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NOTES FOR THE REU

0.1. Monoids and Adjoint functors. We wish to find all monoids with 3 ele-
ments. We observe that we can add an identity to any semi-group with 2 elements
and obtain a monoid with 3 elements. Surprisingly, even with such a small semi-
group, we have at least one semigroup that is not a monoid.

Consider the semigroup {g, h}, where the multiplication is defined as follows:
gh = h, hg = g, g2 = g, h2 = h. Neither g or h is a two-sided identity.

Exercise 0.1. Determine all the semigroups of size 2. Find all monoids of size 3.

Before we move onto something entirely different, we restate a fact about adjoint
functor pairs, which we used implicitly last time.

Proposition 0.2. Suppose C , D , E are categories, with the functors,

C

L
//

D
R

oo

F
//

E
G

oo
.

Further assume that L, R are adjoints, and so are F, G. Then the composites, F ◦L

and R ◦ G are adjoint functors as well.

Proof: By definition of adjoints, for any X ∈ Ob(C ), Z ∈ Ob(E ), we have the
following natural isomorphisms:

E (FLX, Z) ∼= D(LX, GZ) ∼= C (X, RGZ).

�

0.2. Simplicial Complex. Before we define simplicial sets and the nerve of a
category, we first look at the simplicial complex.

Consider the Euclidean space RN , for some large N . We pick n+1 “geometrically
independent” points {v0, . . . , vn}, in the sense that the vectors {v1−v0, . . . , vn−v0}
are linearly independent.

Definitions 0.3. The set

∆n := {

n∑

ı=0

tivi|0 ≤ ti ≤ 1

n∑

ı=0

ti = 1}

is an n−simplex. The points vi’s are the vertices, and the ti’s are the coordinates.
For a given n−simplex, the subset

{

n∑

ı=0

tivi|0 ≤ ti ≤ 1, tk = 0,

n∑

ı=0

ti = 1}

is the kth face of the simplex.
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Note that a 1−simplex is a line segment, a 2−simplex is a (filled-in) triangle,
a 3−simplex is a tetrahedron and so on. Also notice that a face of a n−simplex
is an (n − 1)−simplex. We will refer to a point in a simplex by its coordinates,
(t0, . . . , tn). Having defined a simplex, we can now define:

Definition 0.4. A geometric simplicial complex K is a set of simplices in some RN

such that each face of a simplex in K is again a simplex in K, and the intersection
two simplices of K is another simplex in K. The set of vertices of K is simply the
union of all vertices of all of its simplices.

There are some natural operations we can define that will allow us to com-
pare simplices with simplices of higher or lower dimension. We define a map
δi : ∆n−1 → ∆n, 0 ≤ i ≤ n by

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1).

We define a map σi : ∆n+1 → ∆n, 0 ≤ i ≤ n, by

σi(t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1).

A map between two geometric simplicial complexes is a map that sends vertices
to vertices and is linear on simplices. We can thus form the category of geometric
simplicial complexes. All of the information about a geometric simplicial is captured
in its vertices, and this leads us to the following definition.

Definition 0.5. An abstract simplicial complex K is a set V = V (K) of vertices,
together with a set K of non-empty subsets of V , called simplices, such that

(i) every vertex is in some simplex;
(ii) every subset of a simplex is also a simplex.

The abstract simplicial complexes form a category, where a map between two
such complexes is a map between the vertex sets which sends simplices to simplices.
A geometric simplicial complex can be seen as an abstract simplicial complex, if
we take V to be its set of vertices, and define K according to the simplices in the
complex. This operation can be seen as a functor from the category of geometric
simplicial complexes to the category of abstract simplicial complexes.

In the other direction, given an abstract simplicial complex, we can define its
geometric realization in some RN , if we choose a bijection between a set of geo-
metrically independent points in RN and the vertex set V .

0.3. Categories and Simplicial Sets. Now we turn our attention to a more
general construction, known as the simplicial set. This will eventually allow us to
construct a topological space from a category.

Suppose C is a category. For any n ∈ N, we might be able to find a string
of n−composable maps, {fn, . . . , f1}, where the successive compositions fi ◦ fi−1,
2 ≤ i ≤ n, make sense:

X0

f1
// X1

f2
// · · ·

fn−1
// Xn−1

fn

// Xn .

Now we can define Cn := {(fn, . . . , f1)} to be the set of all such n-tuples of com-
posable maps. We define C0 = Ob(C ).
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We now define maps di : Cn → Cn−1:

d0(fn, . . . , f1) = (fn, . . . , f2);

di(fn, . . . , f1) = (fn, . . . , fi+2, fi+1 ◦ fi, fi−1, . . . , f1), 1 ≤ i ≤ n − 1;

dn(fn, . . . , f1) = (fn−1, . . . , f1).

We also define si : Cn → Cn+1, 0 ≤ i ≤ n:

si(fn, . . . , f1) = (fn, . . . , fi+1, Id, fi, . . . , f1), where Id is the appropriate identity map..

Thus we obtain a sequence of sets Cn, within maps si and di.
Similarly, for any abstract simplicial complex K, we can define

Kn := { simplices with n + 1 vertices in K}.

We have K0 = V , the vertex set. To define maps between Kn, we first fix an
ordering on V . Note that now all subsets of V are totally ordered. Define di :
Kn → Kn−1, 0 ≤ i ≤ n to be the map that deletes the ith vertex from each simplex
in Kn. Define si : Kn → Kn+1 to be the map that repeats the ith vertex of each
simplex. (Note that for this definition to make sense, we must allow our sets to
have repeated elements.)

We have thus far illustrated two common examples of simplicial sets. We have
the following definition, to be completed next time:

Definition 0.6. A simplicial set is a sequence of sets Kn (indexed by N), with
maps di : Kn → Kn−1, si : Kn → Kn+1, which satisfy the following commutation
relations:


