FINITE CATEGORIES

NOTES FOR THE REU: JULY 27
SCRIBE: JUSTIN NOEL

1. Simplicial Spaces

Informally, we can think of simplicial spaces as spaces built out of oriented lines, triangles, tetrahedra...

2. Homology of simplicial complexes.

Let K_{n} be the set of $n+1$ point simplices. Recall that the free abelian group $\mathbb{Z}\left[K_{n}\right]$ consists of formal sums of elements of K_{n} (i.e. $\sum_{i=1}^{n} k_{i} \sigma_{i} \in \mathbb{Z}\left[K_{n}\right]$ where $\sigma_{i} \in K_{n}$ and $k_{i} \in \mathbb{Z}$ for each $\left.i\right)$. We also recall that we were given maps $d_{i}: K_{n} \rightarrow$ K_{n-1} and $s_{i}: K_{n} \rightarrow K_{n+1}$ for $i=0 \ldots n$, that satisfy certain relations. Using these maps we define $d: \mathbb{Z}\left[K_{n}\right] \rightarrow \mathbb{Z}\left[K_{n-1}\right]$ as $d(\sigma)=\sum_{i=0}^{n}(-1)^{i} d_{i}(\sigma)$.

We compute

$$
\begin{aligned}
(d d)(\sigma) & =d\left(\sum_{i=0}^{n}(-1)^{i} d_{i}(\sigma)\right) \\
& =\sum_{0 \leq j<n} \sum_{0 \leq i \leq n}\left(-1^{i+j}\right) d_{j} d_{i}(\sigma) \\
& =\sum_{0 \leq j<i \leq n}(-1)^{i+j} d_{j} d_{i}(\sigma)+\sum_{0 \leq i \leq j<n}(-1)^{i+j} d_{j} d_{i}(\sigma) \\
& =-\sum_{0 \leq j<i \leq n}(-1)^{i+j} d_{i-1} d_{j}(\sigma)+\sum_{0 \leq i \leq j<n}(-1)^{i+j} d_{j} d_{i}(\sigma) \\
& =-\sum_{0 \leq j \leq i<n}(-1)^{i+j} d_{i} d_{j}(\sigma)+\sum_{0 \leq i \leq j<n}(-1)^{i+j} d_{j} d_{i}(\sigma) \\
& =0
\end{aligned}
$$

Using this we define $B_{n}(K)=d\left(\mathbb{Z}\left[K_{n+1}\right]\right)$ and $Z_{n}(K)=\left\{\sigma \in \mathbb{Z}\left[K_{n}\right] \mid d(\sigma)=0\right\}$. The $n t h$ homology group is defined to be $H_{n}(K)=Z_{n}(K) / B_{n}(K)$.

Example 2.1. If we let K be the triangle with ordered points $a<b<c$ and edges f, connecting a to b, g connecting b to c and h connecting a to c. We can compute $H_{0}(K)=H_{1}(K)=\mathbb{Z}$. Since $d\left(\mathbb{Z}\left[K_{0}\right]\right)$ is by definition 0 we see that $Z_{0}(K)=\mathbb{Z}^{3}=\mathbb{Z} a \oplus \mathbb{Z} b \oplus \mathbb{Z} c$. We have that $d(f)=b-a, d(g)=c-b$ and $d(h)=c-a=d(f)+d(h)$. So $B_{0}(K)=d\left(\mathbb{Z}\left[K_{1}\right]\right)=\mathbb{Z}(b-a) \oplus \mathbb{Z}(c-b)$. Rewriting $Z_{0}(K)$ as $\mathbb{Z}(b-a) \oplus \mathbb{Z}(c-b) \oplus \mathbb{Z} b$ we see that $H_{0}(K)=\mathbb{Z}$. Since there are no 2simplices we have $B_{1}(K)=0$ which implies $H_{1}(K)=Z_{1}(K)=\mathbb{Z}(h-(f+g))=\mathbb{Z}$.

3. The functoriality of homology.

Suppose we have a map of chain complexes $f: C_{*} \rightarrow C_{*}^{\prime}$. That is we have that $d f_{n}=f_{n} d$. We see that if $x \in Z_{n}(C)$ then $d f_{n}(x)=f_{n}(d x)=f_{n}(0)=0$ so $f(x) \in Z_{n}\left(C^{\prime}\right)$. And we see that if $x \in B_{n}(C)$, so $x=d y$ for some $y \in C_{n+1}$, then $f(x)=f(d y)=d(f(y))$ and we have $f(x) \in B_{n}\left(C^{\prime}\right)$. These two facts imply that we have a well defined map $H_{n}(C) \rightarrow H_{n}\left(C^{\prime}\right)$.

4. The homotopy invariance of homology

We return to one of our favorite simplicial complexes I. Recall I has two 0 simplices, $I_{0}=\{[0],[1]\}$, and one 1-simplex, $I_{1}=\{[I]\}$. Let K be a simplicial space, we can check that $\mathbb{Z}\left[(K \times I)_{n}\right]=\mathbb{Z}\left[K_{n} \times I_{n}\right]=\mathbb{Z}\left[K_{n}\right] \otimes \mathbb{Z}\left[I_{n}\right]$. The n-chains $C_{n}(K \times I)$ then are given by $\mathbb{Z}\left[K_{n}\right] \otimes[0] \oplus \mathbb{Z}\left[K_{n}\right] \otimes[1] \oplus \mathbb{Z}\left[K_{n-1}\right] \otimes[I]$. For $x \in C_{n}(K)$ we set

$$
\begin{aligned}
d(x \otimes[0]) & =d(x) \otimes[0] \\
d(x \otimes[1]) & =d(x) \otimes[1] \\
d(x \otimes[I]) & =d(x) \otimes[I]+(-1)^{n} x \otimes[1]-(-1)^{n} x \otimes[0]
\end{aligned}
$$

Now we see two chain maps $f, g: C \rightarrow C^{\prime}$ are homotopic if there exists a map $h: C \otimes I \rightarrow C^{\prime}$ such that $h(x \otimes[0])=f(x \otimes[0])$ and $h(x \otimes[1])=g(x \otimes[1])$ for all $x \in C$.

Theorem 4.1. If f and g are homotopic then $f_{*}=g_{*}$.

