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1. Simplicial Spaces

Informally, we can think of simplicial spaces as spaces built out of oriented lines,
triangles, tetrahedra...

2. Homology of simplicial complexes.

Let Kn be the set of n + 1 point simplices. Recall that the free abelian group
Z[Kn] consists of formal sums of elements of Kn (i.e.

∑n

i=1
kiσi ∈ Z[Kn] where

σi ∈ Kn and ki ∈ Z for each i). We also recall that we were given maps di : Kn →
Kn−1 and si : Kn → Kn+1 for i = 0 . . . n, that satisfy certain relations. Using these
maps we define d : Z[Kn] → Z[Kn−1] as d(σ) =

∑n

i=0
(−1)idi(σ).

We compute

(dd)(σ) = d(

n∑

i=0

(−1)idi(σ))

=
∑

0≤j<n

∑

0≤i≤n

(−1i+j)djdi(σ)

=
∑

0≤j<i≤n

(−1)i+jdjdi(σ) +
∑

0≤i≤j<n

(−1)i+jdjdi(σ)

= −
∑

0≤j<i≤n

(−1)i+jdi−1dj(σ) +
∑

0≤i≤j<n

(−1)i+jdjdi(σ)

= −
∑

0≤j≤i<n

(−1)i+jdidj(σ) +
∑

0≤i≤j<n

(−1)i+jdjdi(σ)

= 0

Using this we define Bn(K) = d(Z[Kn+1]) and Zn(K) = {σ ∈ Z[Kn] | d(σ) = 0}.
The nth homology group is defined to be Hn(K) = Zn(K)/Bn(K).

Example 2.1. If we let K be the triangle with ordered points a < b < c and
edges f, connecting a to b, g connecting b to c and h connecting a to c. We can
compute H0(K) = H1(K) = Z. Since d(Z[K0]) is by definition 0 we see that
Z0(K) = Z

3 = Za ⊕ Zb ⊕ Zc. We have that d(f) = b − a, d(g) = c − b and
d(h) = c− a = d(f) + d(h). So B0(K) = d(Z[K1]) = Z(b− a)⊕Z(c− b). Rewriting
Z0(K) as Z(b − a) ⊕ Z(c − b) ⊕ Zb we see that H0(K) = Z. Since there are no 2-
simplices we have B1(K) = 0 which implies H1(K) = Z1(K) = Z(h− (f + g)) = Z.
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3. The functoriality of homology.

Suppose we have a map of chain complexes f : C∗ → C′
∗. That is we have

that dfn = fnd. We see that if x ∈ Zn(C) then dfn(x) = fn(dx) = fn(0) = 0 so
f(x) ∈ Zn(C′). And we see that if x ∈ Bn(C), so x = dy for some y ∈ Cn+1, then
f(x) = f(dy) = d(f(y)) and we have f(x) ∈ Bn(C′). These two facts imply that
we have a well defined map Hn(C) → Hn(C′).

4. The homotopy invariance of homology

We return to one of our favorite simplicial complexes I. Recall I has two 0-
simplices, I0 = {[0], [1]} , and one 1-simplex, I1 = {[I]} . Let K be a simplicial
space, we can check that Z[(K × I)n] = Z[Kn × In] = Z[Kn]⊗ Z[In]. The n-chains
Cn(K×I) then are given by Z[Kn]⊗[0]⊕Z[Kn]⊗[1]⊕Z[Kn−1]⊗[I]. For x ∈ Cn(K)
we set

d(x ⊗ [0]) = d(x) ⊗ [0]

d(x ⊗ [1]) = d(x) ⊗ [1]

d(x ⊗ [I]) = d(x) ⊗ [I] + (−1)nx ⊗ [1] − (−1)nx ⊗ [0].

Now we see two chain maps f, g : C → C′ are homotopic if there exists a map
h : C ⊗ I → C′ such that h(x ⊗ [0]) = f(x ⊗ [0]) and h(x ⊗ [1]) = g(x ⊗ [1]) for all
x ∈ C.

Theorem 4.1. If f and g are homotopic then f∗ = g∗.


