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1. Simplicial Sets and Chain Complexes

Recall that if we have a chain complex

· · · // Cn+1

dn+1
// Cn

dn
// Cn−1

// · · · ,

we define the homology groups to be

Hn =
Zn

Bn

,

where the Zn := ker(dn) consists of cycles, and Bn := Im(dn+1) is the group of
boundaries. The condition d2 = 0, i.e. dn ◦ dn+1 = 0, guarantees Bn ⊂ Zn and this
is well-defined.

Now suppose we have a simplicial set, {Kn}, with maps di and si. We define
An(K) to be the free abelian group generated by Kn. In other words, the elements
of An(K) are finite formal Z−linear combinations of elements of Kn:

An(K) = {
∑

ki∈Kn

niki, ni ∈ Z}.

The maps di : Kn → Kn−1 naturally extend to An(K) by linearity (that is, we
define di(

∑
niki) =

∑
nid(ki)). Now we can define d : An(K) → An−1(K) by

d :=
n∑

i=0

(−1)idi.

This map makes the sequence {An(K)} into a chain complex, because

d ◦ d =

n−1∑

i=0

n∑

j=0

(−1)i+jdi ◦ dj ,

and the identity di ◦ dj = dj−1 ◦ di, i < j ensures that d ◦ d = 0.
We can now define Cn(A) := An(K)/Dn(K), where Dn(K) is the degenerate

subgroup that consists of all the degenerate elements, which are finite linear com-
binations of elements of the form si(y). Note that commutation relations between
di and si ensure that the map d : An(K) → An−1(K) descends to the quotient,
and we get a map d : Cn(K) → Cn−1(K). This is equivalent to saying that the
maps that we obtain by restriction, d : Dn(K) → An−1(K), is in fact a map into
the degenerate subgroup Dn−1(K), and therefore the induced map on the quotient
groups Cn(K) → Cn−1(K) is well-defined.

Yet another way of stating this fact is to say that the groups Dn(K) form a
subchain complex, with maps d obtained by restriction.
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Exercise 1.1. Verify the claims made above. Also check that Hn(D∗(K)) is trivial
for all n. We will see later that this implies we have an isomorphism: H∗(A∗(K)) ∼=
H∗(C∗(K)).

Now recall that we have defined the singular complex. For any topology space
X , Sn is the set of all continuous maps {f : ∆n → X}, where ∆n is the standard
n−simplex. The sets {Sn} naturally come with the operators di and si, by pre-
composing with the maps δi : ∆n−1 → ∆n and σi : ∆n+1 → ∆n, which we have
defined previously. We define di : Sn → Sn−1 by f 7→ f ◦ δi, and si : Sn → Sn+1 by
f 7→ f ◦ σi. We can check that the commutation relations are satisfied, and thus
the sets {Sn} form a simplicial set, and we have in fact defined a functor from the
category of topological spaces into the category of simplicial sets.

Now we have a sequence of functors, all of which can be shown to be homotopy-
invariant:

Spaces
S∗

// Simplicial Sets // Simplicial Abelian Groups // Chain Complexes .

This sequence shows homotopic maps induce induce identical maps on homology.

2. Homology

To better understand homology, we consider the following sequnece of abelian
groups:

0 // A
f

// B
g

// C // 0 .

If we require g ◦ f = 0, i.e., Im(f) ⊂ ker(g), then we have a chain complex and
homology groups are defined.

We say the sequence is exact (at B) if we have ker(g) = Im(f). This condition
is to equivalent to saying the homology group at B is trivial, and thus homology
groups of a chain complex measures the “non-exactness” of the complex.

Exercise 2.1. Check that the condition that the above complex is exact at A is
equivalent to f being injective, and the complex being exact at C is equivalent to
g being surjective.

If a sequence of abelian groups is exact at every group, then we say it is an exact
sequence. One particularly useful sequence is the one of the form presented above,
and if it is exact then it is known as a short exact sequence.

Recall that the chain complexes form a category, where a map f : C∗ → D∗

between two complexes is defined to be a sequence of maps {fi : Ci → Di}, such
that the following diagrams commute:

Ci
d

//

fi

��

Ci−1

fi−1

��

Di
d

// Di−1.

We say the sequence of chain complexes

0 // C′

∗

f
// C∗

g
// C′′

∗
// 0
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is exact if in the following (big) commutative diagram, each column is a short exact
sequence (of abelian groups):

0

��

0

��

0

��

· · · // C′

n+1
//

fn+1

��

C′

n
//

fn

��

C′

n−1
//

fn−1

��

· · ·

· · · // Cn+1
//

gn+1

��

Cn
//

gn

��

Cn−1
//

gn−1

��

· · ·

· · · // C′′

n+1
//

��

C′′

n
//

��

C′′

n−1
//

��

· · ·

0 0 0

The most fundamental result of homological algebra tells us there is a nice rela-
tion between the homology groups in this case.

Theorem 2.2. Suppose we have a short exact sequence of chain complexes,

0 // C′

∗

f
// C∗

g
// C′′

∗
// 0 .

Then the following sequence is exact:

· · · // Hn+1(C
′′)

δ
// Hn(C′)

f∗

// Hn(C)
g∗

// Hn(C′′)
δ

// Hn−1(C
′) // · · · ,

where f∗, g∗ are the induced maps, and δ is a mysterious (yet well-defined) map
known as the connecting homomorphism.

This sequence of homology groups is a long exact sequence. As we will see later,
this long exact sequence will enable us to compute the homology groups of various
familiar topological spaces, for example the n−sphere.


