p, for t< oo,

and ﬁio = 0; thus, if t = oo, we agree that admissibility requires gk-&-'l =0,

e

We now give a quick calculation of H (Z o T Z ).
b P
Lemma 10.2. H (Z,1, zp) = E(i,). and H (Z,2, zp) = P(i,). If t< oo, then
2 % ,
/ . . P y=1° - B(i . )
. ,)» with B (i) =1i", and H (Zpt, 1, ZP) (1) ®P(p(i,)) if

" v
Proof. K(Z,1) =S and K(Z,2)= CPOO, so the first statement is obvious.
. sk sk
For the second statement, H (Z ,1,Z )=H (Z
- pt P P
AZ -free resolution of A, with coproduct, precisely as in Definition 1.2 (with
P

p there replaced by pt) for any commutative ring A. The result follows by an

t; Z ), and we can define a

easy computation.

Theorem 10.3. If n>2 (or if n=1 and either p> 2 orkt

0o), then

H (zZ LY Zp) is the free commutative algebra generated by the following set:
P
{PtI in] I is admissible and e(I)<nor, if p>2, e(I)=n and E’i =1}, More-

b
over, H (Z ¢ n, ZP) is a primitively generated Hopf algebra.
P P

Proof. The lemma gives the result for t<-oo and n=1 and for t=m and
n = 2. Assume the result for n-1. Of course, the Serre spectral sequence
{Er} of K(zZ t,n-i)-> E—> K(Z _,n), E acyclic, satisfies
P |5

£ %
E, =H(Z ,nZ) @H
2 p P

t

b°

Z .,n-1,7Z and E =2
(2 ) .
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First, let . p = 2; then, regarding squares as Steenrod operations, we see that we

'Ihé;Y. fe;%}rite the polynomial algebra H'F(Z £ n-1, ZZ)’ additively, as the exterior

aigebra E(S), where

S={ Ptlin__i | Tis admissible and e(I)<n 1.

I I
By Theorem 3. 4, Pt in 1 transgresses to Pt in. Define an abstract spectral
sequence of differential algebras, {E‘r}, by letting Eé = P(tS)® E(S), where 7(8)
is a copy of S with degrees augmented by one, and by requiring s € S to trans-

gress to Ts € 7(S). Clearly Eé)o =Z,. Define a morphism of spectral sequences
b3
fiEL—>E by f, = g® 1, where gP(tS)—>H (Z

7 ) i .
LEL n, 2) is the morphism

2t
: I I

of algebras defined on generators by g(TPt in 1) = Pt in; clearly commutation
with the differentials determines fr for r> 2, Since fzo* and foo are iso-

’ kO
morphisms, fz = g is an isomorphism by the comparison theorem [14,p.355].

Now let p> 2. We may rewrite H (Z L,n;@Zp), additively, as E(S)® Q(T), where
L

. |3
Q denotes a truncated polynomial algebra (xP=0 for xe T) and where

S = {Ptlimm1 | 1is admissible, e(I) <n-1, &(I) +n even},
T = {Ptlin_i | Tis admissible, e(I) < n, d(I)+n odd}.

(Note that e(I) = d(I) mod 2, hence d(I)+n even and e(I) = n-1 is impossible. )
a(r) I

- P

(-1) A

and, if T @Y

1
1 e =p PO
transgresses to (-1)* ﬁPth i . Define an "

I
By Theorem 3.4, Pt in transgresses to

-1

_ I/ N L p-1
d(I)+n = 2qﬁ+1, Pt‘\ln’ ® (Pt{‘lm-i)"’

abstract spectral sequence of differential algebras , {E'r} , as follows, Let

By = [P(rS)® E(7)® P(WT)] ® [E(S) ® Q(T)]
(the bracketed exprgssions are the base and fibre, respectively)., Here TS and
7T are copies of S and T with degrees augmented by one and pT is a copy of T
with degrees multiplied by p and then augmented by two. The differentials in
{E'r} are specified by requirin.‘g s e S totransgressto Ts e TS, te T to trans-

-1
gress to Tt e 7T, and 'rt®tp to transgress to pt e pT. An easy computation

demonstrates that E'oo = ZD, Define a morphism of spectral sequences
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1 ats

f:EL—>E by f, = g® 1, where g:P(rS)Q@E(+T)Q P(uT) —> H (Z

r T t’

n,Z )
) P

1s j:he morphism of algebras defined on generators by

1 a(1)

g(rPi )= (-1)

apl :
= - RP*P =
iy g AR if A(I)+n=2q+l. As in

I I. -
Pt i »and g(pLPt ln-i)

the case p = 2, the fr for r > 2 are determined by commutation with the
differentials, and g is an isomorphism by the comparison theorem. The last

statement follows since, by the external Cartan formula, if X is an H-space and

b

x ¢ H (X) satisfies (x) = Z’x'®x", then

WP(x) = S SOPHx) @ PIx") and 9f(x) = ST (A(x) ® x + (-1) %€ X' @ pxm)).
itj=s

Thus, since i and B, (i ) are primitive, so are all of the PIi .
n t'n t n

We can now compute the mod p cohomology Bockstein spectral sequence

{Er} of K(z 1:,n) . Recall that {Er} is a spectral sequence of differential
P

algebras such that E = Hm(pt,n, Zp) and Er is the homology of Er with

i +1

-
respect to Br for r>141., Since H (pt,n9 Z) is a direct sum of cyclic groups with
one generator of order pr for each basis element of Im(ﬁr) c Er and one
generator of infinite order for each basis element of Eoo’ the integral cohomology
Z
of K(Z ,

P
Lemma 10, 2 implies that E

,n) is completely determined, additively, by {Er} If t<o and n=1

9

1

=K E =FE =2 -
¢ and e+ o " hence we need only con

sider the case n > 2.

Theorem 10.4. Iet n2> 2. Define a subset S of the set of generators for

pt

(a) If p=2, S= {Ptlinf Sy and d(I) +n are even and £(I)> 0}.

o 10, Zp) given in Theorem 10.3 by

I
(b) If p>2, S-= {Pt inl € =0, d(0)+n is even, and £(I) > 0}.
. 2
For y e S, define z(y)= Bly)y + P qﬁ(y) if p=2 and degree (y) = 2q and define
-1
z(y) = ﬁ(y)yp if p> 2, Define an algebra Ar(n,t) by
(c) Ar(Zn, oo) = P{ln} and Ar(2n+'1,oo) = E{in}.

(d) Ar(Zn, t) = P{izn} ®E{Bt(2n)} if r<t< o and
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J
) p’ p*t - p
A 2 - - - - - - >
r(Zn, t) P{lzn 1 ® E{z(lzn)lzn }oif r>t,
where z(i, ) = p(i, )i +Pzn[3(i ) if p=2 and t=1
2n Zn’ 2n Zn
and =z(i, ) =g )ip“i if either p>2 or t>1
2n 2n’ 2n
= B{i i if r<t<
(e) Ar(2n+1,t) E{lzn-%-i} Q@ P{Bt(lzn-!—i)} if r<t< o and
A (2nHi,t) =2  if r>t.
r P
t P -p
. ‘ : P E -
Then,_ if r>1, Er+’l P{yP | yes} ® E{z(y)y | ye S} ®Ar+1(n,t),
' pr pr P pr pr P
B P ) = alyly® TP gox yes, and p (8 )= s, ) 7P
Proof, We first compute EZ separately in the cases p=2 and p> 2., Let
p = 2 and define subsets T and U of the set of generators of E1 by
T = {Pt]:inl s, is even, d(I)+n is odd, e(I) < n-1, and £(I)> 0}
U= {Ptlinl (1) +n is odd, e(I) = n-1, and £(I) > 0}.
Recall that ﬁPS—i = sP° and observe that if Ptlin ¢ U, then I=(2q,J), where
2
H d(J) + n = 2g+1, and ;3Ptlin = (Ptj in) . Let C be the (additive) subcomplex of E’l
f which is the tensor product of the following collections of subcomplexes:
(i) P{B(y)} ®E{y} for ye T, and
.. 2 2q
(i1) P{z“}® E{y} for y=P " ze U, deglz)=2q+l.
Let IC be the positive degree elements of C. Then H(IC) = 0 under B, and

therefore EZ is isomorphic to H(Ei/IC)o If ye TUU, then quy e U,
deg y = 2q+1, and therefore C is actually a subalgebra of Ei and Ei/IC is a
quotient differential algebra of Ei" It is easy to see that

E,/1C=P{ylyc s} @ EB(y)| yest® Ajn,t),
. where A'i(n, t) is the quotient of the polynomial algebra generated by in and, if

2 ‘ 2
t < oo, Bt(in) by the ideal generated by i if n is odd or by (3t(in) if n is

even, Therefore
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H(E,/IC) = P{y’| y< S} ® E{plyly| v S} ® A}t

'wh‘_jevre Al(n,t) = Az(n,t) unless n is even and t =1, when

2

, 2 ) .
. _ i s _ . . _
Az(n, t) P{ln } @E{ﬁ(ln)ln}., ForyeS or y=i if n is even and t =14,

z( y) = Bly)y + quﬁ(y), deg y = 2q, is a cycle in E{1 which projects to the cycle
2

B(y)y in E'l /IC. Since z(y) bounds in Ei’ it follows that EZ has the stated

form if p = 2. Next, let p> 2 and define a subset T of the set of generators

E
oAf 1 by

T= {Pi 0, d(I) +n is odd, and £(I)>0 }.

R
i

Then, as a differential algebra, E,1 breaks up into the tensor product of the fol-
lowing collection of subalgebras:

(1ii) P{y} @ E{B(y)} for yeS

(iv) E{y}® P{B(y)} for ye T

(v) The free commutative algebra generated by i'n and, if t< oo, ﬁt(in)°

The algebras in (iii) have homology P{yp} ® E{z(y)}, those of (iv) are acyclic,

and that of {(v) has homology A _(n,t), hence E2 is as stated., Now assume that

2
Er-l-'l is as stated, r > 1 and any p. Then Proposition 6.8 computes ‘3r+'1 and
E breaks up into the tensor product of A (n,t) with subalgebras of the form

r+1 r+i

T
P{x} ® E{ﬁr+1(X)}’ where x = yp , v e S, This proves the result.

Finally, we prove the axiomatization of the P° on topological spaces.
Recall first that the Cartan formula and P%=1 imply that the P® commute with

suspension [28,30] and that we have shown in Proposition 8.1 that P° =1 is im-

lied by the commutation of P° with S™ and the fact that P° is the p-th power on
P y P

a zero dimensional class. Thus the axioms we choose (for convenience of proof)

are in fact redundant,
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Theo»f;e,m 10, 5. There exists a unique family {Psl s > 0} of natural homo-
morphlsms H*(X;Zp) — H*(X;AZP) such that deg(Ps) =g if p= 2,
deg(P®) = 2s(p-1) if p>2, and
(i) P° is the identity homomorphism
s

(ii) P(x)=xp if p=2 and s=deg x or p>2 and 2s =degx

(iii) Ps(x)=Oif p=2 and s>degx or p>2 and 2s>degx

(iv) P°(x®y)= > Pi(x) ® Pj(y) for x® vy e H(XXY)
: itj=s

) 3, e
o 3

) *_ s s * *® o, . . .
(v) o PP = P¢ , where o is the suspension of a fibration.

Proof. Suppose given {RSI s > 0} which also satisfy the axioms. If

3

xe H(X,Z then x = f' (in) for some f:X—> K(Zp,'n), hence it suffices to prove

p)’

that Ps(in) = Rs(in)o The result is obvious from (i), (ii), and (iii) if n=1 or if

p >2 and n = 2. Assume that Ps(in ) = Rs(i ) for all s and consider

n-1
y = Ps(in) - Rs(in), 0<s<n if p=2 and 0<2s<mn if p>2. By(v), o(y) =0,

where ' .
i H""(Zp, n, Zp) o H"‘(Zp, n=1, Zp)n

als
3

If p=2, ¢ is an isomorphism in degrees less than 2n and therefore y = 0.
Let p> 2. As shown in the proof of Theorem 10.3, (i) and (iv) imply that both
Ps(in) and Rs(in) are primitive. By Theorem 10.3, we see that

(p!

i | I admissible, e(I) < n}

is a basis for the primiti\}e elements of H*(Zp, n, Zp), The only elements of this
set which are in Ker o are p-th powers and elements of the form {SPq(y),

deg vy = 2q+1, which have degree 2pq + 2. If n is odd, then y has odd degree

and is thus zero. If n is even, then all primitive elements in Ker ¢ have degree

at least pn, which is greater than the degree of y, and again y = 0.
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141, Cocommutative Hopf algebras
o A;v‘jhi this section, we consider the following category (. The objects of g
are triples C = (E,A,F) where A is a (Z-graded) cocommutative Hopf algebra
over a commutative ring A,E is a right and F is a left (Z-graded) cocom-
mutative A-coalgebra. Thus E and F are A-modules and cocommutative co-
algebras (not necessarily unital or augmented), and their coproducts § are
morphisms of A-modules. We say that C is unital if E and F are unital and
éugmented and their units and augmentations are morphisms of A-modules. A
morphism y:C —> C' in g‘fis a triple v = (e, A ,B), where N:A—>A' isa
morphism of Hopf algebras and a:E —> E' and B: ¥ —> F' are N\ -equivariant
morphisms of coalgebras; thus afea) = a(e)\(a) and B(af) =x(a)p(f) for ec E,
ae A, and fe F, We say that y is unital if o and f are morphisms of unital
augmented coalgebras, For C and C'in  , define CRC'=(EQE',AQA!,
FQF")e Qf and observe that

= (§,0,0):C=(E,AF)— (EQE, ARA, FRF)=C®C
is a morphism in [ ; clearly ¢ is unital if C is unital. Define homology and
cohomology functors on the category ;9 by

AN st 1
(1) H _(C)= Tor A E, F)  ana BY(C) = Ext (E,F%) ,
ot st (a,8)
We shall define and study Steenrod operations on H*(C) when A = Zp° The
results here generalize work of Liulevicius [13].

In the following definitions, we recall the description of H"‘(C), with its pro-

duct, in terms of the bar construction,

Definitions 11.1. For C= (E,A,F)e (¢, let C=(A,A,F)e .

Let JA be the cokernel of the unit A —> A, Define the bar construction B(C)

as follows. B(C)= E® T(JA)®F as a A-module, where T(JA) is the tensor

algebra on JA, Write elements of B(C) in the form el[a,|... las]f; such an

1
element has homological degree s, internal degree t = dege + Zdeg a, + deg f,
i
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and total degree s+t. Define g:B(C)—> E®AF and d:B_ L(C) —> B, .(C)
s =L, ™
(2) . E(e[1)= e®f, Elefa,]...[a D) =0, and
(3) d(e[a1|..,.,las]f) = -eai[azlnwlas]f
' s-1

- ;e[a1|°°°lai—llaiai+1lai+2‘”°las]f
— = - - 1+deg x
--ve[ail° .Ias__i]asf , where ¥=(-1) E*x .

If E= A, then d is a morphism of left A-modules and dS +Sd =1 - ¢€ ,

Wheré c:F —»B(C) and S::BS JE)—»BS

+ *(-5) are defined by the formulas

(4) o(f) = [ 1f and S(a[all,ulas]f)‘:[alail,” as]f°

Clearly d= 1®Ad on B(C) = E@AB(—C), By adjoint associativity,

Hom  (B(C), E¥) =~ B*(C) =~ Hom ,(B(E, A, A),F").

A A

Therefore (1) admits the equivalent reformulation

(5)  H(C)=H(B(C) and H(C)= H(B (C)) = Extn p)(F>EY).

Definitions 11.2. Let C and C' be objects of & . Define the Alexander-

Whitney map £:B(C@ C') —= B(C)® B(C') and the shuffle map

1:B(C)® B(C') == B(C®C') by the formulas

e 0 o

(6) {(e@e'2, ®a) a_®a [f@£)

S

- _ p(k) ] 141 1 e
ﬁE;o( 1) e[a1l,,° Iak]akﬂ” .asf®e ai”'ak[akHI"” Ias]f ,
- k

= ! ! =1
where p(k) = deg e'(k+deg .. asf) +.§j deg a! (k 1+degai+1° ..a f)

i=1 s

s
i
+ ‘ z (1 + deg aLj)c?legaj_Hu ceaf o, and
j=k+

(7) n(e[a1|,,, las]f®e'[as+1|, 1)

lagy

_ V('“') ' 1
= E(_i) e®e[aw(1)l“,|aﬂ_(s+t)]f®f )

ks

where a ¢ A if i<, a; e A' if i> s, the sum is taken over all

(s,t)-shuffles 7w (see [15,p. 17]), and




- 222 -

p(m) = E (1 + deg ai)(i + deg as+,),
(i) > w(s+j) J

’I"hé unnormalized bar construction E® T(A)@ F admits a structure of simplicial
graded A-module wunder which £ and m are in fact the classical normalized
Alexander-Whitney and shuffle maps. Define D = EB (W ):‘B(C) —> B(C)® B(C).
Then D gives B(C) a structure of coassociative coalgebra; if C is unital, then
B(C) is unital and augmented, If E = A, then D coincides with the morphism

of left A-modules defined inductively by

(8) DI ¥) = S [ 1®[ J it ¢(5)= > £®f", and
(9) DS =S8D, where S=S®@1+ c6®S on B(C)® B(C).
Clearly D on B(C) = E@AB(E) is the composite

E ®AB(E)-4-‘—@—P=—> EQE ®AB(‘C') ® B(E)-L@—I—@i?v E ®AB(”C") QFE ®AB('5).

We define the cup product on B*(C) to be the composite

ot
R

D > B=l<(c)°

(o)  u:pE)@BC) L= [B(C)®BEO)

We have the following analog of Lemma 7.1; a more precise analog (in terms
of £ ) could also be proven, and an alternative proof by semi-simplicial rather

than homological techniques is available.

Lemma 11.3 . Let 7 be a subgroup of Z}r and let W be a Aw-free resolution
of A such that Wo = Am with Am generator e . Let Ce £ . Bigrade
WQ®B(C) by [W® B(C)]St = E Wi® B,t(C). Then there exists a morphism of

itj=s )
bigraded Am-complexes A:W ®B(C)—> B(C)r which is natural in C and satis-

fies the following properties:

3

- (i) Aw®b)=0 if be Bo L(C) and w e Wi for i>0

9

(ii) A(eo®b) = D(b) if b e B(C), where D is the iterated coproduct

(iii) If E = A, then A is a morphism of left A-modules, where A operates
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deg w deg a

on W®B(C) by a(w®hb) = (-1) W& ab,

'»(‘iv')‘f‘- A(Wl® Bst(C)) =0 if i>‘(r»-tl_)sa

Moreover, any two such A are naturally Aw-homotopic.

Proof. Observe first that the cocommutativity of A ensures that (iii) is
compatible with the w-equivariance of A, Observe next that it suffices to prove
the result when E = A, since we can then define A on W& B(C) = E®AW® B(C)

to be the composite

U

E®,W® B(C) L2, kg, B(C)" > [E£®,B(C)]"
where U is the evident shuffle, We define A& on Wi® Bst(E) by induction on i
and for fixed i by induction on s. Formula (i) defines A for s =0 andalli> 0
and formula (ii) and m-equivariance defines A for i=0 andall s. Let i =1
and s 21 and assume thaf A has been defined for i'<i and for our given i and
s' < s. Let {Wk} be a An-basis for Wie By (iii) and m-equivariance, it suffices
to define A(w® S(y)) for we {Wk} and y e Bs-i,’!‘(a)" Let

o 1

5= S (0e)'®S® 171"
i=1

(v) Alw®S(y)) = (-1)9°8 Vsa(w® y) + SA(d(w) ® S(y)).

on B(C)". Then dS +Sd=1 - (ce)’. We define

Observe that (v) is equivalent to (ii) on w = e, and that (v) is well-defined by the
induction hypothesis. To verify that dA = Ad, write (v) in the form
A(1®S)=SA1®1 +d®S). Then:

da(1 ® 8)

dSA(1®1 +d®8S)=(1 - SA)A(1R1 + dQ S)

1

[A -SA(A®1 +1Qd)](1®1 +d®S)

A+ A(A®S) - SA(AR 1) - SA(L1® d) +SA(A® 4as)

A+AA®S) - SA(A® 1) - SA(1® d) +SA(d® 1) - SA(d® S4)

A+A(A®S) - A(1®dAS) = A +A(d®S) - A + A1 R dS)

Ad®1 +1®d4)(1QS)

(where no terms involving ¢g& are relevant by (i) and an easy verification). Thus
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(i), (ii), (iii), and (v), together with m-equivariance, provide an explicit construction

‘of a natural morphism A of Aw-complexes. To see that (iv) holds, observe that

if we {Wk} -l Wi and y = ai[azl . aé]f, then A(w® S(y)) is a linear combina~-

tion in B(E)r of terms involving precisely fhe factors ai(j) and f(j) in the

B(C), where qJ(ai) = z ai(1)® coe & ai(r) and (f) = Ef(i)(g be . ® f(r) give

the iterated coproducts. Thus no summand of A(w® S(y)) can have homological

degree greater than rs. Since A(w® S(y)) has homological degree its > rs if

i‘> (r-1)s, this proves (iv). The uﬁiqueness of A up to Am-homotopy follows
—\T

easily by use of the contracting homotopy S on B(C) .

We now pass to the category (P(m, 00,/A) of Defitions 2.1.

Definition 11,4, Let Ce¢ & . Let a:B (C)" —> [B(C)*]" be the natural
map and define a Am-morphism 6:WQ B*(C)v-——> B>:<(C)i:}! by the formula
(11)  e(w®x)(k) = (-1)%°EV EX L A(w®K), we W, xe B (C)F, ke B(C).
Since © may be defined for == 21_ and then factored through j:W—>V as in
Definition 2.1, and the resulting composite is naturally Am-homotopic to the
original 6 defined in terms of W, @ satisfies condition (ii) of Definition 2.1. By
the lemma, formula (11) specializes to give
(12) 8(e0®x) = D¥a(x) for any X € B*(C)r and
(13) o(w® x) = é(w)D*cz(x) for any x e BO’*(C)r and we W,
By (10) and (12), ® satisfies condition (i) of Definition 2.41. Since € is natural
on morphisms in (, we thus obtain a functor I E— P(r, o,A) by setting
r(C) = (B*(C), ®) on objects and I'(y) = B*(y) on morphisms. By (13), if C is
unital in C , then I'(C) is unital in F (my00,A), If A= Zp, m is cyclic of
order p, and C = E@ Zp where 8 is Z-free (that is, E,’K, and (f are Z-free),
then we agree to choose 8 for C to be the mod p reduction of 6 for Cj T (C)

will thus be reduced mod p. Note that if x ¢ B (C) has bidegree (s,t), then

8(w ®x) has bidegree (s - degw,t). W@B*(C)r and B*(C) should be thought of
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as rega’:ﬁded by total degree in defining the functor I,

Observe that, by Definition 6.1, we now have gi-products in B*(C) for any
;:"AC. Eé . When A = Zp’ the results of Proposition 2.3 will clearly apply to the
Steenrod operations in H*(C)9 and the following lemmas will imply the applicability

of the external Cartan formula and the Adem relations,

Lemma 1i.5. For any objects C and C' in ¢ , the following diagram

is Am-homotopy commutative.

weB (c®cH” o > B (C®C)
1@ (&% [1®((n™)” " | ot
w® B (C)®B (C)]f —2— B'(C)®B¥(C)

Proof, It suffices to prove the Am-homotopy commutativity of the diagram

UARA) IR TR U@ 1 1)

W ® B(C)® B(C") [B(C)® B(C")]"

r

1®E 1®n £ n

W®B(CRC') > B(CRC)”

and this diagram need only be studied with C and C' replaced by C and C',
—— — — r
Since B(C®T"" and [B(C)®B(C')]" have obvious contracting homotopies, the

result follows by an easy double induction like that in the proof of Lemma 11,3,

Corollary 11,6, . If C ¢ G , then I'(C) is a Cartan object of {(m, 00,A)

Lemma 11.7. If Ce & , A= Zp, then I'(C) is an Adem object of & (p, ).

Proof, Precisely as inthe proof of Lemma 7.8, it suffices to prove the

T-homotopy commutativity of the following diagram:
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W, ® W2p®B(C) w81, v®B(C)

T® 1 aP

WZP®W1 ® B(C) —J%wzp«gm B(C)P —2— s (W,® B(C))P

2
We need only consider this diagram with C replaced by C, and, since B(?f)p

has a contracting homotopy, the result then holds by another easy double induction.
The £0116Wing theorem summarizes the properties of the P° and ﬁPS on

H*QC) for Ce & , A= Zp° We shall be very precise as to grading since there is

considerable confusion oﬁ this point in the literature. We are thinking of H*(C)

as regraded by total degree in applying our gene ral theory. An alternative

formulation that is sometimes convenient will be given after the theorem.

Theorem 11.8. Let Ce e s N = an Then there exist natural homomorph-

isms P’ and, if p> 2, pP' defined on H*(C), with

S"§"i“t9 Zt(

(a) PhLE%YC)—>H C) if p=2;

() PhEC)— g H2i-t)(p-1), Pty g
ﬁPI: HSt(C) . Hs+1+(21—t)(p-1), pt(c) i p> 2.
These operations satisfy the following properties:

Y=o if p= 2 and either i<t or i> s+t

—
e
S
v
I

)
I

0 if p> 2 and either 2i<t or 2i> s+t
ﬁPi= 0 if p> 2 and either 2i<t or 2i2s+t
(ii) Pi(x)=xp if p=2and i=s+t orif p>2and 2i= st
(iii) If C= E@ Zp, where C is Z-free, then 5Pi_1 = i]?’i if p= 2 and ﬁPi
is the composition of B and Pi if p> 2.
v) Pl= S P@P™ and gl =S PPt +Plepp Y or H(Cc®C;

the internal Cartan formula is satisfied in H (C).
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(v) If y:C'—>C and fJ:C—> C" are unital morphisms in ﬁ such that

gy = 0 on the cokernels of the units, then oP' = P'¢ “and ‘0‘[3P1 = - BPIO‘,

s-1,t

' t
where oiH' (C")—>H (C') is the suspension.

(vi) The P' and BPl satisfy the Adem relations as stated in Corollary 5.1,
Proof. If xe HSt(C), then Di(x) = 6,(ei®xp) € I—Il:)snl’pt(C)° The P’ and

sk

ﬁPl are defined by formulas (5.1) and (5.2), with x having its total degree

q = s+t: thus (a) and (b) are valid. The vanishing of Plz(x) for i<t if p=2
i and of Bg Pl(x) for 2i<t if p> 2 follows from part (iv) of Lemma 11.3. The

remainder of the theorem follows immediately from our general theory and the

previous lemmas. For (v), note that the composite
s % s B* *
B (C") _.___.LB (#) > B (C) -——-———-——>(Y) B (C') is zero on the kernel of the augmentation

B (C") —> Zp° An alternative formulation of (v) in the non-unital case can easily

be obtained.
# In addition to (v), the Kudo transgression theorem, Theorem 3.4, applies to
appropriate spectral sequences involving objects of (5 . The hypothesis of (iii)

i ; . .
is seldom satisfied in practice, and PP  is generally an independent operation

having nothing to do with any Bockstein. There is an alternative definition of the

operations, which amounts to the following regrading of our operations . Define

~ ] 3 ‘HZ .
(c) P=sq' =p"" u%c)—u®™ ) if p=2g
() . P1+'t: 1S Zt(C) ‘ Hs+21(p-1), Zpt(c) and

61*‘51 _ ﬁp1-i~t S Zt(C) Hs+21(p—1)+1, Zpt(c) i o2,

This regrading is reasonable if p = 2, but has the effect of eliminating all opera-=

. st . ‘ . .
tions on H (C) for t odd if p > 2; of course, these operations are non-trivial
. . o . st . i
since, if s andt are odd, the p-th power operation on H (C) is non-trivial in
. . vi A1
general, The results of the theorem can easily be transcribed for the P and BP ;
for example, the Adem relations are still correct precisely as stated but with all

i i i 21 s . S
P" and BP" replaced by P and BP . The motivation for the reindexing is just

. [ 4e] . N . . . .
the desire to make P the first non-trivial operation. This operation is of
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particular importance in the applications, and we now evaluate it.

. v;-.ii)efinition 11.9., Let C=(E,A,F)e g » where E,A,and F are positively
~ graded and of finite type. Then B¥*(C) fn‘ay be identified with
E'Q@TIA")@F. Define \ :B°Y(C) —> B% PYC) by
Mele |l lp) = E.p[afipl”., [« P1gP .
st

Then N commutes with the differential and induces A, tH (C)—> H>’ pt(C)‘. Of

s

course, if p > 2, then \( é[aii.,, [as]p') =0 if ¢ , @, or ¢ has odd degree

and thus A, =0 if t is odd.

Proposition 11,10, Let C = (E,A,F)e¢ & , where E,A, and F are

positively graded and of finite type. Let x ¢ Hs’t(C) where t is even if p > 2,
Then ﬁfjo(x) = £ (x).

‘Proof, Let y = ela . las]f « B pt(C)° A straightforward, but tedious,

e

calculation demonstrates that

A(es(p_1)® y) = > (-1)™M% (--s)mi(e‘[a'1 [... [a"s]f") + Nz,
where the sum is taken over the symmetric summands ¢'® ... ® e', ai@ ces D ai,
and £'® ... Qf' of the iterated coproducts. (A moment's reflection on the case
C = (Zp, ZpG’ Zp)’ where G is a group, and a glance at Lemma 8.2 should con-
vince the reader of the plausibility of this statement.) The result now follows
easily from the definitions,

Remarks 11.14. If p> 2, then it can be shown by a tedious calculation that
1,2t

~o P P
-BP (x) = <x>% for xe H (C), where C = (Zp,A, Zp) ¢ € and <x>P is as
defined in Remarks 6.9. It is possible that -B%S(x) =<x>P forxe HZSH’ Zt(C)

and any C ¢ C » but this appears to be difficult to prove.
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