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Abstract

This will be a self-contained introduction to the theory of maximal
functions, which are some of the most important objects in modern
harmonic analysis and partial differential equations. We shall consider
various generalizations of the Fundamental Theorem of Calculus, and
wind up with an elementary introduction to Calderon-Zygmund The-
ory. One of the basic ingredients of the study of maximal functions
is a deep understanding of the geometry of collections of simple sets
such as balls or rectangles in Euclidean spaces. We shall investigate
this geometry in some detail.
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1 The Fundamental Theorem of Calculus

Theorem 1.1 (The Fundamental Theorem of Calculus). If f is con-

tinuous then
(∫ x

a
f dx

)′
= f and

∫ b

a
F

′
dx = F (b)− F (a).

Proof.

lim
h→0

∫ x+h

a
f dx−

∫ x

a
f dx

h
= lim

h→0

∫ x+h

x
f dx

h︸ ︷︷ ︸
small average of f

= f

Later, we’ll generalize the FTC to Rn (n > 1), and to the Lebesgue Integral.

Definition 1.2. The Dirichlet Funtion is defined as:

D(x) =

{
1 x ∈ Q
0 x /∈ Q

Since it is measurable, the Dirichlet funtion has the property that∫ 1

0

D dx = 1 · µ({D = 1}) + 0 · µ({D = 0})

where µ is Lebesgue Measure.

2 Lebesgue Measure

Let’s recall some basic facts about Lebesgue Measure on R. If we have

∞⋃
k=1

Ik ⊇ S then µ(S) ≤
∞∑

k=1

length(Ik)

Definition 2.1. The Lebesgue Measure of a set S is defined as:

µ(S) = inf
all covers

∞∑
k=1

length(Ik)

Remark 2.2.

µ (Q ∩ [0, 1]) <
∞∑

k=1

ε

2k
= ε → 0 ∀ ε > 0
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Remark 2.3.
µ
(
Q ∩ [0, 1]

)
= 1

Remark 2.4. For disjoint measurable sets

µ

(
∞⋃

k=1

Ek

)
=

∞∑
k=1

µ(Ek)

Definition 2.5. A Lebesgue Simple Function S is a measurable function
with finitely many values v1, . . . , vN .

Remark 2.6. For a simple function S∫ 1

0

S dx =
N∑

k=1

vk · µ({S = vk})

Definition 2.7 (Lebesgue Integral). Let f(x) ≥ 0 be a measurable func-
tion on [0,1], then ∫ 1

0

f(x) dx
def
= sup

S simple

0≤S≤f

∫ 1

0

S dx

Definition 2.8 (Lp spaces). for 1 ≤ p < ∞ define:

L1([0, 1])
def
=

{
f measurable |

∫ 1

0

|f | dx < ∞
}

Lp([0, 1])
def
=

{
f measurable |

∫ 1

0

|f |p dx < ∞
}

Recall the Dirichlet Function

D(x) =

{
1 x ∈ Q
0 x /∈ Q

We have that
(∫ x

0
D dx

)′
= D almost everywhere (that is, except on a set of

measure 0). We can verify this: if x /∈ Q then
(∫ x

0
D(x) dx

)′
= 0 = D(x) = 0,

so it’s false only when x ∈ Q (which has measure 0).
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3 The Generalized FTC

Theorem 3.1 (The Generalized FTC for the Lebesgue Integral). Let
f ∈ L1([0, 1]). Then(∫ x

0

f dx

)′

= f almost everywhere

Definition 3.2. If f ∈ L1([0, 1]× [0, 1]) then

sup
h>0

1

2h

∫ x+h

x−h

f dx = sup
x∈I

1

|I|

∫
I

f dx = Mf(x)

Definition 3.3. If f ∈ L1(Rn) then the Maximal Function of f is

M(f)(x)
def
= sup

x∈B

1

µ(B)

∫
B

|f | dx

4 The Hardy-Littlewood Maximal Theorem

Theorem 4.1 (Hardy-Littlewood Maximal Theorem). If f ∈ Lp(Rn)

a) p = 1 µ{M(f)(x) > α} ≤ C

α
‖f‖1 (a weak-type on L1)

b) p > 1 ‖M(f)‖p ≤ Cp,n‖f‖p (bounded on Lp)

The first part of this theorem is related to Chebychev’s Inequality.

Theorem 4.2 (Chebychev’s Inequality). If Q ≥ 0 then

µ({Q > α}) ≤ 1

α

∫
Rn

Qdx

Proof. Starting out with a trivial inequality,

α · χ
{Q>α}

(x) ≤ Q(x)

α

∫
Rn

χ
{Q>α}

dx ≤
∫

Rn

Qdx

α · µ({Q > α}) ≤
∫

Rn

Qdx

µ({Q > α}) ≤ 1

α

∫
Rn

Qdx
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5 The Vitali Covering Lemma

Question: can you get a subset of an arbitrary collection of finitely many
balls in Rn that is disjoint and counts a fixed fraction of their total area?

Lemma 5.1 (The Vitali Covering Lemma). Let B1, B2, . . . , BN be balls

in Rn. Then ∃ a sub-collection of balls, B̃1, B̃2, . . . , B̃M , such that:

a) The B̃k are pairwise disjoint

b) µ

(
M⋃

k=1

B̃k

)
≥ 1

3n
· µ

(
N⋃

k=1

Bk

)
Proof. First, arrange the balls by decreasing radius. Choose B1, so that
B̃1 = B1, for B2 choose B̃2 = B2 if and only if it is disjoint from B̃1 = B1.
Continue this - so given a ball Bk, choose it for the sub-collection if and only
if it is disjoint from all previously chosen balls.

Claim: ⋃
Bk ⊆

⋃(
B̃j

)
3

Where the notation (B̃j)3 means a concentric enlargement of the ball by a
factor of 3.

Pf of Claim: Take one Bk and ask: why is Bk ⊆
⋃(

B̃j

)
3
? This is easy

to see by drawing a picture, and keeping in mind the way we chose the {B̃j}
above. So:

µ
(⋃

Bk

)
≤ µ

(⋃(
B̃j

)
3

)
≤
∑

µ
((

B̃j

)
3

)
=
∑

3n · µ
(
B̃j

)
= 3n · µ

(⋃
B̃j

)
since the {B̃j} were chosen to be disjoint.

6 Proof of The Hardy-Littlewood Theorem

Theorem 6.1 (Restating Thm 4.1). If f ∈ Lp(Rn)

a) p = 1 µ{M(f)(x) > α} ≤ C

α
‖f‖1 (a weak-type on L1)

b) p > 1 ‖M(f)‖p ≤ Cp,n‖f‖p (bounded on Lp)
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Proof. For p = ∞, it’s easy to check that ‖M(f)‖∞ ≤ 1 · ‖f‖∞ . Now, we’ll
use the Vitali Covering Lemma: ∀x ∈ Eα = {Mf > α}, choose Bx such that

1

µ(Bx)

∫
Bx

|f | dx > α

and {Bx}x∈Eα covers Eα. Without loss of generality, ∃B1, B2, . . . , Bk, a
sequence of disjoint open balls from the Bx’s such that⋃

k

Bk ⊇
⋃

x∈Eα

Bx ⊇ Eα

So we’re going to show

µ ({M(f)(x) > α}) ≤ µ

(
N⋃

k=1

Bk

)
≤ C

α
‖f‖1 ∀N (C independent of N)

The proof is now fairly straightforward:

µ

(
N⋃

k=1

Bk

)
=

N∑
k=1

µ (Bk)

<
N∑

k=1

1

α

∫
Bk

|f | dx =
1

α

∫
S

Bk

|f | dx ≤ 1

α
‖f‖1

The second step in this string of inequalities comes from the following obser-
vation: look where

1

µ(B)

∫
B

|f | dx > α ⇒ µ(Bk) <
1

α

∫
Bk

|f | dx ≤ 1

α
‖f‖1

This completes the proof of the Hardy-Littlewood Theorem for p = 1 (see
section 8 for the other part).

7 The Generalized FTC Revisited

Theorem 7.1 (Generalized FTC in Rn). If f ∈ L1(Rn) then

lim
r→0

1

µ(Br(x))

∫
Br(x)

f dx = f outside a set of measure 0
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Proof. Given any f ∈ L1(Rn), ∃ a ‘beautiful’ function C ∈ L1(Rn) such that∫
Rn |f − C| dx is as small as you wish. Define:

Ar(f)(x) =
1

µ(Br(x))

∫
Br(x)

f dx

We want to prove that

lim
r→0

Ar(f)(x) −→ f(x) outside a set of measure 0

Note that Ar is additive:

Ar(f1 + f2)(x) = Ar(f1)(x) + Ar(f2)(x)

We have f ∈ L1(Rn). Let f = C + η (C is the ‘beautiful’ function above)
where η = error = f − C and

∫
Rn |η| dx < ε. Since Ar is additive:

Ar(f)(x) = Ar(C)(x) + Ar(η)(x)

Subtracting equations we get:

Ar(f)(x)− f(x) = [Ar(C)(x)− C(x)]︸ ︷︷ ︸
this→0 ∀x

+ [Ar(η)(x)− η(x)]

Now we play some tricks with limsups:

lim sup
r→0

|Ar(f)(x)− f(x)|

= lim
k→0

sup
0<r<k

|Ar(f)(x)− f(x)|

≤ lim sup
r→0

|Ar(C)(x)− C(x)|︸ ︷︷ ︸
this→0 by usual FTC

+ lim sup
r→0

|Ar(η)(x)− η(x)|

≤ sup
r>0

|Ar(η)(x)|+ |η(x)|

≤M(η)(x) + |η(x)|

Remember that we want to prove that

lim
r→0

Ar(f)(x) −→ f(x) outside a set of measure 0

7



so lets look at the following set:

µ

{
lim sup

r→0
|Ar(f)(x)− f(x)| > ε

}
≤µ

{
M(η) >

ε

2

}
+ µ

{
|η(x)| > ε

2

}
≤ C(

ε
2

)‖η‖1 + µ
{
|η(x)| > ε

2

}
(by H-L)

≤ 2C

ε
‖η‖1 +

2

ε
‖η‖1 (by Chebychev)

8 Proof of Hardy-Littlewood when p > 1

Theorem 8.1 (Restating Thm 4.1). If f ∈ Lp(Rn)

a) p = 1 µ{M(f)(x) > α} ≤ C

α
‖f‖1 (a weak-type on L1)

b) p > 1 ‖M(f)‖p ≤ Cp,n‖f‖p (bounded on Lp)

Proof. We proved part a) in section 6, so now we’re going to prove part b),
and we’re going to show that a) implies b), that is: µ{M(f)(x) > α} ≤
C
α
‖f‖1 implies that ‖M(f)‖p ≤ Cp,n‖f‖p for p > 1. Define for α > 0 the

distribution function of f :

λf (α) = µ{|f(x)| > α}

Now we’re going to play with some integrals and use Fubini’s Theorem:∫
Rn

|f(x)|p dx = (‖f‖p)
p

= p

∫ ∞

0

αp−1λf (α) dα

= p

∫ ∞

0

αp−1 µ{|f | > α} dα

= p

∫ ∞

0

αp−1

∫
Rn

χ
{|f(x)|>α}

dx dα

=

∫
Rn

∫ |f(x)|

0

p αp−1 dα dx

=

∫
Rn

|f(x)|p dx
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Now f ∈ Lp(Rn), and define f = fα + fα where

fα(x) =

{
f(x) where |f(x| ≥ α

2

0 where |f(x| < α
2

and

fα(x) =

{
0 where |f(x| ≥ α

2

f(x) where |f(x| < α
2

Since the maximum operator is a supremum of averages of values over balls,
it is sub-additive:

M(f) = M(fα + fα) ≤ M(fα) + M(fα)

Now note that fα ∈ L1(Rn) and fα ∈ L∞(Rn). We’re going to make some
observations about the sets, and then look at their measures:

{M(f) > α} ⊆
{

M(fα) >
α

2

}
∪
{

M(fα) >
α

2

}
µ {M(f) > α} ≤ µ

{
M(fα) >

α

2

}
+ µ

{
M(fα) >

α

2

}
≤ C(

α
2

)‖fα‖1 (by part a) of H-L)

Now we’re going to use the distribution function of Mf :

λ
Mf

(α) ≤ 2C

α

∫
Rn

|fα(x)| dx =
2C

α

∫
{|f(x)|> α

2
}
|f(x)| dx
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Using the same logic as before (and Fubini again):∫
Rn

|Mf(x)|p dx = (‖Mf‖p)
p

= p

∫ ∞

0

αp−1λ
Mf

(α) dα

≤ p

∫ ∞

0

2C

α

∫
{|f(x)|> α

2
}
|f(x)| dx αp−1 dα

= 2pC

∫
Rn

∫ 2|f(x)|

0

αp−2 dα |f(x)| dx

= 2pC

∫
Rn

(2|f(x)|)p−1

p− 1
· |f(x)| dx

=
2ppC

p− 1

∫
Rn

|f(x)|p dx

= Cp(‖f‖p)
p

9 Some Closing Questions

Do you think the generalized FTC is still true if we replace Br(x) with
rectangles, and state the theorem the same way? If not, when is it true (by
placing restrictions on f)? When is it true in R2? In Rn?
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