FINITE CATEGORIES

NOTES FOR THE REU: JULY 27 SCRIBE: JUSTIN NOEL

1. SIMPLICIAL SPACES

Informally, we can think of simplicial spaces as spaces built out of oriented lines, triangles, tetrahedra...

2. Homology of simplicial complexes.

Let K_n be the set of n + 1 point simplices. Recall that the free abelian group $\mathbb{Z}[K_n]$ consists of formal sums of elements of K_n (i.e. $\sum_{i=1}^n k_i \sigma_i \in \mathbb{Z}[K_n]$ where $\sigma_i \in K_n$ and $k_i \in \mathbb{Z}$ for each i). We also recall that we were given maps $d_i : K_n \to K_{n-1}$ and $s_i : K_n \to K_{n+1}$ for $i = 0 \dots n$, that satisfy certain relations. Using these maps we define $d : \mathbb{Z}[K_n] \to \mathbb{Z}[K_{n-1}]$ as $d(\sigma) = \sum_{i=0}^n (-1)^i d_i(\sigma)$.

We compute

$$\begin{aligned} (dd)(\sigma) &= d(\sum_{i=0}^{n} (-1)^{i} d_{i}(\sigma)) \\ &= \sum_{0 \leq j < n} \sum_{0 \leq i \leq n} (-1^{i+j}) d_{j} d_{i}(\sigma) \\ &= \sum_{0 \leq j < i \leq n} (-1)^{i+j} d_{j} d_{i}(\sigma) + \sum_{0 \leq i \leq j < n} (-1)^{i+j} d_{j} d_{i}(\sigma) \\ &= -\sum_{0 \leq j < i \leq n} (-1)^{i+j} d_{i-1} d_{j}(\sigma) + \sum_{0 \leq i \leq j < n} (-1)^{i+j} d_{j} d_{i}(\sigma) \\ &= -\sum_{0 \leq j \leq i < n} (-1)^{i+j} d_{i} d_{j}(\sigma) + \sum_{0 \leq i \leq j < n} (-1)^{i+j} d_{j} d_{i}(\sigma) \\ &= 0 \end{aligned}$$

Using this we define $B_n(K) = d(\mathbb{Z}[K_{n+1}])$ and $Z_n(K) = \{\sigma \in \mathbb{Z}[K_n] | d(\sigma) = 0\}$. The *n*th homology group is defined to be $H_n(K) = Z_n(K)/B_n(K)$.

Example 2.1. If we let K be the triangle with ordered points a < b < c and edges f, connecting a to b, g connecting b to c and h connecting a to c. We can compute $H_0(K) = H_1(K) = \mathbb{Z}$. Since $d(\mathbb{Z}[K_0])$ is by definition 0 we see that $Z_0(K) = \mathbb{Z}^3 = \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c$. We have that d(f) = b - a, d(g) = c - b and d(h) = c - a = d(f) + d(h). So $B_0(K) = d(\mathbb{Z}[K_1]) = \mathbb{Z}(b - a) \oplus \mathbb{Z}(c - b)$. Rewriting $Z_0(K)$ as $\mathbb{Z}(b - a) \oplus \mathbb{Z}(c - b) \oplus \mathbb{Z}b$ we see that $H_0(K) = \mathbb{Z}$. Since there are no 2-simplices we have $B_1(K) = 0$ which implies $H_1(K) = Z_1(K) = \mathbb{Z}(h - (f + g)) = \mathbb{Z}$.

3. The functoriality of homology.

Suppose we have a map of chain complexes $f : C_* \to C'_*$. That is we have that $df_n = f_n d$. We see that if $x \in Z_n(C)$ then $df_n(x) = f_n(dx) = f_n(0) = 0$ so $f(x) \in Z_n(C')$. And we see that if $x \in B_n(C)$, so x = dy for some $y \in C_{n+1}$, then f(x) = f(dy) = d(f(y)) and we have $f(x) \in B_n(C')$. These two facts imply that we have a well defined map $H_n(C) \to H_n(C')$.

4. The homotopy invariance of homology

We return to one of our favorite simplicial complexes I. Recall I has two 0simplices, $I_0 = \{[0], [1]\}$, and one 1-simplex, $I_1 = \{[I]\}$. Let K be a simplicial space, we can check that $\mathbb{Z}[(K \times I)_n] = \mathbb{Z}[K_n \times I_n] = \mathbb{Z}[K_n] \otimes \mathbb{Z}[I_n]$. The *n*-chains $C_n(K \times I)$ then are given by $\mathbb{Z}[K_n] \otimes [0] \oplus \mathbb{Z}[K_n] \otimes [1] \oplus \mathbb{Z}[K_{n-1}] \otimes [I]$. For $x \in C_n(K)$ we set

$$d(x \otimes [0]) = d(x) \otimes [0]$$

$$d(x \otimes [1]) = d(x) \otimes [1]$$

$$d(x \otimes [I]) = d(x) \otimes [I] + (-1)^n x \otimes [1] - (-1)^n x \otimes [0].$$

Now we see two chain maps $f, g : C \to C'$ are homotopic if there exists a map $h: C \otimes I \to C'$ such that $h(x \otimes [0]) = f(x \otimes [0])$ and $h(x \otimes [1]) = g(x \otimes [1])$ for all $x \in C$.

Theorem 4.1. If f and g are homotopic then $f_* = g_*$.