2006 VIGRE REU Paper

Matthew Bruce

September 13, 2006

1 The Fundamental Theorem of Algebra - Proof 1 (Topological)

Definition 1. Winding Number

The winding number of a curve, λ with respect to a point z_0 is the number of times λ goes around z_0 in a counter clockwise direction.

Property 1. The Fellow Traveler Property

Suppose that two functions, f(x), and g(x), are such that $|f(x) - g(x)| < \epsilon$ for some ϵ and $\forall x$ on some circle of radius r, C_r , with $\epsilon < r$. Then $f(C_r)$ and $g(C_r)$ have the same winding number.

Theorem 1. The Fundamental Theorem of Algebra

Proof. Suppose that $f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0$. We can assume without loss of generality that $a_n = 1$. Furthermore, we can assume that $a_0 \neq 0$ otherwise z = 0 would be a root. Now, f(z) is a continuous complex polynomial, mapping $\mathbb{C} \Rightarrow \mathbb{C}$. We also know that

$$\lim_{z \to \infty} \frac{z^n}{f(z)} = 1$$

and so for a circle with sufficiently large radius $r(C_r)$, we have

$$|z^n - f(z)| \le \alpha r^n$$

with $0 < \alpha < 1$ and z on the circle, C_r .

For any r > 0, z^n winds C_r around the origin n times. Therefore, by the fellow traveler property f(z) will also wind a sufficiently large C_r , n times around the origin. For a sufficiently small radius r around the origin, f(z) is approximately equal to a_0 and will not wind around the origin at all. Since f(z) is continuous, $f(C_r)$ will depend on r continuously. Since $f(C_r)$ has winding number of 0 for sufficiently small r, and winding number of n for sufficiently large r, it follows that there exists a radius, say r_1 , such that $f(C_{r_1})$ passes through the origin. Thus, $\exists z_1$ on C_{r_1} such that $f(z_1) = 0$. This proves the theorem.

2 The Fundamental Theorem of Algebra - Proof 2 (Analytic)

Lemma 1. The absolute value of a continuous complex function has a minimum value. Let $f(x) \in \mathbb{C}[x]$. Then |f(x)| has a minimum value at some point $x_0 \in \mathbb{C}$.

Proof. It is clear that $|f(x)| \to \infty$ as $|x| \to \infty$. Thus, for r sufficiently large, the greatest lower bound of |f(x)| on the disk $x \le r$ is also the greatest lower bound of $|f(x)| \forall x \in \mathbb{C}$. Thus, |f(x)| is a continuous function on a closed and bounded set (compact), and hence attains its minimum value.

Lemma 2. Let $f(x) \in \mathbb{C}[x]$. Then, for any x_0 , if $f(x_0) \neq 0$, then $|f(x_0)|$ is not a minimum value of |f(x)|.

Proof. Suppose f(x) is a nonconstant complex polynomial and suppose x_0 is a point such that $f(x_0) \neq 0$. Now make the change of variable $x = x + x_0$. Thus, we may assume that $f(0) \neq 0$. Now multiply f(x) by $f(0)^{-1}$ so that we have f(0) = 1. Now, it suffices to show that 1 is not the minimum value of |f(x)|. Let k be the largest non-zero power of x. Then f(x) is of the form:

$$f(x) = a_k x^k + \ldots + 1$$

Now let α be the k-th complex root of $-a^{-1}$. Now make the change of variable αx for x and our equation takes the form

$$f(x) = 1 - x^k + x^{k+1}g(x)$$

for some function g(x). Now, using the triangle inequality, for small positive real x we have

$$|f(x)| \le |1 - x^k| + x^{k+1}|g(x)|.$$

Since x is sufficiently small, we have $x_k < 1$ thus:

$$|f(x)| = 1 - x^k + x^{k+1}|q(x)| = 1 - x^k(1 - x|q(x)|).$$

Thus, for small x, xg(x) is small, thus x_0 can be chosen such that $x_0|g(x_0)| < 1$. Thus $x_0^k(1-x_0|g(x_0)|) > 0$, thus $|f(x_0)| < 1 = f(0)$ completing the proof.

Theorem 2. The Fundamental Theorem of Algebra If $f(x) \in \mathbb{C}[x]$, and f(x) is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then we know that there is at least one point x_0 where f(x) attains its minimum (lemma 1). We know that $|f(x_0)| = 0$ by lemma 2, thus $f(x_0) = 0$, which completes the proof.

3 The Fundamental Theorem of Algebra - Proof 3

Lemma 3. Any odd-degree polynomial must have a real root.

Proof. Let $f(x) \in \mathbb{R}[x]$ with degree f(x) = 2k + 1 for some k. Suppose further (without loss of generality) that the leading coefficient, $a_n > 0$. Then the following limits are true:

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty.$$

Thus, there exists some sufficiently large x_0 such that $f(x_0) > 0$, and there exists some sufficiently large x_1 such that $f(-x_1) < 0$. Thus, since f(x) is a polynomial and hence continuous, there exists some x_2 such that $f(x_2) = 0$ by the intermediate value theorem.

Lemma 4. Any two-degree complex polynomial must have a complex root.

Proof. This lemma is a consequence of the quadratic formula. Given $f(x) = ax^2 + bx + c$ the two roots are:

$$x_0 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

We know both of these exist as all complex numbers have square roots. However, if $b^2 = 4ac$ then the two roots will be the same.

Definition 2. Splitting Field If $0 \neq f(x) \in F[x]$ and G is an extension field of F, then f(x) splits in G, if f(x) factors into linear factors in G[x]. This means that all the roots of f(x) belong to G.

Lemma 5. Any nonconstant real polynomial has a complex root.

Proof. Let $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{R}$ such that $n \geq 1, a_n \neq 0$. Then let us perform induction on the degree n of f(x).

Suppose $n = 2^m a$, where a is odd. Now let us do induction on m. If m = 0, then f(x) has odd degree and by the lemma 3 has a root. Now let us assume that the theorem is true for all degrees $d = 2^k b$ where k < m and b is odd. Now assume that the degree of f(x) is $n = 2^m a$.

Let G be the splitting field for f(x) over \mathbb{R} which contains the roots $\alpha_1, \alpha_2, \dots, \alpha_n$. To prove the theorem we will show that at least one $\alpha \in \mathbb{C}$. Fix an integer $h \in \mathbb{Z}$, and construct the polynomial:

$$H(x) = \prod_{i < j} (x - (\alpha_i + \alpha_j + h\alpha_i\alpha_j)).$$

This polynomial belongs to G[x]. The number of pairs of alpha's for any given $n = 2^m a$ is given by

$$\frac{(2^ma)(2m^a-1)}{2}=2^{m-1}a(2^ma-1)=2^{m-1}b$$

for some odd b. Thus, the degree of H(x) is $2^{m-1}b$.

Now, H(x) is a symmetric polynomial in $\alpha_0, \ldots, \alpha_n$. Since the alphas are roots of a real polynomial (f(x)), and H(x) is symmetric in the splitting field, H(x) must be a real polynomial.

Therefore, $H(x) \in \mathbb{R}[x]$ with degree $2^{m-1}b$. By the inductive hypothesis H(x) has a complex root. Thus, there exists a pair of alphas such that

$$\alpha_i + \alpha_j + h\alpha_i\alpha_j \in \mathbb{C}.$$

Now, since h was arbitrary, we can specify some h_1 and get alphas such that:

$$\alpha_i + \alpha_j + h_1 \alpha_i \alpha_j \in \mathbb{C}.$$

Since there are only finitely many pairs of alphas, it follows that there must be at least two numbers, h_1 , and h_2 , such that

$$z_1 = \alpha_i + \alpha_j + h_1 \alpha_i \alpha_j$$
 and $z_2 = \alpha_i + \alpha_j + h_2 \alpha_i \alpha_j \in \mathbb{C}$.

Now, $z_1 - z_2 = (h_1 - h_2)(\alpha_i \alpha_j) \in \mathbb{C}$. Thus, as h_1 , h_2 are in \mathbb{Z} , we know that $\alpha_i \alpha_j \in \mathbb{C}$. Thus $h_1 \alpha_i \alpha_j \in \mathbb{C}$, and further $\alpha_i + \alpha_j \in \mathbb{C}$. Now, let a new polynomial, p(x) be as follows:

$$p(x) = (x - \alpha_i)(x - \alpha_j) = x^2 - (\alpha_i + \alpha_j)x + \alpha_i\alpha_j \in \mathbb{C}[x].$$

Thus, p(x) is a degree-two complex polynomial and thus its roots are complex (previous lemma). Thus, f(x) has a complex root.

Lemma 6. If every nonconstant real polynomial has a complex root, then every nonconstant complex polynomial has a complex root.

Proof. Let $p(x) \in \mathbb{C}[x]$ be a nonconstant complex polynomial. Now assume that every nonconstant real polynomial has a complex root. Let $h(x) = p(x)\overline{p}(x)$. Now $h(x) \in \mathbb{R}[x]$ and thus has a complex root, x_0 . Thus, $p(x_0)\overline{p}(x_0) = 0$, and thus either $p(x_0) = 0$, or $\overline{p}(x_0) = 0$ (as \mathbb{C} does not have zero divisors). Thus, either x_0 is a root of p(x), or $\overline{p}(x_0) = \overline{p}(\overline{x_0}) = p(\overline{x_0}) = 0$. Thus $p(\overline{x_0})$ is a root of p(x).

Theorem 3. The Fundamental Theorem of Algebra If $f(x) \in \mathbb{C}[x]$, and f(x) is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then by lemmas 5 and 6 since all real polynomials have real roots, and thus all complex polynomials do, f(x) has a complex root. This proves the theorem.