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For clarity, we state first the definition of homotopy equivalence:

Definition 0.1. Given two spaces, X and Y , and two maps f : X → Y and g :
Y → X , we say that f and g are inverse homotopy equivalences if both composites
are homotopic to the identity maps. That is,

g ◦ f ' idX and f ◦ g ' idY

Previously we defined a series of functors

Spaces → Simplicial Sets → Simplicial Abelian Groups → Chain Complexes

taking

(X
f
−→ Y ) 7→ (S∗X

f
−→ S∗Y ) 7→ (A∗X

f
−→ A∗Y ) 7→ (C∗X

f
−→ C∗Y )

and we noted that the product X × I gives

X × I 7→ S∗(X × I) 7→ A∗X ⊗ I 7→ C∗X ⊗ I

A chain homotopy is defined precisely so that a homotopy of topological spaces
produces, under these functors, a chain homotopy of complexes. Then the remain-
der of the result is given by a theorem.

Theorem 0.2. If f∗ : C∗ → D∗ and g : D∗ → C∗ are chain homotopic maps, then

f∗ and g∗ induce inverse isomorphisms on the homology groups H∗(C) and H∗(D).

Example 0.3. Suppose that the unique map X → pt. and an inclusion pt →
X are inverse homotopy equivalences, where pt is the one-point space (i.e. X is
contractible). Then Hn(X) = Hn(pt) = 0 for n 6= 0, and H0(X) = H0(pt) = Z.

Exercise 0.4. Show that Dn = {x ∈ R
n
∣∣|x| ≤ 1} is contractible.

Hint: consider the map h : Dn × I → Dn given by h(x, t) = tx.

The following proposition is one of the foundational tools for computing homol-
ogy.

Proposition 0.5. A short exact sequence of chain complexes

0 → C′

∗

f∗

−→ C∗

g∗

−→ C′′

∗
→ 0

gives rise to a long exact sequence of homology groups

· · · → Hn(C′)
f∗

−→ Hn(C)
g∗

−→ Hn(C′′)
∂
−→ Hn−1(C

′) → · · · .

Proof. The only difficult part of this theorem is paying attention long enough to
check all of the details. The major first step is the definition of ∂, which we give
now.
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Suppose x′′ ∈ Z ′′

n . By the surjectivity of gn, ∃ x ∈ Cn such that gn(x) = x′′.
Now since g∗ commutes with the differentials, gn−1dn(x) = d′′ngn(x) = d′′n(x′′) = 0.
Therefore, by exactness at C∗, ∃ x′ ∈ C′

n−1 such that fn−1(x
′) = dn(x). Now since

f∗ commutes with the differentials, fn−1d
′

n−1(x
′) = dnfn−1(x

′) = d2
n(x) = 0. So

d′n−1(x
′) ∈ Z ′

n−1. We define ∂(x′′) to be the homology class of d′n−1(x
′).

What remains now is to check that ∂ is a well-defined homomorphism of apelian
groups, and that the sequence above is exact at all stages. None of these are
particularly difficult, they do require patience and care and are (as always) left to
the reader.

As an example of the usefulness of a long exact sequence, we note that one can
immediately compute the homology of all spheres inductively. For this we introduce

the reduced homology groups. For any space X , the reduced homology H̃n(X) is

defined so that Hn(X) = H̃n(X) ⊕ Z, where Z is in degree zero. Then there is
a similar long exact sequence for quotients; if A ⊂ X is a sub-simplicial complex,
then we have a long exact sequence

· · · → H̃n(A) → H̃n(X) → H̃n(X/A) → H̃n−1(A) → · · ·

Example 0.6. The n-sphere Sn is a quotient Dn/Sn−1, and applying the sequence
above we have

· · · → H̃q(S
n−1) → H̃q(D

n) → H̃q(S
n) → H̃q−1(S

n−1) → H̃q − 1(Dn) · · ·

now recalling that H̃q(D
n) = 0 ∀ n, we have that

H̃q(S
n) ∼= H̃q−1(S

n−1) for all q

Thus, inductively, H̃n(Sn) ∼= Z and H̃q(S
n) = 0 for q 6= 0.

Remark 0.7. This same method can be applied to any space X and its suspension,
ΣX , to find

H̃q(ΣX) ∼= H̃q−1(X) for all q.


