Cryptography and Secure Two-Party
Computation

Gabriel Bender
August 21, 2006

1 The Millionaire Problem and Secure Com-
putation

In 1982, Andrew Yao proposed the following problem: Alice and Bob are
millionaires, and the pair wishes to determine who has more money. However,
neither person wishes to reveal his or her precise wealth to the other. [5]

One approach to this problem (dubbed the ideal solution) is for Alice and
Bob to find a third party that they both trust. Then Alice tells the third
party how much money she has, and Bob follows suit. Once both Alice and
Bob have both revealed the necessary information to him, the third party
provides both of them with an answer to their question. However, the use of
such a trusted third party is not always practical. Therefore, our goal is to
simulate the presence of such a third party using cryptography.

Secure two-party computation provides a generalization of this problem:
Suppose we wish to compute the value of a function F'(A, B) where A is
an input provided by Alice and B is provided by Bob. Assume furthermore
that Alice does not wish to disclose her input to Bob, and that likewise,
Bob wishes to conceal his input from Alice. How can they compute F(A, B)
together while observing these constraints?

2 Private and Public-Key Cryptography

Traditionally, cryptography has dealt with the secure exchange of information
between two parties over an insecure channel. In other words, suppose Alice

1

wishes to send a message to Bob, but an adversary Eve intercepts every
message that either person sends. How can Alice send a message which can
be deciphered by Bob but not by Eve?

The classical solution to this problem is for Alice and Bob to meet ahead
of time and share a piece of information called a key. With the key, a message
can be either encrypted or decrypted. Without the appropriate key, neither
encryption nor decryption can be performed. Suppose that E(-) is the pair’s
encryption function and D(+) is the pair’s decryption function. Then if Al-
ice wishes to communicate a secret message m to Bob, she sends him the
encrypted value E(m). Bob then applies his decryption function to obtain
D(E(m)) = m. On the other hand, since Eve does not have access to the
key that Alice and Bob use, she can not extract any information about m
even if she intercepts E(m).

However, this method requires that Alice and Bob meet ahead of time
in order to decide on a key. Public-key cryptography allows us to forgo this
requirement. More specifically, with public-key cryptography, our adversary
Eve is unable to extract any information about a message m even if she
has access to both an encryption function F(-) and an encrypted message
E(m). However, the message can still be decrypted by a user with access
to a separate decryption function D(-). If Alice wishes to send a message to
Bob using public-key cryptography, the pair uses the following procedure:

e Bob randomly selects an encryption function £ and corresponding de-
cryption function D such that D(E(m)) = m. He sends the encryption
function E(-) to Alice.

e Alice sends the encrypted message F(m) to Bob.
e Bob decrypts the message by calculating D(FE(m)) = m.

Since Eve knows only the encyption function E(-) and the value E(m),
she is unable to collect any further information about m.

3 Oblivious Transfer

One-out-of-two oblivious transfer solves the following problem: Alice pos-
sesses two messages mg and m;. Bob selects i € {0,1} and obtains the
message of his choice, m;, while collecting no information about the other
message, mi_;. Alice is not allowed to know which message Bob selected. [3]

2

Suppose that a and b are both strings in {0,1}". Then let a @ b denote
the component-wise XOR of a and b, with the following truth table:

T|Y|lxDY
010 0
01 1
110 1
1)1 0

This is equivalent to addition modulo 2. Notice that (x & y) & v =
y® (rdx) = y. Now, assume that for arbitrary n € N, Alice can generate an
encryption function E : {0,1}" — {0,1}" that is one-to-one and onto, and
a corresponding decryption function D(-), with E(-) and D(-) subject to the
constraints of public-key cryptography. Oblivious transfer for two strings of
length n can be accomplished with the following procedure:

e Alice generates an encryption function E(-) with corresponding decryp-
tion function D(-). She sends E to Bob and keeps D to herself.

e Bob generates two random strings xg and x; of length n. Let us assume
that he wishes to obtain mg. The case in which he obtains m; is entirely
analogous.

e Bob sends the tuple (E(xg),z1) to Alice.

e Alice applies the function D to both elements of Bob’s tuple, obtaining
the pair (D(E(z0)), D(w1)) = (0, D(a1)).

e Alice XORs the first element of the tuple with my and the second
element with m;. She sends Bob the resulting tuple (zq ® mg, D(x1) &
ml).

e Since Bob knows 1z, he is able to calculate (zg ® mg) & 9 = my.
However, he can not compute D(z1), and is therefore unable to obtain
my from this process.

Since the domain and range of the encryption functions are identical, it
is impossible for Alice to determine whether Bob has sent her xy or E(xg).
Consequently, Alice gains no information about whether Bob plans to obtain
the value of mg or m; from the input that he sends her. And as we have
already seen, Bob can only extract one of the two values my and m;.

It is worth noting that this example requires that both parties are willing
to “play by the rules” of the oblivious transfer. For example, Bob could
send Alice the tuple (E(zo), E(x;)) in the third step and obtain the values
of both my and my from Alice. For the sake of simplicity, we shall assume
that Alice and Bob are semi-honest, so that they are required to follow the
steps of the protocol, even if they do additional calculations on the side. The
following discussion of scrambled circuits makes the same assumptions about
semi-honest behavior. In practice, it is possible to force parties to behave in
a semi-honest manner. [2]

4 Scrambled Logic Gates

Now, let us consider the following problem:

F:{0,1}x{0,1} — {0, 1} is a boolean function that takes two arguments
A and B as input. Alice supplies the value of A and Bob supplies the value
of B. However, neither person wishes to disclose his or her own value to
the other. In an ideal setup, Alice and Bob would secretly supply their
inputs to a trusted third party, who would perform the necessary computation
and inform both of them of the result. However, Alice and Bob can use
cryptography to simulate the effect of asking a third party. In this procedure,
one person (say Alice) is appointed the circuit-maker and the other (say Bob)
is the circuit-executor. [3]

e Alice selects two (not necessarily distinct) random permutations 1 and
vy of the set {0,1}.

e Alice generates four random encryption functions EJ, EY, E}, and E}
with corresponding decryption functions DY, DY, D}, and D}.

e Alice constructs the following truth table:

In 0 (Alice) | In 1 (Bob) | Encrypted Output
1(0) 11(0) EBO(O)(E;(O)<F(O7O)))
1o(0) (1) EBO(O)(ELQ)(F(O,U))
vo(1) n(0) | By (B,) (F(1,0)))
vo(1) n(l) | B (B, o) (F(1, 1))

e Alice sends this truth table, along with the function v4(-), to Bob.

The gate has now been constructed, and Bob is ready to evaluate it. Alice
decides on an input « to F', and Bob decides on an input #. Then the pair
follows this procedure:

o Alice sends the tuple (v9(a), D}) to Bob.

e Bob uses oblivious transfer to request the decryption function Dil B)"
He then uses this knowledge to construct his own tuple (v1(3), Dil(5 ()

e Bob finds the unique row of the truth table in which Alice’s input is
vo(cr) and his own input is v4(3). The encrypted output for this row is

E(V)o(a)(Eil(ﬁ)(F(avﬁ)))

e Bob applies both of his decryption keys to the entry to obtain the tuple

Dy, (5 (Diya) (B (B, () (F v,) = Flax, B)

This is the unencrypted output of the gate. He passes the value along
to Alice.

The only time Bob provides information to Alice about his input is when
he requests the decryption key Dil(ﬁ)(-). However, this is done using an
oblivious transfer, so that Alice can not obtain any information from Bob’s
requests.

There are two ways for Bob to gather information about Alice’s input.
The first is by analyzing the value v5(«) to determine the value of a. How-
ever, 1y is a random permutation unknown to Bob, so he can not use his
knowledge of vy(a) to obtain any information about the true value of a. Al-
ternatively, Bob could attempt to decrypt another row of the truth table to
see how the result of the calculation would have changed if his or Alice’s input
was different. However, Bob possesses only two decryption functions, which
together only allow him to decrypt a single row of the truth table. That row
corresponds with the value of the function when Alice provides input a and
Bob provides input (3, so he gains no extra information that way.

It is worth noting that the function 14 is entirely superfluous in this
example, since it is known by both Alice and Bob. However, it will simplify
the notation for the more general case.

5 Secure Evaluation of Larger Circuits

In practice, it is extremely limiting to say that Alice and Bob must only
work with boolean functions. One way of working around this is to expand
the truth table to accommodate a larger set of input values. However, this
requires that the truth table grow exponentially with the length of the input
values. For example, if Alice and Bob each input a single n-bit binary string
to a function F, then the truth table for F' must contain 22" rows.

Instead, we introduce the notion of a circuit. A circuit consists of three
parts:

e A set of initial input values x4, ...,z
e A set of logic gates Fy,..., F, :{0,1} x {0,1} — {0, 1}.

e A collection of wires specifying the inputs to the logic gates. An input
to a logic gate may be one of the initial input values or the output of
another logic gate. To avoid feedback, we require that each logic gate
F. may only take input from earlier gates Fi, ..., Fi_1.

We define the output of the entire circuit to be the output of the last
logic gate, F,.

Our goal is to extend the limited implementation for single gates from the
previous section to the secure evaluation of entire circuits. Our plan is to use
the output of one logic gate as the scrambled input to another. To do this,
we create “scrambled tuples” that describe the inputs and outputs of logic
gates. Each scrambled tuple takes the form (v;(z;), D;,(,,)(-), where v;(-) is a
randomly selected permutation of {0, 1}, x; is the “true” unscrambled input
or output of the gate, and Dl’, (mi)(~) is a decryption function. The idea is that
the scrambled output tuple of one gate is used as the scrambled input tuple
for another. In this way, Bob is unable to determine any information about
the unencrypted values of the gates because he does not know what the v;(+)
functions are, and he will only be able to access one row of in the truth table
of each gate: the one corresponding to Alice’s and Bob’s inputs. He can
possess at most two decryption keys for each gate, and will be limited by the
same restrictions he used in the previous section. To convert a regular circuit
into a scrambled circuit, Alice uses the following procedure, which includes
a collection of “scrambled output values” denoted Sy, .S, .. .:

e She associates S; with with the input value x1, Sy with x5, and so on,
until she associates S, with x,,.

e She associates S,,+1 with the gate Fi, ..., S;,1, with F},.

e She randomly generates a permutation v;(+) : {0,1} — {0,1} for each
1<i<m+n.

e She randomly generates two encryption keys E{ and E} with corre-
sponding decryption keys D} and D} for each 1 <i < m + n.

e For each gate F; with scrambled inputs S, and S, Alice constructs the
following truth table:

Input 1 | Input 2 Encrypted Output
ve(0) | w(0) | EF, o) (Ey () (F7(0,0)))
vo(0) | (1) | EY o) (B 1) (F7(0,1)))
V(1) vy(0) L)) (Egy(o) (£7(1,0)))
vz(1) vy(1) Efzu)(Egyu)(Fi/(l» 1))

In this case, we define F}(p, q) to be the scrambled tuple (v;(t), Dii(t)(~))
where t = Fi(p, q).

This tuple is the scrambled output of gate F;, as well as the scrambled
value associated with S, ;.

Now, Alice and Bob are ready to evaluate the circuit. Their strategy is

to evaluate the scrambled values Sy, ..., S, in that order. Alice begins by
sending all of her truth tables to Bob. [2]
For each of the values x4, ..., x,,, they use the same technique they did in

the single-circuit case. If Alice is responsible for supplying the value of x;, she
contributes the tuple S; = (v;(x;), D;, () (")) without revealing either x; or v;
to Bob. If Bob is responsible for contributing the value, Alice first sends the
function v4(+) to Bob. Bob then uses oblivious transfer to obtain the decryp-
tion function D;, ., (+) from Alice. Finally, Bob sets S; = (v;(x:), D, (,,(*))-

Suppose that Bob wishes to evaluate gate F;, given that he has already
evaluated gates Fi,..., F;_;. Call the input statements to this gate S, and
Sy We may then assume that Bob has already obtained the scrambled

tuples associated with those statements: S, = (va(ta), Dy,)(-)) and Sy =
(p(t), ng(tb)(-)), where t, and ¢, are the “true” values of the inputs a and b.
Bob then has enough information to decrypt precisely one row of the truth

7

table for the gate F;. That row corresponds with the appropriate output
of the gate when the first input value is ¢, and Bob’s value is t,, which is
precisely the row of the table Bob needs to proceed with his calculation. He
can now use the scrambled tuple (v;(t;), D;, (tn () in his calculations for gates
F;1q1,..., F,. When he finally obtains the scrambled output of F},, he sends
the value v,y p(tan) to Alice, who knows the value of the function v and is
therefore able to calculate the final output value ¢,,,, for the circuit.

As in the single-gate example, the only information that Alice obtains
about Bob’s inputs comes from the oblivious transfers through which he
obtains the decryption keys DI (-) for his initial inputs. By the nature of
oblivious transfer, she can not obtain any information from this procedure.

And once again, Bob has two chances to obtain information about Alice’s
input. Every input to a truth table is labeled as a 0 or 1, but the actual values
are concealed using randomly generated permutations. With the exception
of the permutations associated with Bob’s initial inputs, these functions are
known only to Alice, so Bob can not gain any information about them this
way. Alternatively, Bob could try to change inputs to his truth tables. But
again, the truth tables are encrypted, so Bob can only access the “correct”
row of the truth table for each gate in the circuit, so he gains no information
that way either.

References

[1] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

[2] O. Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY
mental game. Annual ACM Symposium on Theory of Comput-
ing. Proceedings of the nineteenth annual ACM conference on

Theory of Computing. Pages 218-229. http://portal.acm.org/.
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=28420

[4] Yehuda Lindell and Benny Pinkas. A Proof of Yao’s Pro-
tocol for Secure Two Party Computation. Cryptology ePrint

Archive, Report 2004/175, 2004. http://eprint.iapr.org/.
http://citeseer.ist.psu.edu/lindell04proof.html

[5] Andrew Yao. Protocols for Secure Computations (Extended Ab-
stract). 1982 University of Wisconsin Madison. 31 July. 2006.
http://www.cs.wisc.edu/areas/sec/yao1982-ocr.pdf

