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1 Let’s Play A Game!

Figure 1. A sample game of Red-Blue Hackenbush.

Red-Blue Hackenbush is a two-person game — let’s call these two people
Left and Right — best played on a chalkboard. We begin by drawing a picture
like Figure 1, made of Red and Blue lines, on which to play on. After
this is done, Left and Right alternate turns, each erasing a (suggestively
alliterative) Blue or Red edge from the graph, as well as any edges that are
no longer connected to the ground (the thick black line at the base of the
picture.) The game ends when one of our two players no longer has any
edges he can cut — this player is the “loser” of a game of Hackenbush, and
the other is (logically) the winner.

For example, in the picture below, the Right player is at a clear advantage
— his shrub has 10 edges to Left’s collective 6, and if the Right player prunes
his shrubbery by moving from the top down, he can ensure that there will
be at least 10 — 6 = 4 edges left at the end of the game for him. Left can
make sure that Right plays at least this well by being careful with how he
trims his bushes as well.



Figure 2. A shrubbery!

But what about a slightly less clear-cut picture? In Figure 3, both
players have completely identical plants to prune, so who wins? Well: if
Left starts, he will have to cut some edge of his picture. Right then can
adopt a mimicking strategy and simply copy whatever Left has just done
on his own picture, and thus be assured of always having a move left before
the game ends. So Left will lose this match if he goes first — but if Right
goes first, Left can also use this mimicking strategy and thus ensure that
Right loses this match. We call these games where the first player to move
loses zero games.

Figure 3. Another shrubbery!

So we’re beginning to understand a bit about Hackenbush works — if
Right and Left are both chivalrous players and have agreed to keep their



colors on separate sides of their picture, we can look at any game and tell
who will win by simply counting up the Blue edges and subtracting the
number of Red edges. If the number is positive, left will win; if it is negative,
Right will win; and if it is 0, the second player to go will win. Fortunately for
us, things can get much more interesting than this, as the following picture

demonstrates:
(a) (b) (c)

Figure 4. Fractional moves?

In Figure 4(a), it’s fairly obvious that Left will win no matter what, as he
can either simply cut his edge first and deprive Right of his Red edge to chop,
or wait for Right to go first, cut his sole Blue edge and leave Right again
without a move. But this doesn’t fit into our simple hierarchy of games we’ve
played so far — while Right is always winning, it isn’t necessarily obvious
how well he is doing so. So: by how much is Right winning?

As Figure 4(b) demonstrates, it’s not by a whole move — for if we try to
“balance” the game by adding an extra Red edge to the game (i.e. a 1-point
advantage to Right), we find that now Right is winning every game: if Right
goes first, it takes its Red edge that sits on top of the Blue edge and hands
a zero game to Left (which ensures that Left will lose,) and if Left goes
first, he must chop his sole Blue edge, which leaves Right a spare edge to
cut and the victory. So this odd stack is worth some fractional amount of
moves to Left between 0 and 1!

In fact, as Figure 4(c) shows, this is worth in fact % of a move, as two
copies of this move stuck together coupled with a single Red edge yields
a zero game: if Left goes first, he shears one of the stacks, to which Right
responds to by removing the top of another stack, returning a zero game and
defeat to Left. Similarly, if Right goes first, he can take either a Red edge
from atop a stack or from his spare edge; if the first, Left responds by taking
a Blue edge from the stack that Right has not touched, handing a zero game
back to Right and giving Left the win; if the second, Left simply takes a
Blue edge from either stack, leaving the fractional game of 4(a) which Left
is guaranteed to win no matter what happens. So, as the second player to
go wins this game in 4(c), it is in fact a zero game, and so we can think of
4(a) as being worth % of a move to Left.



(a) (b) ()

Figure 5. Fractional moves!

Similar constructions can yield other fractional move-advantages: the
reader is invited to verify before proceeding further that the three pictures
in Figure 5 are worth _71, %, and %.

So: this far, it seems like our progress has been haphazard. We can now
play some versions of Hackenbush fairly well, and can look at a few pictures
and tell which side will win (given two players who know what they’re doing.)
A more formal approach might be easier on the brain, though: so let’s

introduce some notation. For any of our games G, we write

{lo,ll,lg,. .. ‘7’0,7‘1,7‘2, .. }

for a picture from which Left can move to a picture worth g, 11,12, ... (i.e.
can move to a picture worth ly, l,, or I ... moves to Left), and where Right
can move to a picture worth ly,ly,l2,... to them. (For sanity’s sake, we
denote a 1-turn advantage to Left as being 1, and a 1-turn advantage to
Right as —1.)

In this notation, we get the integers expressed as follows:

0={]}1=A0 },2={1]},...,-1={|0},-2={|—1},...

Returning to our earlier games, we find that Figure 2 is {5, —7| — 3},
Figure 3is {—1,—-3,—6,—9|1, 3,6,9}, and Figure 4(a) is {0|1}. For brevity’s
sake, we will sometimes omit all but the largest value for Left’s options, and
all but the smallest value from Right’s options, as we can assume that each
player is playing in their own best interest — so Figure 3 can be simplified
to {—1|1}, for example.

A natural question then arises: since this notation describes a game just
as well as an actual picture does (as both describe the optimal moves for
our players), how can we turn something like {a,b,c,...|z,y,2,...} into a
number?

To do this, we need something called the Simplicity Rule.

Let’s begin with a few definitions.



Definition. For a game G with options (i.e possible values)

{ZOa l17 lZa “e |T0,7’1, ro,.. '}7

if all of the l;,r; are numbers, then the number x fits if it is strictly greater
than all of the l; and strictly less than all of the r;. A number x that fits
s called the simplest number that fits if none of its options fit — i.e. if
x = {a|b}, neither a nor b should fit into G.

So, for Figure 5(a) = {—5/2,—-3/2,—1|0, 1,2}, the numbers %, 1%, and %
all fit, but only <! is the simplest number to fit, as its options {—1/0} do
not fit into 5(a).

This leads us to the actual statement of the Simplicity Rule:

Rule. The Simplicity Rule. A game G with options (i.e possible values)

{lo,la, 12, .- |10, 71,72, -
is equal to x, where x is the simplest number that fits into G.

Proof. First, observe that we can “add” games in a very natural way — if
we have two Hackenbush pictures, we can just combine them by allowing
Right and Left to play on either picture on their turns. For example, we
can simply play on all of Figure 4 as opposed to breaking it up. As well,
when we do so, the value of any such sum of games is simply the sum of
their individual parts — for, since the pictures are all indivually disconnected
from each other, moves in one picture do not affect the others. We have been
using this principle quite liberally this far through the paper; if the reader is
not convinced, we recommend working through some sample games to build
intuition.

Similarly, we can create the inverse of a game H = {l|r} by adding the
game —H := {—r| — [} — this is obviously a zero game, as in the game
H + —H, if Left leads with either [ or —r, Right can respond with either
—l or r to give Left a zero-game and ensure that Right wins, and if Right
leads, Left can adopt a similar strategy to win as well. So H + —H = 0.

So: let us return to the question at hand. Without any loss of generality,
we can write the game in question G as {a|b} by simply ignoring all of the
“bad” moves available to either player. Let x = {c|d},c¢ > a,d < b be the
simplest number that fits into G. Then —x = {—d| — ¢}, as we just showed,
and we can then play on the Hackenbush game G + —x.

If Left leads, he can move to either a + {—d| — ¢} or {a|b} — d, to which
Right responds with his only possible move to make the game either a — ¢
or b — d. Both of these quantities are < 0, as ¢ > a and d < b, so Right will
necessarily win this game if Left starts. However, if Right starts, a similar
argument shows that Left will win, so G + —x is consequently a zero game.

Therefore, G + —x = 0, and so G = z. O



Finding these “simplest numbers” can be difficult at times: a picture
from Berlekamp, Conway and Guy’s Winning Ways for your Mathe-
matical Plays is partially reproduced here in order to show how one deter-
mines which numbers are the simplest. To find the number for any game,
simply traverse the tree below until you hit the simplest number that fits
into your game, starting from the top (as { | } can be thought of as the
“simplest” game.)

{1}

{-110} {011}

{112}

58 78

Figure 6. A simplest number tree.

By inductively repeating this process, we can assign a number to any
Red-Blue Hackenbush picture, and thus know the winner of any game before
it begins! Look at the house on the next page for an example — while studying
the building itself can seem a bit confusing, we can simply break it down
into individual cases, consider these, and then use the Simplicity Rule to get
a value. Skeptical readers are invited to verify that Figure 7 is in fact worth
—1 move by playing it with a lone Blue edge on the ground to balance, and
seeing that this is a zero game.
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Figure 7. Burning Down the House.

2 But What If We’re Colorblind?

BEE It

Figure 8. A Green Hackenbush Picture.

We'’ve got a pretty good grasp on plain o]’ Red-Blue Hackenbush at this
point — so, let’s try extending our newfound skills to a variation on the same
game, called Green Hackenbush (or Monochromatic Hackenbush). In
this game, we play with pictures made up of only Green edges, and we allow
these edges to be cut by either player. This may seem to be a simpler version
of the game we’ve been playing before — but some interesting complications
arise when we study games further. Take, for example, the extremely simple

game in Figure 9:



Figure 9. Thoreau’s Ideal Garden.

Clearly, if Left goes first, he will instantly cut the stalk and thus win the
game; conversely, if Right goes first, he will do the same and win the game
as well. This situation, however, is one unlike any we’ve seen in Red-Blue
Hackenbush, as the first player to go wins. Call these games fuzzy games.

What if we played a game with two copies of Figure 97 Clearly whoever
would have to go first would have to cut one of the stalks, leaving the
second player to simply cut the other and win the game — thus, the sum of
two 1-stalk games would be a zero game. Similarly, by using a mimicking
strategy as discussed before, we can see that the sum of two identical stalks
of height n will be zero as well. Yet, it bears noting that the sum of two
fuzzy games is not always a zero game, as Figure 10 illustrates: whichever
player goes first can simply reduce the 2-stack to a 1-stack, thus turning the
game into a zero game and ensuring that they win. So here, the sum of two
fuzzy games is another fuzzy game! Curious ...

Figure 10. Adding Fuzzy Games.

How do we add these games, then? If we restrict ourselves to playing
with bamboo stalks — i.e. just stacks of Green edges of various heights — it
turns out that we are simply playing the game of Nim, where players first
arrange stacks of coins on a table, and play by taking any amount of coins
from any one of the heaps. Just as in Hackenbush, the last player able to
move in such a way is the winner. For such games, we denote a stack (or
heap) of size n by writing *n. So adding these simple games of Hackenbush
amounts to simply knowing how to play Nim — and this is something that
(provided a handy rule!) we can easily do.



First, note that any Nim-heap *x has the options
{*(33— 1)a*($_2)a*(x_3)"'70| *(l‘— 1),*(1}—2),*(1‘—3)...,0},

as either player can reduce a heap of size x to one of a lower size, and both
players have the same options. So:

Rule. The Minimal-Excluded (Mex) Rule. If a game G has options
{*ag, xa1, *xag, ...| x ag, *ay, *as, ...},

with all of the same Nim-values available as options to either player, then
the game G can itself be regarded as a Nim-heap of value xx, where x is the
smallest whole number not equal to any of the a;.

Proof. Well, suppose some player is playing the sum of games G+H+ K +. ..
and has a winning strategy in the game xx + H + K + ... . If he ever wants
to move to any value in xx, this is obviously available to him, as G has every
option that *z has (otherwise, there would be a value smaller than z in G,
and he would have not used the Mex rule correctly.) Furthermore, if his
opponent moves to any option of *x, this is obviously not going to interfere
with our winning player’s plans, as he was already counting on G acting like
*T anyways.

So the only thing that can go wrong is if our player’s opponent moves
G to one of its options *a; that is greater than z. But if this happens,
our winning player can simply reduce the Nim-heap to one of height z, as
since a; is bigger than x, *a; must have *x as an option. This reduces the
game to xx + H + K + ... in fact, and our player will in fact win. Thus,
for all intents and purposes, GG is worth the same in any sum of games as a
Nim-heap of size z, x being the smallest whole number not equal to any of

the options of G. O

01 2 3 4 5 6 7 8
ojo1 2 3 4 5 6 7 8
1110 3 2 5 4 7 6 9
2123 0 1 6 7 4 5 10
3132 1 0 7 6 5 4 11
414 5 6 7 0 1 2 3 12
5/54 7 6 1 0 3 2 13
6/6 7 4 5 2 3 0 1 14
717 6 5 4 3 2 1 0 15
818 9 10 11 12 13 14 15 0

Figure 11. A Table of Nimbers.



Figure 12. Nim-addition!

From this, we can carefully construct a Nim-addition table. To use this,
we find our nim-heaps on the column and rows, count as options each of the
nim-values we cross while moving to the square where the row and column
intersect, and apply the Mex rule to those options — consequently Figure 12
is equivalent to a Nim-heap of height 1, as 1 is the smallest number that
is not included in 3,2 or 3,2,0. But constructing such a table through this
inductive process is slow! — we want a faster way to determine the sum of
a pair of “nimbers.” Fortunately, one exists:

Rule. The Nim-Addition Rule. For any two nimbers xx and *y, their nim-
sum *xx + xy is the number z that we get by writing x and y out as a sum
of various powers of two (so, for example, 8 = 23,7 = 20 + 21 + 2217 =
24 + 20 ) cancelling any powers of two that appear twice, and summing
what remains normally.

In this fashion, we would conclude that
wd 4+ +7 = #(22) + #(20 + 21 4+ 22) = %(20 + 2!) = %3

which is, in fact, exactly what we get with our table. (More computer-
science minded people can think of this as simply writing any two heaps out
in binary and then XOR~ing these two quantities together — these two actions
are in fact the same.) The proof that this rule is relatively straightforward:

Proof. First, notice that x1 4+ *k is equal to k + 1 if k is even, or k — 1 if
k is odd, as applying the Mex principle and induction to our table shows
— it’s obviously true for *1 4+ %0 and 1 + %1, and using the Mex rule shows
that it will hold for all future numbers. Call this the Parity Rule for future
reference.

So. We begin by proving the weaker statement that

(Vn, k € N) such that (n < 2%), (+n + %2% = x(n + 25).

10



If we can prove this statement, it is obvious that we can write any nimber as
the sum of a variety of nim-stacks of heights equal to various powers of 2 —
once that is done for any two nimbers *x and *y, we can cancel any doubled
powers of two by our earlier observation that the sum of any two Nim-heaps
of the same height are just a zero game, and we can conclude our proof.

We proceed by induction. For k£ = 1, it is obvious that this statement
holds, as our Nim-table constructed earlier shows that *1 + %2 = %3. So:
given that for some k € N,

(V¥n,l € N) such that (n < 2',1 < k), (+n + 2" = «(n + 21),
can we show that
(¥n € N) such that (n < 2%), (xn + %2% = x(n + 2F)?

Well, as we’re trying to prove a fact relating to an addition table, a second
use of induction is the most intuitive step we can take at this juncture. It’s
fairly obvious that %1 + %2¥ = x(1 4 2*, as this is simply a special case of
the Parity Rule we noticed earlier, so: we just need to show that if

(Yvm e N,m <n) sn+ 28 =«(n+425),

(k(n + 1) + 2% = x(n + 1+ 2%)

is true. If n is odd, then *(n + 1) = *(n — 1) by the Parity Rule, and so we
are done by our inductive hypothesis: so it suffices to simply check that this
holds if n is even.

Again, by the Parity Rule, since n is even, %(n + 1) = *n + *1, and so

(k(n 4 1) + %27 = 5n + x1 + *2"

But this is just
%1 4 *(n 4 2F)

by the inductive hypothesis, and since n and 2¥ are both even, their sum is
even, and we can thus use the Parity Rule one last time to conclude that
this is just

(14 n + 25).

This concludes all of our inductive steps, allowing us to conclude that we
can write any nimber *xx as the sum of nimbers of heights equal to powers
of 2, and thus that our Nim-Addition Rule holds. O

We now completely understand any bamboo groves in Green Hackenbush
through this principle; the question now, however, is how can we evaluate
any given picture? We could use the methods of Red-Blue Hackenbush of
just reducing all pictures into a series of smaller ones — but this is tedious!
We again want a faster way.

11



Figure 13. Mr. Green, with a Candlestick, in the Hall.

To accomplish this, we need to introduce two concepts, the first of which
we will call the Colon Rule.

Rule. The Colon Rule. For two Green Hackenbush pictures H, K,

K
io;

Figures 14 and 15. The Colon Rule.

then

12



Proof. To put it more formally, suppose we have a picture G with some
node, a, onto which we “stick” a picture H. Then the claim is that this new
picture — call it G - H, — has the exact same value as G - K, for any picture
K that has the same value as H. (Notation such as this is why pictures are
very useful.)

To see this, simply play Green Hackenbush on the sum of these two
pictures, G - H, + G - K,. If these two games are in fact equal, then their
sum should be a zero game, and so there must be a strategy for the second
player to win. So, let the first player make any move in this picture. If
they move in the G component of either picture, then there is trivially a
corresponding move for the second player in the G component of the second
picture. Otherwise, their move must lie in the H or the K component of
one of these pictures, and so reduces one of these pictures to some value *zx.
But since H = K, we can have our second player simply reduce the other
sub-picture to the same *x, and so the second player again has a move.

This strategy of mimicking Player 1’s moves can be continued through
the entire game by player 2, as his actions always return the picture to the
form of G'- H, + G’ - K/, for some games G', H', K' — so player 2 will never
be without a move, and so must win the game. Hence, G- H, = G - K, and
so the Colon Rule holds. O

This allows us to find the value of the tiny forest in Figure 8 from the
start of this section: by applying the Colon Rule, we can reduce the original

zzﬁ/ﬁp

Figure 16. Clear-Cutting a Forest.

by replacing the pairs of two branches with nothing, and the triple of
branches with 1; repeated iterations show us that the whole forest is equiv-
alent to a Nim-heap of value *0.

This gives us a good deal of power: but how would we evaluate a sinister
character like Figure 137 His candlestick is easy enough to break down, as
is much of his body — but it is by no means apparent what to do about his
legs, which cannot be reduced by the Colon Rule. So, to complete our study
of Green Hackenbush, we need to introduce a few more concepts and one
last rule.

13



Definition. A cycle in a game of Green Hackenbush is a set of edges that
forms a loop in a picture of Green Hackenbush — for the purposes of our
definition, we count the ground as being one node.

This allows us to define Fusion, which is performed in the following way:
two nodes in a cycle are fused by taking them and sticking them together,
bending any edges that join the two into a loop at the new node.

Rule. The Fusion Principle. In any picture of Green Hackenbush, fusing
any nodes together will never change the value of the game.

Proof. Well, suppose not: then there must exist a picture such that some of
its nodes cannot be fused. Pick the picture amongst these counter-examples
with the smallest amount of edges (say, n), and amongst all of the non-
fuseable pictures made of n edges, pick one — call it G — with the smallest
amount of nodes. This gives us a picture G for any two nodes in the picture,
we cannot fuse any of them, as this would yield a picture with less nodes
and the same amount of edges, which violates the way we chose G.
We begin by observing a number of properties that G must possess.

1. G can only have one node that touches the ground. This is fairly
obvious, as fusing all of the ground nodes on any picture together
never changes how the picture works.

Figure 17. Fusing Ground Nodes.

2. G cannot contain any pair of nodes x, y, such that three or more
distinct “paths” (i.e. sets of connected edges) connect x and y. This
is because if G did so, then we could create a new game H by fusing x
and y, which would have to have a different value than G (because we
chose G such that no two nodes could be fused without changing its
value.) So G and H are equivalent to 2 Nim-heaps of different values:
therefore, there exists a winning move for the first player to move
in G + H, as the sum of two different Nim-heaps is itself a non-zero
Nim-heap(and thus a fuzzy game.)

So, when the first player cuts an edge in either G or H, have the second
player cut the corresponding edge in whichever picture the first person
did not cut. This yields the two new games G’ and H', each with n—1
edges in them — so we can fuse all of the nodes in each picture without

14



changing the image. As well, since a and b started with three paths
connecting them, there is still a cycle that loops them together in either
G’ or H', as we have deleted at most 1 path of the three available to
us — so after fusion, these two graphs are identical. Therefore their
sum is a zero game, and our first player will lose — thus demonstrating
that the original G and H were in fact worth the same value.

a b a+b

Figure 18. No Three Paths.

. No cycle in G can exclude the ground. This can be seen by taking
some such picture G with such a cycle C, and creating the picture G’
by cutting each edge in this cycle. G’ can obviously contain only one
node from C| as if it contained two, that would imply that those two
nodes were connected by three paths (the two necessary to create the
cycle C' and the one which connects them in G.) So G’ contains only
one node of G, and so C'is only connected to G by one point — so we
can apply the Colon Rule to C' and whatever is attached to C. Since
this picture has less nodes than G does, we can fuse everything on it
and simply stick it back onto G — but this violates our assumption
that we couldn’t fuse anything in G. So no cycle in G can skip the
ground.

G’ G G after fusing C

AN

Figure 19. Cannot Avoid the Ground!
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4. G contains only one such cycle that uses the ground, as otherwise it
would be the sum of two smaller pictures, which we could individu-
ally apply the Fusion Principle to, or these two pictures would have
to be connected in some third way, which would violate our second
observation.

WARTAUD SR VAN

Figure 20. Tearing the Earth Asunder.

So G must look something like an arch with “things” hanging off of its
various nodes — by the Colon Principle and by the minimal nature of our
arch, we can apply fusion to each of these individual “things” and turn them
all into strings. If the Fusion Principle holds, the value of any such arch with
n edges making up its body is the Nim-sum of the strings that hang off of
the arch +1, if n is odd, or 40 if n is even, because fusing the arch is just
lumping all of the strings together onto the same node along with n single
loops, which are each equivalent to a string of length 1.

If n is even, then the game in Figure 2, by our theory, must be a zero
game. So: suppose the first player makes any move in any of the strings.
Then the second player can simply respond with a move in the corresponding
string in the grass or on the bridge, we can apply the Fusion Principle to the
resulting smaller picture, and find out that it is, in fact, a zero game. So the
first player can only cut an edge in the bridge — but this will invariably lead
to a game with nonzero value, as it will leave an odd number of edges in the
picture, and (as we showed earlier) Nim-addition respects parity. So we can
use the Colon Principle on this smaller picture, reduce it to the equivalent
of a Nim-string of nonzero length, and have the second player make the
appropriate move to turn the picture into a zero game, and ensure that he
wins. So Fusion works on a even bridge.

S

Figure 21. An Even Vault.
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If n is odd, then we can apply a similar set of arguments using Figure 22
— if the first player moves in the strings of either side, we have the second
player move in the strings of the other side, use the Fusion Principle and are
done. Conversely, if they move in the bridge, they have to be leaving some
sort of odd stack left, as this leaves an even number of edges in the bridge, 2-
the number of edges in the strings, and the one extra edge put out to cancel
— as Nim-addition (again) respects parity, applying the Colon Principle to
this new picture shows that it’s equivalent to a Nim-heap of odd height. So
since none of the first player’s moves are to Nim-heaps of value 0, we can
use the Mex Rule to show that this whole picture is in fact a Nim-heap of
value 0.

JENUET

Figure 22. An Odd Overpass.

So the Fusion Principle holds.
O

Using these tools, we can now completely evaluate any Green Hacken-
bush picture — the reader is invited to verify, for example, that Figure 15 is
equivalent to a Nim-string of height 6, Figure 18 to a string of height 2, and
Figure 19 to a string of height 1.

3 R-G-B Hackenbush?

Figure 23. Hackenbush Himalayas.

17



We’re pretty decent at Red-Blue Hackenbush, and have completely mas-
tered Green Hackenbush by this point — so it only makes sense to combine
two games we know how to play into one, right? Red-Blue-Green Hacken-
bush (or Hackenbush Hotchpotch) is played on a picture containing Red,
Blue, and Green edges, with the Blue edges only touchable by the Left
player, the Red edges only touchable by the Right player, and the Green
edges available to Either player.

A complex picture like the one above, however, is a bit beyond us at
the moment. So, let’s restrict our pictures to something a bit more down to
earth — a flower garden.

W) 7 ‘fl“;j.:f /
JEII&%I“ B!

Figure 24. A Flower Garden.

Flower gardens are made of a collection of completely Green Hack-
enbush pictures and flowers, which are made of a stalk of Green edges
topped by a crown of Blue or Red petals. By the Colon Rule, any flowers
with r Red petals and b Blue petals are equivalent to a flower of b — r Blue
petals (or » — b Red petals, equivalently) — so we can always assume that
the blossoms of flowers in our garden are strictly monochromatic. But how
should two players tend to such a garden?

Well, let’s start in the even simpler case where Left has one morning
glory in a garden, while Red is bereft of any roses of their own. Then if Left
goes first, he has two choices — he can either take a petal from his flower,
or chop down some Greenery. If we ignore Left’s petals, we can evaluate
the whole garden as a Green Hackenbush picture, and assign it a nimber,
xn, — if this nimber is %0, Left can simply pluck a petal, hand the zero game
to Right, ignore his flower for the rest of the game and win handily. If the
nimber is greater than 0, then he can simply reduce it to 0 by playing in the
Greenery and never touch his flower at all, and win this way.

So, if either player has one flower, the other player has none, and the
beflowered player has the first move, they will automatically win — similarly,
if one player has two flowers to the other’s 0, then that player will win no
matter who goes first, as the flower-less player can only cut one flower at a
time.

18
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Figure 25. A Lonely Morning Glory.

From this, we can see that flowers outweigh the nimber value of the
garden — if either player has a two-flower advantage, then they win auto-
matically (given good play) and the weight of the Greenery is unimportant.
From this, we can see that in a picture composed of flowers and Greenery, it
makes much more sense for either player to cut down the other’s flowers than
to play with their own or the surrounding shrubberies, as cutting down the
other player’s flowers is the fastest way to try to get an advantage — as well,
from this we can see that the shapes of flowers are relatively unimportant,
as the only thing that matters is the quantity (except in the cases of single
flowers). This leads us to the following definition and rule:

Definition. We define the atomic weight of a Blue flower to be +1 and
a Red to be flower -1; the atomic weight of a given garden is consequently
defined as the sum of the atomic weights of all of the flowers in the garden.

Rule. The Flower Rule. If the atomic weight of a garden is > 2, then
(given perfect play) Left will always win any game of Hackenbush played in
this garden; conversely, If the atomic weight of a garden is < —2, Right will
always win any game of Hackenbush played with this garden.

Proof. We will prove the Flower Rule in the case of Left winning any garden
of atomic weight > 2; the proof for Right winning is completely identical.
So.

Assume that the garden has 2 + n Blue flowers and k& Red flowers in it,
with k£ < n, and have Left chop a Red flower at each opportunity. Then
after k exchanges there will be at least 2 + n — k Blue flowers left, and no
Red flowers; since 2 +n — k > 2, by the arguments forwarded above, it is
obvious that Left will win. O

We can extend our study of flower gardens to wilder beasts, as well. A
parted jungle is a generalization of a flower garden that looks like the
tangle of Figure 26: essentially, they are an arbitrary Green Hackenbush
picture with Red and Blue edges embedded in it such that no Red edges
touch any Blue edges, and no Red or Blue edges touch the ground.
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Figure 26. Parting the Jungle.

To understand how to hack through such jungles, we need to first have
some definitions.

Definition. A track from one node to another is a set of Green edges
that connects these two nodes (treating the ground as all one node). A
flow between two sets of nodes is a number of Green tracks from one set
to another, with no tracks sharing any edges — a flow is maximal if it
contains as many tracks as possible.

Maximal flows are used to calculate the atomic weight of a jungle, and
a rule we will present in a moment will explain exactly how to use them —
but first, we should define how to create such a maximal flow.

First, take your jungle and identify the left and right sets by looking for
clusters of Blue and Red edges. Some of your pictures may not be as nicely
divided as Figures 26-29, but it is always possible to split the jungle into
two clusters like we have done to our sample picture.

Figure 27. A First Attempt.

Once this is done, try and find as many tracks from the Blue cluster to
the Red cluster as you can, taking care to not use any Green edges more
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than once, and labeling the direction that you traveled from the Blue cluster
to the Red. This gives us the beginning of a maximal flow — but since it’s
possible that we’ve chosen our paths poorly, we’re not quite done at this
step.

Figure 28. The Road Less Taken.

Then, take our Blue cluster, and try to reach the Red cluster on only
edges we haven’t used yet, or backwards along ones that we have. After
this is done, we can simply delete any edges that were doublecrossed, and
thus get a flow that is larger than the flow before. Repeating this process
until it cannot be done any further will always generate a maximal flow
from the Blue cluster to the Red cluster, as it will exhaust all possible paths
from one to the other.

Figure 29. Putting Flow In Our Game.

Once we have a maximal flow, we can define an enlargement on our
flow by trying to add as many tracks from one of the clusters to the ground as
possible that do not conflict with our existing paths. It’s somewhat obvious
that this expansion can only add tracks to one of our clusters, as if it added
a path from both of our clusters to the ground, this would in fact be a new
path from the Blue cluster to the Red, and so would already be included in
our maximal flow.

21



Now, with this maximal flow and its enlargement acquired, we can de-
fine the concept of tinting our nodes, and finally give the rule for hacking
through parted jungles:

Definition. A node is tinted Blue if it sits inside of our Blue cluster, or
if we can reach this node by going along Green edges not in our flow, or
backwards along ones that are: similarly, a node is tinted Red if it sits
inside of the Red cluster, can be reached by Green edges not in the flow, or
by going forwards along edges that are. As well, a node is tinted Green if
you can reach it from the ground without using any edges carrying flow from
the Blue cluster to the Red, and without going against the current of an edge
carrying flow from either of the clusters to the ground. All nodes that are
not tinted Red, Blue, or Green are defined as untinted.

Rule. If we have a parted jungle with a maximal flow and an enlargement
of n tracks from the Blue cluster to the ground, the atomic weight of the
jungle is n; conversely, if the enlargement consists of n tracks from the Red
cluster to the ground, the atomic weight of the jungle is —m. If the atomic
weight is > 2, or Left has the first move and it is > 1, Blue will always win;
as well, if the atomic weight is < —2, or Right has the first move and it is
< —1, Right will always win.

Proof. The strategy for our players is very similar to the methods they used
in the Flower Gardens; here, we will prove that Left will always win in
parted jungles of atomic weight > 2, or > 1 if he has the move; the proof
for Right’s victory in other jungles is almost identical.

If Left has an advantage of > 2, regardless of whether he goes first or
second, he is guaranteed a jungle of atomic weight > 1 when he gets to move
first — so it is sufficient to prove that Left wins if he goes first on a jungle
of atomic weight m, m > 1. Let the jungle have a maximal flow of n paths,
and let Left, on each of his turns, cut an edge that crosses the boundary of
Right’s cluster. No matter what Right responds with, after n turns Right’s
cluster will be completely removed from the jungle, while at least some part
of Left’s cluster will remain, as there are n + m edges that connect Left’s
cluster to other things.

Once this is accomplished, Left simply has to evaluate the jungle as a
Green Hackenbush picture, ignoring his own edges. If the picture is equiva-
lent to a Nim-heap of value 0, he trims one of his own edges, hands the zero
game to Red and wins handily; if it is a Nim-heap of positive value *x, he
ignores his own edges completely, reduces the whole picture to %0 through
a move in the Green Hackenbush pieces, and wins again. Therefore, if the
atomic weight of a jungle is +1, Blue will always win if he has the move,
and so will always win if in a jungle of atomic weight +2. O
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4 Conclusion

There are obviously many more cases left to study in Hackenbush Hotch-
potch, many of which are provably NP-hard and some of which we lack any
bounds at all with which to study the picture — this guide is merely a primer
to the massive world of possible Hackenbush pictures that await. This pa-
per is deeply indebted to Berlekamp, Conway and Guy’s book Winning
Ways for your Mathematical Plays, inside of which almost every result
in this paper is written, along with hundreds of other beautiful games; in-
terested readers should also peruse Conway’s On Numbers and Games,
which uses Hackenbush to set up the surreal number system, an alterna-
tive numerical system that includes the real numbers and Cantor’s ordinal
numbers, and of course the wonderful information-filled Internet.

1]

1 2 3 w wt+l w+2 W?
Figure 29. Counting to Infinity.
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