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1 The Fundamental Theorem of Algebra - Proof
1 (Topological)

Definition 1. Winding Number
The winding number of a curve, A with respect to a point zy is the number
of times \ goes around zy in a counter clockwise direction.

Property 1. The Fellow Traveler Property

Suppose that two functions, f(x), and g(x), are such that |f(x) — g(x)] < €
for some € and Yz on some circle of radius r, C,., with ¢ <r. Then f(C,) and
g(C}.) have the same winding number.

Theorem 1. The Fundamental Theorem of Algebra

Proof. Suppose that f(z) = apz"+a,_ 12" 1+...4+ap. We can assume without
loss of generality that a,, = 1. Furthermore, we can assume that ay # 0 oth-
erwise z = 0 would be a root. Now, f(z) is a continuous complex polynomial,
mapping C = C. We also know that
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and so for a circle with sufficiently large radius r (C,.), we have

=1

2" = f(2)| < ar™

with 0 < a < 1 and z on the circle, C,.

For any r > 0, 2" winds C, around the origin n times. Therefore, by
the fellow traveler property f(z) will also wind a sufficiently large C,., n times
around the origin. For a sufficiently small radius r around the origin, f(z) is
approximately equal to ag and will not wind around the origin at all. Since f(z)
is continuous, f(C,) will depend on r continuously. Since f(C,) has winding
number of 0 for sufficiently small r, and winding number of n for sufficiently
large r, it follows that there exists a radius, say r1, such that f(C,,) passes
through the origin. Thus, 3z; on C,, such that f(z;) = 0. This proves the
theorem. O



2 The Fundamental Theorem of Algebra - Proof
2 (Analytic)

Lemma 1. The absolute value of a continuous complex funcion has a minimum
value. Let f(z) € Clz]. Then |f(x)| has a minimum value at some point xg € C.

Proof. Tt is clear that |f(x)] — oo as |x| — oo. Thus, for r sufficiently large,
the greatest lower bound of |f(x)| on the disk < r is also the greatest lower
bound of |f(z)|Vz € C. Thus, |f(z)| is a continuous function on a closed and

bounded set (compact), and hence attains its minimum value.
O

Lemma 2. Let f(x) € Clx]. Then, for any xq, if f(zo) # 0, then |f(zo)]| is not
a minimum value of | f(x)].

Proof. Suppose f(z) is a nonconstant complex polynomial and suppose zg is a
point such that f(xg) # 0. Now make the change of variable x = x 4+ xg. Thus,
we may assume that f(0) # 0. Now multiply f(x) by f(0)~! so that we have
f(0) = 1. Now, it suffices to show that 1 is not the minimum value of |f(x)|.
Let k be the largest non-zero power of x. Then f(z) is of the form:

flz)=apa+ ... +1

Now let a be the k-th complex root of —a~!. Now make the change of variable
azx for x and our equation takes the form

flz)=1—azF + 25 lg(z)

for some function g(x). Now, using the triangle inequality, for small positive
real z we have

|[f(@)] < 1= a¥| + 2" g(a)].

Since x is sufficiently small, we have z; < 1 thus:
[f(z) =1—a" + 2" g(z)] = 1 — 2" (1 - zg(x))).

Thus, for small z, xg(x) is small, thus zy can be chosen such that zg|g(zo)| < 1.
Thus z£ (1 — z0|g(z0)|) > 0, thus |f(z0)| < 1 = f(0) completing the proof. O

Theorem 2. The Fundamental Theorem of Algebra If f(x) € Clz], and f(z)
is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then we know that
there is at least one point x¢ where f(z) attains its minimum (lemma 1). We
know that |f(xo)| = 0 by lemma 2, thus f(z¢) = 0, which completes the proof.

O



3 The Fundamental Theorem of Algebra - Proof
3

Lemma 3. Any odd-degree polynomial must have a real root.

Proof. Let f(x) € R[z] with degree f(z) = 2k + 1 for some k. Suppose further
(without loss of generality) that the leading coefficient, a, > 0. Then the
following limits are true:

lim f(z) =00

r—00

lim f(z) = —o0.

r— —0Q

Thus, there exists some sufficiently large xo such that f(xo) > 0, and there
exists some sufficiently large x1 such that f(—z;) < 0. Thus, since f(z) is a
polynomial and hence continuous, there exists some x5 such that f(z3) = 0 by
the intermediate value theorem. O

Lemma 4. Any two-degree complex polynomial must have a complex root.

Proof. This lemma is a consequence of the quadratic formula. Given f(z) =
ax? + bz + c the two roots are:

—b+ Vb% — 4dac
= X
2a ’

1=

—b — Vb?% — 4ac

o 2a

We know both of these exist as all complex numbers have square roots. However,
if b2 = 4ac then the two roots will be the same. O

Definition 2. Splitting Field If 0 # f(x) € Flz] and G is an extension field of
F, then f(z) splits in G, if f(x) factors into linear factors in G|z]. This means
that all the roots of f(x) belong to G.

Lemma 5. Any nonconstant real polynomial has a complex root.

Proof. Let f(x) = ag + -+ + anz™ € R such that n > 1,a, # 0. Then let us
perform induction on the degree n of f(z).

Suppose n = 2™a, where a is odd. Now let us do induction on m. If m = 0,
then f(x) has odd degree and by the lemma 3 has a root. Now let us assume
that the theorem is true for all degrees d = 2¥b where k < m and b is odd. Now
assume that the degree of f(z) is n = 2™a.

Let G be the splitting field for f(x) over R which contains the roots ay, ag, - - -, .
To prove the theorem we will show that at least one a € C. Fix an integer h € Z,
and construct the polynomial:

H(z)= H(m — (04 + aj + hayay)).

1<j



This polynomial belongs to G[z]. The number of pairs of alpha’s for any
given n = 2™q is given by

(2 a’)(2m — 1) — 2m71a(2ma _ 1) — melb

2
for some odd b. Thus, the degree of H(x) is 2™~ 1b.
Now, H(x) is a symmetric polynomial in «q,...,a,. Since the alphas are

roots of a real polynomial (f(x)), and H(x) is symmetric in the splitting field,
H(z) must be a real polynomial.

Therefore, H(z) € R[z] with degree 2™~1bh. By the inductive hypothesis
H(x) has a complex root. Thus, there exists a pair of alphas such that

o; + o + hoo; € C.
Now, since h was arbitrary, we can specify some h; and get alphas such that:
a; +aj + hlaiozj e C.

Since there are only finitely many pairs of alphas, it follows that there must be
at least two numbers, hi, and ho, such that

z21 =05+ o5+ hlaiaj and zo = a; + a; + hQOéiij e C.

Now, 21 — 29 = (h1 — hg)(cwrj) € C. Thus, as hy, hy are in Z, we know
that a;o; € C. Thus hioao; € C, and further o; + o € C. Now, let a new
polynomial, p(z) be as follows:

p(z) = (r — a;)(z — o)) = 2% — (e + ;)7 + a;a; € Cla].

Thus, p(x) is a degree-two complex polynomial and thus its roots are complex
(previous lemma). Thus, f(z) has a complex root.
O

Lemma 6. If every nonconstant real polynomial has a complex root, then every
nonconstant complex polynomial has a complex root.

Proof. Let p(z) € C[z] be a nonconstant complex polynomial. Now assume that
every nonconstant real polynomial has a complex root. Let h(x) = p(x)p(z).
Now h(z) € Rlz] and thus has a complex root, xg. Thus, p(xo)p(xo) = 0, and
thus either p(xg) = 0, or p(zg) = 0 (as C does not have zero divisors). Thus,
either zg is a root of p(x), or p(x¢) = D(To) = p(Tg) = 0. Thus p(To) is a root
of p(z). O

Theorem 3. The Fundamental Theorem of Algebra If f(x) € Clz], and f(x)
is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then by lemmas 5
and 6 since all real polynomials have real roots, and thus all complex polynomials
do, f(x) has a complex root. This proves the theorem. O



