E_ SPACES, GROUP COMPLETIONS, AND PERMUTATIVE CATEGORIES

J. P, MAY

In the last few years, a number of authors have developed com-
peting theories of iterated loop spaces. Among the desirable properties
of such a theory are:

(1) A recognition principle for n-fold loop spaces, 1 = n = «, which
applies when n = % to such spaces at Top, BF, PL /O, etc. and
to the classifying spaces of categories with appropriate structure.

(2) An approximation theorem which describes the homotopy type of
QnEnX, 1l =n = %, in terms of iterated smash products of X
and canonical spaces.

(3) A theory of homology operations on n-fold loop spaces, 1 =n =
at least sufficient to describe H*QnZnX, with all structure in
sight, as a functor of H_X.

(4) Computations and applications of the homology operations on
interesting spaces to which (1) applies.

In addition, rigor and aesthetics dictate (5) and suggest (6).

(5) Complete proofs of all non-trivial technical details are to be given,
(6) Only simple and easily visualized topological constructions are to
be used.

Point (5) is particularly important since several quite plausible
sketched proofs of recognition principles have foundered on seemingly
minor technical details. At the moment, the author's theory [17], which
shall be referred to as [G], provides the only published solution to (1)
and (2) which makes any claim to satisfy (5). For this reason, and be-
cause it includes the deeper cases 1 < n< <« of (1) and (2) as well as
machinery designed for use in (3) and (4), [G] is quite lengthy. The main
purpose of the present paper is to outline and to generalize to non-connec-
ted cases the solution of (1) and (2) in the case n = «. The present

proofs will not use the solution to (1) and (2) for n < e, The recognition
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principle will be proven in §2, after the notion of a group completion is
discussed in §1. In §3 we obtain some consistency statements concerning
loop spaces and classifying spaces of E_ spaces and discuss various
approximation theorems. Finally, we demonstrate in §4 that our recog-
nition principle applies in particular to the classifying spaces of per-
mutative categories; the competing theories of Segal [26], Anderson

[1, 2], and Tornehave [28] are designed primarily for application to such
spaces. It follows that our theory can be used to construct algebraic
K-theory.

In an appendix, we sharpen some of the results of [G]; these
improvements are required in order to handle non-connected spaces.

I would like to emphasize that the present theory is a synthesis
which incorporates many ideas borrowed from or inspired by the papers
of Dyer and Lashof [11], Milgram [20], Boardman and Vogt [6, 7], Beck
[5], and (in the non-connected case) Barratt, Priddy, and Quillen [3, 4,
22, 24]. My aim has been to mold these disparate lines of thought into
a single coherent theory, geared towards explicit calculations in homo-
logy and homotopy and baséd on an absolute minimum of categorical and
simplicial machinery. -

The key topological applications and homoldgica.l calculations
based on this theory will appear in [18]. That paper will also contain a
multiplicative elaboration of the theory which studies E_, ring spaces
and applies in particular to the spaces BF used in §4 to define the

K-theory of a commutative topological ring,.

§1. Group completions

The notion of a group completion will be central to our recognition
principle for non-connected spaces. The following development is moti-
vated by Quillen's generalization [24] of the work of Barratt and Priddy

[4].

Definition 1.1. Let G be a monoid. Define the translation
category & of G to be the category with objects the elements of G and

with morphisms from g' to g" those elements g € G such that

g'g=g"
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Lemma 1.2. Let G be acentral submonoid of a ring R and let
i:R ->R[G'1] denote the localization of R at G; thus i(g) is invertible

for g € G and i is universal with this property. Then R[G_l] is iso-

morphic as a (left and right} R-module to the limit of that functor from 6

to the category of R-modules which sends each object to R and each

morphism g : g'—+g" to multiplication by g.

Definition 1. 3. An H-space X will be said to be admissible if
X is homotopy associative and if left translation by any given element of
X is homotopic to right translation by the same element. A group com-
pletion g : X =Y of X is an H-map between admissible H-spaces such
that Y is grouplike (wOY is a group) and the unique morphism of k-

algebras
- -1
g,  H (X k)['n0 X} = H,(Y; k)

which extends g, is an isomorphism for all commutative coefficient

rings k.

Remark 1. 4. By the following argument of Quillen [24], the
condition on E* will be satisfied if it is satisfied for k = Zp (the integers
mod p) for all primes p and for k = Q (the rationals). For any Abelian
group A, nOX acts on H_(X; A) and H_(X; A)[wBIX] can be defined as
the evident limit (and is a homological functor of A). Clearly, given the

condition on g, for the cited k,
2, H (X A7 ' X] = H,(Y; A)

will be an isomorphism of Abelian groups for any Q-module A, for any

Zp-module A for A=1Z 0 (by induction on n), and for A any torsion

P _
group (by passage to limits). Now the conclusion follows by use of the

exact sequence
0=+tk=+k—k ®Z Q—=tk—0,

where tk denotes the torsion subgroup of k.
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Remark 1.5. If X is a grouplike admissible H-space, then X
is H-equivalent to 1TDX X Xo’ where X0 denotes the component of the
identity element [see, e.g., 18, 4.6]. Thus, by the Whitehead theorem
for connected H-spaces, a group completion of a grouplike admissible

H-space is a weak homotopy equivalence.

The following theorem is a special case of a result stated by
Quillen [24, §9).

Theorem 1. 6. Let G be a topological monoid such that G and

QBG are admissible H-spaces. Then the natural inclusion §:G = QBG

is a group completion.

Here B denote the standard classifying space functor (described
in §3). According to Quillen, the admissibility of QBG need not be
assumed, but I do not know how to prove the more general result. This
hypothesis is clearly satisfied if G is strongly homotopy commutative,
since BG is then an H-space {27, p. 251 and 269] and thus QBG is
homotopy commutative. As I shall show in [19], Quillen's proof can be

simplified under the present hypotheses.

§2. The recognition principle for E_ spaces

Recall from [G, 1.1 and 3.5] that an E_ operad C is a suitably
compatible coliection of contractible spaces €(j) on which the symmetric
group 2]. acts freely. Thus the orbit spaces G(j)/E]. are K(Ej, 1)'s.
An action 6 of © on a space X is a suitably compatible collection of
Ej—equivariant maps 9}. : C(j) X x)»x [G, 1.2 and 1. 4]. €[J] denotes
the category of @-spaces (X, 6). An E_  space is a C-space over some
E_ operad C. Givenan E_ space (X, 6) and a prime p, the map

Gp* : H,(C(p) XZ: Xp) = H X determines homology operations on HX.

These operationspwill be studied and calculated on some of the spaces of
primary geometric interest in [18]; see [16] for references and a partial
summary.

Recall from [G, §2] that an operad C determines a monad

(C, 4, 1) such that an action 6 of € on X is equivalent to an action
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:CX=X of C on X. As aspace, CX = LL C(j) XE X]/(z), where

J
the equivalence relation uses base-point identifications to glue the

e() X
formatibns g : CCX—=CX and 7 : X = CX are given by the compatibility

x! together (as in the proof of A. 2 below). The natural trans-

conditions in the definition of an operad.

A monad C can act from the right on a functor F as well as
from the left on an object X [G, 9.4]. Given such a triple (F, C, X)
in the category J (of nice [G, p. 1] based spaces), we can construct a
space B(F, C, X) by forming the geometric realization ((G, 11.1}], or
see the proof of A, 4 below) of the simplicial space B,(F, C, X) defined
in [G, 9.6]. The space B, (F, C, X) of q-simplices is FCIX (where
c? is the g-fold composite); the faces are given by FC =+ F, by CC—+C
applied in successive positions, and by CX —+ X; the degeneracies are
given by 1 = C applied in successive positions. In an obvious sense,
B(F, C, X) is a functor of all three variables [G, %9.6]. B(F, C, X) =
11 PCIX x Aq /(=), where = gives the appropriate face and degeneracy
identifications. Thus (see [G, 9.2 and 11, 8]) any map p : Y = FX
determines a map T(p) = [T*(p)\ : Y=+ B(F, C, X) and any map
A: FX =Y such that Aao = Aal : FCX =+ Y determines a map
e(\) = I&:*(A)| : B(F, C, X) =+ Y. This two-sided bar construction provides
all of the spaces and maps required in our theory.

We shall need to know that E _ spaces have group completions in
order to prove that they have group completions which are infinite loop

spaces.

Lemma 2.1. Let € bean E_ operad. Then there is a functor

G : C[Jg]= g and a natural transformation g:1 -G such that GX is an

admissible H-space and g : X = GX is a group completion for all €-

spaces (X, @)

Proof. As explained in [G, 3.11], the E_ space (X, 6) deter-
mines an A __ space (X, 9171), ™ @ X IM=C, Let C XM denote the
monad associated to € X M. As explained in [G, 13. 5], the A  space
(X, 91:1) determines a topological monoid B(M, C X M, X) and maps of

€ X M -gpaces (in particular of H-spaces)

65



e(om.) B(7,, 1, 1)

X+ B(C XM, CXM, X) »B(M, CXM, X)

such that e:(Bnl) is a strong deformation retraction with right inverse
7(n). Since T @ X M=+ M is a local E-equivalence (by [G, 3.7 or
3.11)), B(nz, 1, 1) is a homotopy equivalence by A. 2 (ii) and A. 4 (ii)
of the appendix (which show that the connectivity hypothesis of [G, 13.5

(ii)] is unnecessary). Define
GX = €BB(M, C X M, X)

and define g : X =* GX to be the composite

B(7_, 1, 1)
7(n) 2 £
X——B(C XM, CXM, X) +>B(M, C XM, X)—>GX.

Since X is an E_ space, it is certainly strongly homotopy commutative.
The result follows immediately from Theorem 1, 6.

Next, recall the definition, [G, 4. 1], of the little cubes operads
(Bn. The points of (‘Zn(j) are to be thought of as j-tuples of disjoint
patches on the n-sphere, and Gn(j) is Ej-equivaria.ntly homotopy equi-
valent to the configuration space F(Rrl ;j) of j-tuples of distinct points
of R" via the map which sends patches to their center points [G, 4. 8].
There is an obvious natural action Gn of @n on n-fold loop spaces
[G, 5.1]. (These results are due to Boardman and Vogt [7].) By use of
Cohen's calculations of H*(F(Rn; j)/Z)p) [10], the maps

(60 © B (€, (0) Xy, (@"K0P) ~ H, "X

p
can be used to obtain a complete theory of homology operations on n-fold
loop spaces; we recall that, for finite n and odd p, the operations of
Dyer and Lashof [11] were insufficient to allow computation of H*an}nx
and Milgram's calculation [20] of H*annx (for connected X) did not
yield convenient operations. ‘

We should point out that we are using Z to denote the reduced
suspension, whereas S was used in [G]; the purpose of this change is to
emphasize by the notation that =" is a functor and not a sphere. Define
@ :CX- 2"2"X to be the composite
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Cnn Gn

C X—t cnsznznx—-——+ Q"="x,
where n : X~ Q"="X is the standard inclusion. Our approximation
theorem, proven in [G, §6 and §7], asserts that @ is a weak homotopy
equivalence if (and, by [G, 8.14], only if) X is connected. By the
Whitehead theorem for connected H-spaces, this assertion in the case

n= % is also a consequence of the following result.

Theorem 2.2, o :C_X=QX=lim Q"="X isa group com-

o0
-

pletion for every space X € J.

Here o  is amap of C_-spaces [G, 5.2] and in particular of
admissible H spaces [G, p. 4]. The homologies of C_X and QX with
Zp coefficients are computed in [18, 4.1 and 4. 2], and it follows im-
mediately from these calculations that the map @ _,, of Definition 1. 3
is an isomorphism; the truth of this assertion for rational coefficients
can be verified by parallel (but much simpler) computations or by appeal
to the form of the Ew—terms of the Bockstein spectral sequences of
C. X and QX [18, 4.13]. (For connected X, H,QX was computed by
Dyer and Lashof [11].)

I am reasonably certain that @ CnX - "= isa group com-
pletion for all X and all n, 1 < n< <, but a rigorous calculation of
H*CnX is not yet available.

By [G, 5.2], a :C - 9"=" is a morphism of monads. By
[G, 9.5], it follows that the adjoint A_: z:“cn -3z" iga C -functor.
Therefore, if X isa @ -space, then B(z", C., X) is defined. This
space should be thought of as an n-fold de-looping of X. In particular,
by [G, 13.1], B(z", C. Q"Y) is weakly homotopy equivalent to Y if
Y is n-connected and B(Zn, Cn’ CnY) is homotopy equivalent to sty
for any Y.

Now suppose given an arbitrary E_ operad C. We wish to use
the o, to study C-spaces. To this end, let SDn denote the product
operad € X @n [G, 3.8] and let zpn : :Dn =+ € and T ﬁ)n - @n
denote the projections. D __ is againan E__ operad and, if (X, 6) is

a C-space, then (X, 61,!/00) is a ‘,Doo—space. Thus we lose no information
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by studying D _-spaces instead of C-spaces. If (X, §) is a D _-space,
then the monad Dn acts on X via the restriction gn of £ to
DXCD X. D_ actson =" via the composite a_ o =7 . Thus

n oo n n n ‘

B(Z", D, X) is defined. We have maps of D_-spaces
n n

g( gn) B(anﬂn, 1, 1) yn
X+—B(D_, D , X) =B«fzn,nn,xy~+9“BQP,Dn,x%

where yn is defined by iteration of the obvious natural comparison
v IQ*YI - QIYI for simplicial spaces Y [G, p. 115]. We are inter-
ested in the limit case, and we can define (see [G, p. 143] for the details)
BX =lim @B b, ., %
i S o L
Visibly BiX = SZBi +1
B X= {BiX}’ from D _[J] to the category £_ of infinite loop sequen-

X, and we thus obtain a functor B_, written

ces. Let W:L =D [J] denote the functor given on objects

Y= {Yili =0} el by WY= (Yo’ 6 .7.), where 6  is the action of
€, sgivenin[G, 5.1]; W is to be thought of as an 'underlying E_ space’
functor, The following recognition theorem compares the categories
D_[J] and £ by comparing WB_ and B _W to the respective identity
functors. In particular, the categories of grouplike D _-spaces and of
connective (Yi is (i-1)-connected) infinite loop sequences are essentially

equivalent.

Theorem 2.3. Let (X, §{) be a D _-space, where D _=CXC

for some E_ operad C. Let 7_: 3D _—+ € _  be the projection. Consider

the following maps of D _-spaces:
e(2) Bla 7 _,1,1) yoo
Xe—— B(Dw, D, X) *BQ,D_, X)—»WB_X = BOX .

(i) €(&) is a strong deformation retraction with right inverse 7(7),

where 7 : X =D _X is given by the unit of D .

(ii) B(a_7_, 1, 1) is a group completion and is therefore a weak

oo 0o?

homotopy equivalence if X is grouplike.

(iii) yoo :B(Q, D, X)—+ BOX is a weak homotopy equivalence.

(iv) The map (= ymB(aoo'noo, 1, 1)7(n) : X = BOX is a group com-

pletion.
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(v) BiX is (m+i)-connected if X is m-connected.
(vi) L_e_t Y= {Yi} € £ _; there is a natural map w: B _WY =Y in

£, such that w = 1 and the following diagram commutes:

wi : BiYo - Yi is a weak homotopy equivalence if Y is connective.

(vii) Let Z € J; then (D_Z, #) is a D _-space, where

p:D D _Z—=+D_2Z is given by the productof D _, and the com-

posite

B a 7
oo o0 00 w .
1
B D Z——B QZ—*Q_Z= {QZZ]

is a strong deformation retraction of infinite loop sequences with

right inverse the adjoint ¢_(tn):Q_Z =+ B_D_Z of the inclusion
Lty 1 Z BODOOZ.

Proof. €(£) and B(a _7_, 1, 1) are realizations of maps of
simplicial D _-spaces and are therefore maps of D _-spaces by [G, 12. 2].
Part (i) holds before realization by [G, 9. 8], hence after realization by

[G, 11.10]. To prove (ii), consider the following commutative diagram:

e(£) B(aoonoo, 1, 1)
X« B(D,, D, X) »B@Q, D, X
g B(gD_, 1, 1) B(zQ, 1, 1)
|G 8*(5)[ B(Ga 7 _, 1, 1)
GX+ B(GD_, D_, X) —B(GQ, D_, X)

Here G, denotes the simplicial functor obtained by applying G in each
degree. B,(GD_, D_, X)=G,B,(D_, D_, X) by [G, 9.7], hence
|G*e*(§)[ makes sense; this map is a homotopy equivalence since we
can apply G, to the simplicial homotopy of [G, 9. 8] and then apply

[G, 11.10]. By the left-hand square, B(gD_, 1, 1) is a group completion

o0?
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since g is. By 2.2 and the fact that, by A.2 (i), n :D _Z—=C_7Z
induces an isomorphism on homology, e 7 :D_Z = QZ is a group
completion for any space Z. Therefore, by the very definition of a

group completion,
Ga 7 :GD_Z=+GQZ and gQ : QZ =~ GQZ
induce isomorphisms on homology for any Z. Thus

B(Ga 7., 1, 1) and B(gQ, 1, 1)

oo’

induce isomorphisms on homology by A. 4 (i). Now (ii) follows from the
right-hand square. The map ym of (iii) is obtained by passage to limits
from the yn (see [G, p. 143]); it is a map of D _-spaces by [G, 12. 4]
and a weak homotopy equivalence by [G, 12. 3]. Now (iv) follows from
(1), (ii), and (iii), and (v) follows from [G, 11.12] (see also A. 5). The
W, in {vi) are defined by passage to loops and limits from the maps
sq&n(l) : B(Zn, Dn’ QnYn) —'Yn, where qbn(l) is the evaluation; the
diagram follows formally [G, p. 146 and p. 130]. Finally, (vii) follows
from [G, 9.9 and 11. 10], which give that "7 isa strong deformation
retract of B(‘En, Dn, DnZ), by passage to loops and limits; see [G,
p. 42-43] for the adjunction ¢ _,

The theorem implies a uniqueness statement for the infinite loop

sequence constructed from an E_  space,

Corollary 2. 4. Suppose given maps of D _-spaces

f g
X, B~ (X, &) = (¥, 6,7,)

such that f is a weak homotopy equivalence, g is a group completion

and Y = {Yi} € £ is connective. Then the maps

BOOX ng w
BwX«—-—-——BmX'—meYO—————»Y

display a weak homotopy equivalence in £ = between B_X and Y.

Observe that there are obvious functors o : £°° - .1300 such that
QJOY= Q]Yo and Q;]Y= Yj for j =0 [G, p. 147]. The following con-
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sequence of 2. 3 (vi) shows in particular that the i-th de-looping functor

Bi is weakly equivalent to the i-fold iterate of Bl.

Corollary 2.5. Let (X, &) be a D -space. Then the map

. — - -] -
w,: BBX=BWa 'B,X~ 2 'BX= B X

is a weak homotopy equivalence for all i = 0.

In [G, 14. 4], the following further information about the homotopy
type of the de-looping BiX is obtained.

Theorem 2. 6. Let (X, &) bea D _-space. For i> 0, the

following maps of D _ -spaces are weak homotopy equivalences:

. B(e 1 2" 1, 1) % _
B(D_Z’,D_, X) »BQZ', D, X) ——»Wﬂ_leX:BiX.

As discussed in [G, p. 155], the Segal spectral sequence of
B(DOOZI, D_, X) converges to H*BiX and has an E°-term which, at

least in principle, is a computable functor of H_X.

§3. Loop spaces and classifying spaces

We shall obtain some useful consistency statements here. As an
application, we shall rederive the Barratt-Quillen [3, 26] homotopy
approximation to QX by relating it to the approximation we have already
given in 2. 3 (vii). Finally, we shall obtain a homology variant of the
recognition theorem which includes Priddy's theorem [22] relating
KE , 1) to Qs’.

Recall from [G, 1.5] that if € is any operad and if (X, 6) isa
@-space, then QX is again a @-space with action defined pointwise and
denoted by $6. By iteration, we have functors Q- C[d] =+ C[Y] for

i> 0.

oo?

Theorem 3.1. Let € bean E_ operad andlet D =€ X € _
with projections ¥ : D.,*¢ and 7 :D _—+C. Let (X, 8) bea

@C-space. Then, for i> 0, there is a D _-space YiX and there are

maps of D _-spaces
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€ 6 - . .
-1 1
(X, 0¥,) < Y.X = (BRX, 6,7,)=WQ B QX

such that @'t and 6 are weak homotopy equivalences. Therefore, if
X is (i-1)-connected, then the infinite loop sequences B_X and

Q-leﬂlx are weakly homotopy equivalent.

Proof. The second statement will follow from the first by use of
2.3 (vi). The basic point is that when taking limits of loop spaces (via
Q"X - Qn+1EX) the new coordinate is the last coordinate, whereas when
forming loop spaces the new coordinate is the first coordinate. Since X
isa D _-space via 6y __ and QiX is a D _-space via Qi(eq/m) = (QiB)vJJ

and since the suspensions SDn g :Dn +1 involve only the little cubes

o

coordinates, it is plausible that our categorical constructions can be
suspended so as to free the first i coordinates. The detailed construc-
tions occupy much of [G, §14] and YiX, g, and 6 are specified in the
statement of [G, 14. 9], We need only indicate here how the connectivity
hypothesis of [G, 14, 9] can be improved. In the proof of [G, 14. 7], we
must show that the map B(5. w'rim, 1, 1) in the bottom diagram of

[G, p. 150] is a weak homotopy equivalence {which will imply that Q €
of the present statement is a weak homotopy equivalence). To prove

this, consider the following commutative diagram (gi — Q' V)

_ e(£.) . B, T ,1,1) o .
i i w0 joo .
QX B(D,, D, 29X - +B(Q'D 2, D, @'X)
| .
g iB(gD o L1 Bee'D =% 1, 1)
|G, (£)] . B(G5, 71 ,1,1) . .
Go'Xe—— "1 BGD, D, 9% i »B(GR'D T, D_, 2'X)

Here Giw'rioo D Z - QiDLOEiZ is a group completion for any Z by

[G, 14.2], 2.2, and A. 2 (applied to the local £-equivalence Tim). By
arguments precisely analogous to those used to prove 2. 3 (ii),

B(le‘riw, 1, 1) is a group completion and thus, since QIX is grouplike,
a weak homotopy equivalence. Again, connectivity was assumed in

[G, 14. 8] because of references to [G, 3.4 and 11. 13], and we can now
refer to A, 2 and A, 4 instead. With these changes, the result follows as

in the proof of [G, 14.9].
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Remark 3.3. If Ye£_ and i> 0, then Qi”WY and WQ'Y are
QIYO together with two different actions DwﬂlYG - QLYO. By [G, 14.10]

and A. 2, these action maps are homotopic.

To relate our de-loopings to the standard classifying space functor,
we require some recollections from [G, §10]. If U is any category with
finite products, then the notions of a monoid G in U and of right and
left G-objects Y and X in U are defined. There is an obvious category
@1 with objects such triples (Y, G, X) and there is a two-sided sim-
plicial bar construction B, : GU—+ 8 When U is the category of
(nice, unbased) spaces, we can compose B, with geometric realization
to obtain a functor B : QU= U. Indeed, this construction is just another
application of that used in the previous section. We shall use B(Y, G, X)
to study the classification of various types of fibrations in [19]. Let

6 : G = * be the unique map onto the one-point G-space * and define
p= B(1, 1, 8) : EG= B(*, G, G) = B(*, G, *) = BG.

BG is the standard classifying space of the monoid G, EG is a con-
tractible right G-space, and p is a principal quasi G-fibration if G is
grouplike (or G-bundle if G is a group).

Now, until otherwise specified, let C be any operad. By
[G, 1. 6 and 1. 7], C{7] has finite products. By [G, 12. 2], the geometric
realization of a simplicial C-space is a C-space. Thus B? = [B*?I
defines a functor QC[7] = €[T]. An object (Y, G, X) of GC[T] consists
of a topological monoid G and right and left G-spaces Y and X such
that Y, G, and X are ©C-spaces and the product and unit of G and the
actions of G on Y and on X are maps of C-spaces. For clarity, write
(G, 6, ¢) for a monoid in @C[T], where 6 is the actionof € and ¢ is
the monoid product. The unit condition ensures that the base-point (for 6)
coincides with the identity element e (for ¢). The product ¢ need not
be {and in practice is not) 92(c) for any element c € €(2), but we have

the following observation.

Lemma 3.4. Let (G, 6, ¢) be a monoid in e[T] I e(l) is

connected, then ¢ is homotopic to Bz(c) for any c¢ € C(2).
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Proof. Write ¢(g, g') = gg' and 92(c)(g, g')=g~ g'. Since
¢ is a map of C-spaces, (g,g) ~ (g18}) = (g, ~ g])(g, ~ g}) and there-
fore g " g‘2 = (g1 ~ e)le ~ g'z). Since e is a two-sided homotopy

identity for ~, by [G, p. 4], the conclusion follows.

The following result asserts the existence and essential unique-

ness of classifying spaces in €[7] for monoids in C[T].

Proposition 3.5. Let (G, 6, ¢) be a monoid in €[7]. Then
BG and EG admit actions Bf and Ef6 of C such that EG is a right
G-space in C[T] and p : EG— BG is a map of C-spaces. If G is

grouplike and if p' : E' = B' is a map of C-spaces and a principal quasi

G-fibration such that E' is contractible and is a right G-space in C[7,

then B' is weakly homotopy equivalent as a C-space to BG.

Proof. Consider the following commutative diagram:

e(d) q
E'«—B(E', G, G) ———B(*, G, G) = EG

p' p p
e(p') q

B"‘———“B(E', G, *)_—’QB(*; G: *) = BG

Here X : E' X G~ E' is the given right action, &(?) = [s*(?)‘ with €,
as in [G, 9.2], p= B(1, 1, &), and q = B(5, 1, 1). All maps are
realizations of maps of simplicial C-spaces and &(A) and q are
realizations of maps of simplicial right G-spaces in C[7]. Since p'
and (see [19]) both maps p are principal quasi G-fibrations with con-
tractible total spaces, (p') and the bottom map q are weak homotopy
equivalences.

The comparison of G to BG can also be carried out in C[T].

Proposition 3. 6. Let (G, ¢, ¢) be a monoid in €[T]. Then the

natural inclusion ¢ : G =~ QBG is a map of C-spaces.

Proof. £(g)(t) = ’[g], (t, l-t)l for g € G and t €I, where [g]
is g regarded as a l-simplex of B,G and (t, 1-t) € A B is the
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composite

-1 IB BI
CBG = ¢|B,G|——|c,B,G|———|B,G| = BG,

where B,f is the simplicial action specified on q-simplices by
qu = 6 and where v is the homeomorphism of [G, 12.2]. Therefore,

if ¢ € C(j), g; €&, and t €1, then
(QBG)j(c, g)s -nvs C(gj))(t): (B9)j(c, Cleg ), ..., §’(gj)(t))
= (BQ)](C, I[gl]’ (t, l't) ’y vy ‘[gj]r (t: l_t)l)
[B*6| |[C, [gl]’ L ] [g]]]’ (ta l_t)’
“9](0, gl’ vy gj)], (t) l‘t”

= CB](C: g17 s ey g])(t)

(Here |[c; [gl], ceny [g].]] is an element of CB, G = CG.)

Returning to the context of E spaces, we can now compare our

de-looping B1 to the classifying space functor B.

Theorem 3.7. Let € bean E _ operadandlet D =€ X C
with projection y_ : D _—=C. Let (G, 6, ¢) be a monoid in C[T].
Then (QBG, ©@B6 ° y_) is weakly homotopy equivalent as a D _-space

to WB_G and (BG, B6 ° ¢ _) is weakly homotopy equivalent as a

D -space to WQ'leG (which has underlying space B1 G). Therefore

the infinite loop sequences B_QBG, B_G, and @B_BG are all weakly

homotopy equivalent.

Proof. Since {:G—+ QBG is amap of D _-spaces and a group
completion, B_¢ : B _G = B_OBG is defined and is a weak homotopy
equivalence of infinite loop sequences. This obviously implies that
B.( : WQ 'BG WS 'B_QBG is a weak homotopy equivalence of D -
spaces for i = 0. When i= 0, WB_QBG is weakly homotopy equivalent
as a D _-space to @BG by 2.3. When i=1, WQ 'B_2BG is weakly
homotopy equivalent as a D _-space to BG by 3.2. The last statement
follows by use of 2. 3 (vi).

Barratt [3] and Quillen [unpublished; see Segal [26]] have given
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approximations to QX. The key fact behind any such result is 2. 2: any
natural group completion of CX, where € is an E_ operad, should
approximate QX. In this sense, 2. 3 (vii) is another such approximation
theorem and so is [G, 6. 4], which asserts that QCZX approximates QX.
Barratt and Quillen focus attention (implicitly, see [G, 6. 5]) on one par-
ticular E __ operad, namely D = DM, as defined in [G, p. 161]. This is
a 'minimal’ E_ operad in that D(1) is a point; D(j) is the normalized
version of Milnor's universal bundle for E]. (see 4.7 and 4. 8), Let

(D, i, 1) be the monad associated to D. As shown in [G, p. 161}, DX

is a topological monoid; denote its product by &.

Theorem 3.7. For all X € 7, (DX, p, ®) is a monoid in D[T
and BDX is weakly homotopy equivalent as a D _-space to QX (that is,
to wWQ_X), where D _=D X € _,

Proof. Let ¢ € D(j) and let [di; yi], [ei, Zi] eDX, 1 =i=<j.
By [G; 1. 7, 2.4 (iii), and p. 161}, in order to show that ® is a map of
D-spaces we must verify the formula

’y" z 7"'7Z‘]

[(c; dl, cens d].)GBy(c;el,...,e.);y ]

j 1 Yy By

ey V. Z.]

Z, . i %

=[vc;d, De, ..., d; & ej);yl,

By [G, 15.1], v is obtained by applying the product-preserving functor
|D*?[ (see [G, 10.2]) to y for the operad M of [G, 3.1]. On the level
of symmetric groups (that is, in M), if 7® 7' denotes the permutation

of successive blocks of letters determined by 7 and 7', then

WO T, e, T)=T @&, &7 ,
Yoot o ()

hence

r(0; Tir oo Tj)@V(U;I-Ll, v H]-)= o, T $H1, ) Tj@ﬂj)v
for a certain permutation v {(which shuffles blocks of letters). It
follows {by a diagram chase) that the same relation holds in D, and

the desired equality results in view of the equivariance identifications

used to define DX. By the previous theorem, Q2BDX is weakly homotopy
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equivalent as a © _-space to WB_DX. The projection ¥ _:D_X - DX

is a map of D _-spaces and induces an isomorphism on homology by

A.2 (i), By 2.3, BO'Poo : WB_D _X—=+WB_DX induces an isomorphism
on homology and is therefore a weak homotopy equivalence of D -spaces.

Now the conclusion follows from 2. 3 (vii).

The most striking instance of the theorem is the case X = SO,
when, by [G, 8.11], DS’ = 11 SD(]')/EJ. and the assertion is that QS° is
homotopy equivalent to the group completion QB LL K(E]., 1). We shall
obtain a related homology approximation to QX in [18, §5]; when
X = SO, this result will reduce to Priddy's theorem [22] which states
that K(Z _, 1) XZ is homologically equivalent to QSO. We here give
another instance of the same type of homology approximation which also

contains Priddy's theorem.

Construction 3.8, Let G be the free monoid on one generator
g and let € be any operad. Consider the category an object of which is
a C-space (X, 0) together with an inclusion of monoids G C nOX and
a chosen base-point a € g; morphisms are to preserve all of these data.
Construct a functor from this category to spaces as follows. Fix an
element c¢ € €(2). Define p(a) : X+ X by p(a)(x) = 92(x)(x, a); thus,
p(a) is right translation by a. Assume (for simplicity) or arrange (by

use of mapping cylinders) that p(a) : X =X is a cofibration, where

n n+1
X denotes the component g" n=0. Then define X to be the limit
of the Xn under the maps p(a); clearly morphisms f in our domain

category determine maps [ by passage to limits.

Proposition 3.9. Let D =€ X €_ where € isan E_

operad such that €(j), j = 1, has the Z)].—equivariant homotopy type of

a CW free Zj—complex. Let (X, &) be a D _-space suchthat X has

the homotopy type of a CW-complex and nOX is a free monoid on one

generator g. Let (Box)o denote the component of the base-point of
B X. Then there is a map 1: X~ (BoX)o such that

L, H, (X; k) = H*((BOX)O; k) is an isomorphism of algebras for all com-

mutative rings k.
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Proof. By 3. 8 applied to the operad D __, we have spaces and

maps

— B(e 7, 1,1) 37 =
D, X »B(Q, D, X)X B X;

the relevant inclusions of G = ‘JTOX are evident. By A. 3, A. 6, and
Milnor's theorem [21], all spaces in sight have the homotopy type of
CW-complexes. &(£) and the natural inclusion of (B X) in EOX are
homotopy equivalences (since &€(&) and each p(a) : (Box)n - (Box)n+1
are homotopy equivalences); choose homotopy inverses 7(7) and A

and define
T=2xey oBlagr, 1, 1) o T(n).

H*()'(; k) is a well-defined algebra since TJ'OX is central in the associative
algebra H_(X; k), and ¢, (x) = xo g™ for x e H*(Xn; k) since the
restriction of A to (Box)n is homotopic to right translation by any point
in the component g " € WOBUX. For any D_-space X, 1.2, 1.5, and

2. 3 imply that

H*(BOX;k) = kﬂoB0X®H*((B0X)0;k) and H*((BOX)O;k) = limH*(Xa; k)

-

where kﬂOBOX is th{e\%roup ring and the limit is taken over the trfa\ng—
lation functor from 1TOX to k-modules which sends the object ac€¢ 7J’0X
to H*(Xa; k) and the morphism b :a=a' to multiplication by b. In
our case, the isomorphism is realized as X;l : H*((Box)o; k)-bH*(EOX;k),
and the desired conclusion follows from the definition of X,

. Priddy's theorem is obtained by taking X = DOOS? (or X = CSO),
since then X is a K(Z o 1) and BoX is homotopy equivalent to QSO.

§4. Symmetric monoidal and permutative categories

Our goal here is to demonstrate that our theory associates infinite
loop spaces with good properties to categories of the specified types by
observing that the classifying space of a permutative category is naturally
an E_ space. This observation (and it is no more than that: the proof
is a triviality) has been known to Stasheff and myself for some time; it

only acquires usefulness with the present extension of my theory to non-
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connected spaces. We shall also indicate how to use our infinite loop
spaces to define algebraic K-theory and shall compute our KOR, K_IR,
and K'°R for a topological ring R.

Recall that a topological category G is a small category in which
the set 9Q of objects of @ and the set NG of morphisms of G are

(compactly generated Hausdorff) spaces and the four structural functions

Source S: Ma -+ 00, Target T: NG = 04

Identity I:. 0d@ - 0MAQ, Composition C: MG XGGE}TIG -+ MNa

are continuous, where M@ xXg M@ = (g, D)|f, g eM@, Sg=Tf).
Henceforward, in all definitions, theorems, etc., all given categories
are tacitly assumed to be topological and all given functors and natural
transformations are tacitly assumed to be continuous; all constructed
gadgets must be proven to be consistent with the topology. Of course,
if no topology is in sight, we can always impose the discrete topology.
Monoidal, strict monoidal, and symmetric monoidal categories
are defined in [14, VII §1 and §7]. Provided that the collection of iso-
morphism classes of objects forms a set, we can replace a given large,
hence non-topological, (symmetric) monoidal category by an equivalent
small (symmetric) monoidal category simply by choosing any skeleton

[14, p. 91}

Definition 4.1. A permutative category (@,0, *, ¢) isa

symmetric strict monoidal category. In detail, 0 : @ X @ =+ @ is an
associative bifunctor, * € ©Q@ is a two-sided identity for o, and

¢ : 0 =* 07 is a natural transformation (where 7: 3@ X @ =+ @ X @ is the
transposition) such that el = 1, c(Ao*) = JA for A € 0@, and the

following diagram is commutative for A, B, C € 0Q:

AoBOocC ¢ »CoAOB
ID\ %1
ApoCoB
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By a trivial special case of MacLane's coherence theorem [13, 5.1}, all
diagrams built up from 0O , *, and ¢ are commutative.

Following MacLane [14], we are using the neutral symbol ©
rather than ® or ©, which are distractingly suggestive of special cases.
Symmetric monoidal categories are ubiquitous but permutative categories
are seldom found in nature. This is no limitation in view of the following
result, which is due to Isbell [12].

Proposition 4.2. Let & be a monoidal category. Then there is

a naturally equivalent strict monoidal category ®; if G is symmetric,

then ® is permutative.

Proof. Define O® = MOG as a topological monoid where MOQ,
the James construction on @@, is the free topological monoid generated
by ©G subject to the single relation *=e [G, 3.2]. Let 5:0Q = 0B
be the standard inclusion. Write objects of ® by juxtaposition of objects
of @ and define 7 : O® - 0@ by

1T(A...An)=A1D(A2D(A3D...(A DAn)...)), Aieﬁﬁ.

1 n-1

Define 9M® by ®&(B, B')= {B} X @(7B, #B') X {B'}. The singleton
sets are required for disjointness of hom sets and they determine S
and T for ®; I and C for ® are induced from I and C for Q.
MGB is topologized as a subspace of O® X MG X O®, and the four
functions are clearly continuous. 0O : MG X ME -+ MAB and, if @ is
symmetric, the symmetry ¢ of & are determined by the following
morphisms of Q:

1(BOC)——7B07C— 28 4aB'0 7€'~ 4 a(B'n C)

for morphisms (B, f, B') and (C, g, C') of & and

7(BoC) —g—an orC——S  »7Co B i—»:'r(C o B)

for objects B and C of ®; the unlabelled isomorphisms are uniquely
determined by the monoidal structure of @. Define 7 : MMQ = IME by
n(f) = (A, f, A') for f: A= A' and define 7 :MB +INGC by
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7B, g, B'Y)=¢g for g:7B=aB'. Then n and 7 are functors such
that 79 = 1, and the morphisms (B, InB, n7B) of ® define a natural
isomorphism between 1 and n7.

Let (@, O, *, c¢) be afixed permutative category. For 0 € EJ,,
c determines a.natural transformation Cot l:lj - Djo, who:re Z]. acts
on the left of @J by permutation of coordinates and I'.'Jj : @) = @ denotes

the iterate of O ; by coherence, CeCr= C4 We have the following

three lemmas, the first of which is an obser:ration due to Anderson [2];
the other two are direct consequences of coherence: we need only observe
that the assertions make sense on objects. Recall the definition, 1.1, of
the translation category G of a monoid G. Observe that G acts on the
right of G via the product of G. Observe too that if G is a group, then
there is a unique morphism g —=+g' for g, g' € G and a functor with

range Z} is therefore uniquely determined by its object function.

Lemma 4. 3. Fﬂ' j = 0, there is a Zj-equiva.riant functor

c.:z.xal=a@
it

defined, on objects and morphisms respectively, by

clo, A, ..., A)=A a...0A
e S Y o)

and

clfo=>71,f,...,f)=c off ~ o...of _ ).
L ! 0! o 1) o (i)

(¥ j=0, 50 x @° is the unit category, with one object and one mor-

phism, and <, is the functor determined by * € 0Q.)

Lemma 4. 4. The following diagram is commutative for all

j=0, k=0, and j; =0 with j +... +j_=j:
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I, X T, X...XZ xa yx1 >3 x @l
5L Ik C.
]
1Xp a
i j 1><cj X...Xc]. "
TxE o xalx..xZ xg¥ ! ky3 ox @
k j j k
1 k
where u is the evident shuffle isomorphism and the functors
;: Z.XZ., X ,,. X E) -’5. are defined on objects by
ko5 g
;(07 T, T ) =T _ ©... &7 _ .
1 k . 1(1) . 1(k)

Lemma 4.5, For j=0, c, determines a natural isomorphism

between the two composites in the following diagram:

AXy Z

ij X (@ % a)j———-u—mj x 3. x @l x @] AXTX1 5

zjxajxijxaj

~1><t3j c. X ¢

>+ axa

3. x @
j

Here v € 22]. determines the evident shuffle isomorphism, 7 is the

transposition, and A is the diagonal functor.

Now recall the following definition, due to Segal [25].

Definition 4. 6. Let @ be a category. The nerve, or morphism

complex, B,@ of @ is the simplicial space specified as follows:
Bo_giz o4, Blﬁ,z‘mﬂ, andif q > 1

B @ = ONa X . e
q

0g """ xoasxm, q factors MQA;

aO:s and 61:T on Bla; sO=I on Bo(i;
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LS if i=0

Bi[fl, cees fq]: [fl, cees £ 1, fifi+1’ cen, fq] if 0<i<gq for q> 1;
[fl’."’fq—l] if i=gq

Sl oo Bl =0, oo, £ IS =TTE ), £, oo, £ ] for g > 0,

Define the classifying space BG of @ to be the geometric realization
of B,G@. Then B is a functor from the category of (topological) cate-
gories and functors to the category of spaces and maps; B preserves
products by [G, 11.5]. Let 9 denote the category with objects 0 and 1
and a single non-identity morphism 0 -+ 1; B9 is homeomorphic to the
unit interval I. A natural transformation A : F =+ G between functors
@ =+ 4' determines a functor X : @ X § = @' and thus a homotopy

Bx : B& X I~ Bd' between BF and BG.

In [G, §9 and §10], the bar construction was set up in sufficient
generality to ensure that anything which locks like a bar construction is
indeed a bar construction. The above construction is no exception. A
category with object space © is a monoid in the monoidal category of
(topological) O-Graphs [14, p. 49 and 167], and B,G = B_(0, G, 0O)
where O is the identity object of ©-Graph. When 0O is a single point *,
O-Graph is the category U of spaces and the present functor B reduces
to the classifying space functor for topological monoids. We also have the
following familiar special case, the normalized version of Milnor's uni-

versal bundle for topological groups.

Lemma 4. 7. For a topological group G, B& = ’D*GI where
D,G is as defined in [G, 10.2]. Therefore BG and EG are homeomor-

phic as right G-spaces,

+
Proof. DqG =g 1 with faces and degeneracies given by pro-
jections and diagonals. A simplicial homeomorphism B*a DG is

given by g +* g on 0-simplices and by

[g}_‘_gz, LRI I) gq‘-_gq_F-l]H(gl, LECRCEE ) q_+_l)

on g-simplices for q > 0. The second statement follows from [G, 10. 3].

An equally trivial comparison of definitions gives the following
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addendum (compare 4. 4 to the proof of 3, 7).

Lemma 4.8, The E_ operad D of [G, p. 161] satisfies
D(G) = BE] as a rlght Z)J space and its structural maps y coincide with

the maps By: BZ, X BE. X...XBX, =B, j +... +
ps By:BI, i, i iy j =1

Now, by the very definition of an action by an operad [G, 1. 4],

4. 3 and 4. 4 immediately imply the following result,

Theorem 4.9. If (@, o, *, c) is a permutative category, then

the maps

I, = Bc; : D() X (Ba)) = Ba

define a natural action I of the E_ operad D on BG.

Similarly, 4.5 implies the following consistency statement.

Theorem 4.10. If (@, o, *) is a strict monoidal category,

then BG is a topological monoid with product Bo. If @ is permutative,
then (B@, I', Bo) is a homotopy monoid in D[7] in the sense that the

following diagrams are Ej-equivariantly homotopy commutative, j = 0:

. (T x T,
D(j) X (BG x Ba) ] »B@ X BQ
1 X (Bl:l)j Bo
. T,
D(j) x (Bay ) »B@&

In particular, Bo is homotopic to éz(d) for any d € D(2).

Proof. For the last statement, merely replace equalities by

homotopies in the proof of 3. 4,

In the spirit of Quillen's work [23, 24], we suggest the following

as a reasonable construction of algebraic K-theory.

Definition 4.11. For a space X, a permutative category @, and
an integer n, define K'\(X; @) = (X, BnB(i], where B_ is the n-th de-
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looping functor if n= 0 and B_n = .QnBO if n> 0. In particular, de-
fine the K-groups of @ by K"a = nanBG.

For n=0, K '@ = m B BG. We have that K@ is the group
completion of ﬂOBG where, by [G, 11.11], nOBG is the quotient monoid
obtained from 7100& by identifying two components [A] and [A'] when-
ever there is a morphism between A and A'. Thus, if all morphisms of
@ are isomorphisms and 0@ is discrete, then nOB(i is the monoid of
isomorphism classes of objects of @ and K’G is the obvious Grothen-
dieck group.

Now let R be a (topological) ring with unit, By an abuse of
terminology justified by 4. 2, let ¥ C ® denote permutative categories
under @ obtained by choosing skeletons of the categories of finitely
generated free and finitely generated projective left R-modules and their
isomorphisms. Here O0® is given the discrete topology, but Aut P for

P € OB and therefore MNP = 1L Aut P are assumed to be appropriate-
PeO®
ly topologized. (For instance, we could topologize free, hence also pro-

jective, modules in the evident way and then use the compact-open top-
ology.) We assume that each Aut P has the homotopy type of a CW-

complex., Clearly

H B = 1L H,BGL(R, n) and H.B® = L& H,B AutP.
n=0 PeO®

For example, if R is the real numbers (resp., complex numbers)
and if GL{R, n) is topologized as usual, then Kn(X; F) is real (resp.,
complex) connective K-theory, (For n > 0, this requires an easy con-
sistency argument based on the fact that the iterated Bott maps define
morphisms of permutative categories; the details are similar to those in
[18, §6] where a different, more geometric, construction of these K-
theories within the context of E_ spaces is given. )

We use ® to define the K-theory of R; that is, we set
K'R = K'®. For n< 0, we could just as well use ¥. Indeed, the
translation functor (defined in the proof of 3. 9) for BF is clearly co-
final with that for B® and the map (BOBS’)0 - (BOB(P)0 of base-point
components is therefore a homotopy equivalence since it is a map of

connected H-spaces of the homotopy type of CW-complexes (by A. 3,
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A. 6, and [21]) which induces an isomorphism on homology.
Recall that Bass defines KlR = GLR/ER and Milnor defines
KZR = Ker(STR = GLR) where ER denotes the commutator subgroup
of GLR and STR denotes the Steinberg group. Provided that GLR
and its topological subgroup ER are discrete, it follows that
KlR = HlBGLR and KZR = H2 BER. In our general topological situation,

we have the following result.

Proposition 4. 12, K°R is isomorphic to the projective class

group of R, K 'R is isomorphic to HlBGLR, and, if the homogeneous
space GLR/ER is discrete, K °R is isomorphic to HZBER.

Proof. We have already verified the first statement and, by the
following argument, essentially due to Anderson (see Quillen [24]), the
other two statements are consequences of 3. 9. By 3.8 and 4.10, BY
has the homotopy type of BGLR and therefore, by 3. 9, the evident iso-
morphism from H,BGLR to I-I,,((BOBEF)0 is induced by ¢ :W*(BOBEF)O.
Since nl(BOBE}’)O is Abelian,

K 'R=7 (B BF) = H (B BF) = H BF =~ H BGLR.
1 0 0 1 0 0 1 1

Let E(R, n) be the commutator subgroup of GL(R, n). Regard ¥ as
the category with objects N = {nln = 0} whose only morphisms are
F(n, n) = GL(R, n). Let § and F/& be the categories with objects N

whose only morphisms are
&(n, n) = E(R, n) and (¥/8)(n, n) = GL(R, n)/E(R, n).

Let i: 8§—=F and 7:F = % /8§ denote the evident morphisms
of permutative categories under @ (and cognate maps). We then have

the following homotopy commutative diagram:

86



BER ~ B8 = %{BOBé’)O—E_—b(BOBé’)B
Bi Bi B Bi
{V v 'I v C A 4
BGLR ~ BF =(BU13$)0————»(130133)'0
Bn B Ban (BOBw)'
v . A N v v
B(GLR/ER) ~ BF /& :(Bﬂlas}f/g)ﬂ——:(I?,OBSf/é’)0

On the right, (BOB‘IT)' if the fibration with fibre (BDBé’)‘0
replacing BOBn by a fibration in the standard fashion; (BOB‘E)' is an

obtained by

H-map and therefore has trivial local coefficients in homology [see 9,

p. 16,08, 16.09]. As noted by Quillen [24, p. 18], B7 on the left is a
fibration with trivial local coefficients because if x = 7(y) ¢ GLR/ER
and z € H BER, then there is a conjugate subgroup G of E(R, n) in
ER for some n such that z is in the image of H _BG and y commutes
with the elements of G, hence x acts trivially on z. Observe that, by
suitably expanding the diagram, following the proof of 3. 9, we could
arrange to have all squares commute. We may thus regard the diagram
as a map of fibrations. It follows by the comparison theorem that
H,_BER - H,‘((BOBg)‘0 is an isomorphism. Since GLR/ER is discrete
and Abelian, B(GLR/ER) is a K(GLR/ER, 1) and an Abelian H-space.

It is easily verified by consideration of the relevant limits that

1:BF /8~ (Boff/é’)o is an H-map and therefore (since it induces an

isomorphism on homology) a homotopy equivalence. Thus
20 o ' o ' oo
K R= 1r2(B0B€iF)0 = 772(BOB<5’)0 = HZ(BOBé')O o HZBER.

APPENDIX

In two results of [G], namely [G, 3.4 and 11.13], connectivity was
assumed only because I was unaware of the following fundamental 'glueing
theorem' of R. Brown [8; 7. 5. 7].

Theorem A.1. Suppose given a commutative diagram
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f

of spaces and maps such that i and i' are cofibrations and i and {'

are the cofibrations induced by f and f'. (Thus the front and back

squares are pushouts.) Assume that @, 8, and y are homotopy equiva-

lences. Then & is also a homotopy equivalence.

The second part of the following sharpening of [G, 3. 4] was known
to Beck; it is closely related to his result [5, Theorem 8] on topological

theories.

Proposition A. 2, Let ¢ : @ = @' be a morphism of operads
and let X € 7.
(i) I y is alocal equivalence and € and €' are Z-free,

then ¢ : CX = C'X induces an isomorphism on (integral) homology.
(ii) If ¥ is a local Z-equivalence, then ¥ : CX =+ C'X is a

homotopy equivalence.

Proof. The hypotheses are explained in [G, p. 21] and (i) is
proven (but not stated) in [G, p. 22]. CX is constructed by means of

successive pushouts

e(+1) x; s f »F CX
j+1 J
n
. j+1
C(j+1) X X +F. .CX
(1+1) 241 j+1
where sz = U s Xj s.{x X.) = (x X * X,
NP S D A S TN L
0=i<j
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and f(c, siy) = [oic, y] for c € €(j+1) and y er (see [G, 2.3 and 2. 4]
for the notations). By induction on j, the hypothesis of (ii), the non-
degeneracy of the base-point of X, and the glueing theorem imply that
17 F].CX - FJ.C'X is a homotopy equivalence for all j. The result

follows.

Corollary A. 3. Let C be a Z-free operad such that €C(j),
j = 1, has the Zj-equivariant homotopy type of a CW-complex. Then

CX has the homotopy type of a CW-complex.

Proof. Let S and T denote the total singular complex and
geometric realization functors between spaces and simplicial sets and
let & : TS=1 be the standard natural transformation. Recall that &
is a homotopy equivalence on spaces of the homotopy type of CW-com-
plexes [15, 16.6]. Let €' be the operad TSC (C'(j)=TSC(j), etc.) and
let X'= TSX. By the freeness of the Zj actions, # : €' = C isa
local Z-equivalence, hence & : C'X' =+ CX' is a homotopy equivalence.
By an argument just like the previous proof, C® : CX' =+ CX is also a
homotopy equivalence. C'(j) is a CW free Ej-complex, and it follows
by induction and the glueing diagrams that C'X' is a CW-complex,

The second part of the following sharpening of [G, 11.13] is due
to Tornehave [28, A. 3]; we give his proof for completeness. Zisman
(private communication) has an alternative proof based on a homotopy
analog of the Segal [25; G, 11.14] spectral sequence in homology.

Theorem A. 4, Let f:X = X' be a map of proper simplicial

spaces.

(i) If each f_: Xq = X' induces an isomorphism on homology,

then ‘f{ : [Xl - |X'| induces an isomorphism on homology.

(ii) If each f :X ->X£1 is a homotopy equivalence, then
Iff : IXI - [X‘I is a homotopy equivalence.

Proof. (i) follows either from the Segal spectral sequence or
from a slight refinement (see A. 5) of the proof of [G, 11.13]. We prove
(ii). Since X is proper, the inclusion sXq - XCIJrl is a cofibration,
where sX = U s.X . We have successive pushouts

0=j=q

89



SX X X1 X Bggy
n
v
— 2

sXq X AQT].——"(SXq X Aq+1) u (Xq+1 q+1) F IXI

n

X i 3A »F . |x]|

q+1 g+l q+l

where q(six, u) = |x, Uiu\ and q(x, 5iv) = laix, v| (see[G, 11.1] for

the notation). By induction on q and the glueing theorem, it suffices

to show that £ q+1 18X —+ SX:?l is a homotopy equivalence for all q.

q
Let st = s X for 0=k =gq. Inthe following diagram, the

9 o=j=k
right square is a pushout and the maps S are homeomorphisms:

S
k-1y k »s5lx ns X L Kix
l q-1 q 1 k™q l q
S
k K
X » 35, X —+s X
*k"q q
If we assume inductively that sk_ 1Xq_1 e Skxq—l is a cofibration for
0< k< q (avacuous assumptionif q =10 or 1), then we conclude (by

[G, A. 5] and propriety) that gk 1Xq - Squ is a cofibration, and

similarly for X'. Since S Xq - Soxq is a homeomorphism,
f - ¢'% =+ s"X' is a homotopy equivalence. By induction on ¢ and

qtl "~ “q
for fixed g by induction on Kk, the diagram above and the glueing theo-
rem imply that fq +1 515{ ) Xél is a homotopy equivalence for all

k and q. The result follows

Remarks A. 5. In the proof of [G, 11.12], which asserts that
|X| is n-connected if each Xq is (n - q)-connected, we can use the

Mayer-Vietoris sequence of the excision

X X n & ix sk'X,s-

(8. %q-17 S1%q-1 Xy-1

instead of that used in [G, p. 108-109] (in view of the proof above). It
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follows that 'strict’ propriety (see [G, 11. 2]) was an unnecessary hypo-
thesis in [G, 11.12]. Since strictness was not required elsewhere, it

is an unnecessary notion and references to it should be deleted through-
out [G].
The following corollary is also due to Tornehave {28, A.5].

Corollary A. 6. If X is a proper simplicial space such that
each Xq has the homotopy type of a CW-cgmplex, then |X| h_a§ ill?_

homotopy type of a CW-complex.

Proof. With notations as in the proof of A. 3, ]ti:*l : IT*S*Xl - |X|
is a homotopy equivalence. Since T S X is a cellular simplicial space

(each E‘i and s, is cellular), IT*S*X] is a CW-complex by {G, 11.4].
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