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1 The Fundamental Theorem of Algebra - Proof
1 (Topological)

Definition 1. Winding Number
The winding number of a curve, λ with respect to a point z0 is the number

of times λ goes around z0 in a counter clockwise direction.

Property 1. The Fellow Traveler Property
Suppose that two functions, f(x), and g(x), are such that |f(x)− g(x)| < ε

for some ε and ∀x on some circle of radius r, Cr, with ε < r. Then f(Cr) and
g(Cr) have the same winding number.

Theorem 1. The Fundamental Theorem of Algebra

Proof. Suppose that f(z) = anzn+an−1z
n−1+ . . .+a0. We can assume without

loss of generality that an = 1. Furthermore, we can assume that a0 6= 0 oth-
erwise z = 0 would be a root. Now, f(z) is a continuous complex polynomial,
mapping C ⇒ C. We also know that

lim
z→∞

zn

f(z)
= 1

and so for a circle with sufficiently large radius r (Cr), we have

|zn − f(z)| ≤ αrn

with 0 < α < 1 and z on the circle, Cr.
For any r > 0, zn winds Cr around the origin n times. Therefore, by

the fellow traveler property f(z) will also wind a sufficiently large Cr, n times
around the origin. For a sufficiently small radius r around the origin, f(z) is
approximately equal to a0 and will not wind around the origin at all. Since f(z)
is continuous, f(Cr) will depend on r continuously. Since f(Cr) has winding
number of 0 for sufficiently small r, and winding number of n for sufficiently
large r, it follows that there exists a radius, say r1, such that f(Cr1) passes
through the origin. Thus, ∃z1 on Cr1 such that f(z1) = 0. This proves the
theorem.
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2 The Fundamental Theorem of Algebra - Proof
2 (Analytic)

Lemma 1. The absolute value of a continuous complex funcion has a minimum
value. Let f(x) ∈ C[x]. Then |f(x)| has a minimum value at some point x0 ∈ C.

Proof. It is clear that |f(x)| → ∞ as |x| → ∞. Thus, for r sufficiently large,
the greatest lower bound of |f(x)| on the disk x ≤ r is also the greatest lower
bound of |f(x)|∀x ∈ C. Thus, |f(x)| is a continuous function on a closed and
bounded set (compact), and hence attains its minimum value.

Lemma 2. Let f(x) ∈ C[x]. Then, for any x0, if f(x0) 6= 0, then |f(x0)| is not
a minimum value of |f(x)|.

Proof. Suppose f(x) is a nonconstant complex polynomial and suppose x0 is a
point such that f(x0) 6= 0. Now make the change of variable x = x + x0. Thus,
we may assume that f(0) 6= 0. Now multiply f(x) by f(0)−1 so that we have
f(0) = 1. Now, it suffices to show that 1 is not the minimum value of |f(x)|.
Let k be the largest non-zero power of x. Then f(x) is of the form:

f(x) = akxk + . . . + 1

Now let α be the k-th complex root of −a−1. Now make the change of variable
αx for x and our equation takes the form

f(x) = 1− xk + xk+1g(x)

for some function g(x). Now, using the triangle inequality, for small positive
real x we have

|f(x)| ≤ |1− xk|+ xk+1|g(x)|.

Since x is sufficiently small, we have xk < 1 thus:

|f(x) = 1− xk + xk+1|g(x)| = 1− xk(1− x|g(x)|).

Thus, for small x, xg(x) is small, thus x0 can be chosen such that x0|g(x0)| < 1.
Thus xk

0(1− x0|g(x0)|) > 0, thus |f(x0)| < 1 = f(0) completing the proof.

Theorem 2. The Fundamental Theorem of Algebra If f(x) ∈ C[x], and f(x)
is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then we know that
there is at least one point x0 where f(x) attains its minimum (lemma 1). We
know that |f(x0)| = 0 by lemma 2, thus f(x0) = 0, which completes the proof.
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3 The Fundamental Theorem of Algebra - Proof
3

Lemma 3. Any odd-degree polynomial must have a real root.

Proof. Let f(x) ∈ R[x] with degree f(x) = 2k + 1 for some k. Suppose further
(without loss of generality) that the leading coefficient, an > 0. Then the
following limits are true:

lim
x→∞

f(x) = ∞

lim
x→−∞

f(x) = −∞.

Thus, there exists some sufficiently large x0 such that f(x0) > 0, and there
exists some sufficiently large x1 such that f(−x1) < 0. Thus, since f(x) is a
polynomial and hence continuous, there exists some x2 such that f(x2) = 0 by
the intermediate value theorem.

Lemma 4. Any two-degree complex polynomial must have a complex root.

Proof. This lemma is a consequence of the quadratic formula. Given f(x) =
ax2 + bx + c the two roots are:

x0 =
−b +

√
b2 − 4ac

2a
, x1 =

−b−
√

b2 − 4ac

2a
.

We know both of these exist as all complex numbers have square roots. However,
if b2 = 4ac then the two roots will be the same.

Definition 2. Splitting Field If 0 6= f(x) ∈ F [x] and G is an extension field of
F, then f(x) splits in G, if f(x) factors into linear factors in G[x]. This means
that all the roots of f(x) belong to G.

Lemma 5. Any nonconstant real polynomial has a complex root.

Proof. Let f(x) = a0 + · · · + anxn ∈ R such that n ≥ 1, an 6= 0. Then let us
perform induction on the degree n of f(x).

Suppose n = 2ma, where a is odd. Now let us do induction on m. If m = 0,
then f(x) has odd degree and by the lemma 3 has a root. Now let us assume
that the theorem is true for all degrees d = 2kb where k < m and b is odd. Now
assume that the degree of f(x) is n = 2ma.

Let G be the splitting field for f(x) over R which contains the roots α1, α2, · · · , αn.
To prove the theorem we will show that at least one α ∈ C. Fix an integer h ∈ Z,
and construct the polynomial:

H(x) =
∏
i<j

(x− (αi + αj + hαiαj)).
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This polynomial belongs to G[x]. The number of pairs of alpha’s for any
given n = 2ma is given by

(2ma)(2ma − 1)
2

= 2m−1a(2ma− 1) = 2m−1b

for some odd b. Thus, the degree of H(x) is 2m−1b.
Now, H(x) is a symmetric polynomial in α0, . . . , αn. Since the alphas are

roots of a real polynomial (f(x)), and H(x) is symmetric in the splitting field,
H(x) must be a real polynomial.

Therefore, H(x) ∈ R[x] with degree 2m−1b. By the inductive hypothesis
H(x) has a complex root. Thus, there exists a pair of alphas such that

αi + αj + hαiαj ∈ C.

Now, since h was arbitrary, we can specify some h1 and get alphas such that:

αi + αj + h1αiαj ∈ C.

Since there are only finitely many pairs of alphas, it follows that there must be
at least two numbers, h1, and h2, such that

z1 = αi + αj + h1αiαj and z2 = αi + αj + h2αiαj ∈ C.

Now, z1 − z2 = (h1 − h2)(αiαj) ∈ C. Thus, as h1, h2 are in Z, we know
that αiαj ∈ C. Thus h1αiαj ∈ C, and further αi + αj ∈ C. Now, let a new
polynomial, p(x) be as follows:

p(x) = (x− αi)(x− αj) = x2 − (αi + αj)x + αiαj ∈ C[x].

Thus, p(x) is a degree-two complex polynomial and thus its roots are complex
(previous lemma). Thus, f(x) has a complex root.

Lemma 6. If every nonconstant real polynomial has a complex root, then every
nonconstant complex polynomial has a complex root.

Proof. Let p(x) ∈ C[x] be a nonconstant complex polynomial. Now assume that
every nonconstant real polynomial has a complex root. Let h(x) = p(x)p(x).
Now h(x) ∈ R[x] and thus has a complex root, x0. Thus, p(x0)p(x0) = 0, and
thus either p(x0) = 0, or p(x0) = 0 (as C does not have zero divisors). Thus,
either x0 is a root of p(x), or p(x0) = p(x0) = p(x0) = 0. Thus p(x0) is a root
of p(x).

Theorem 3. The Fundamental Theorem of Algebra If f(x) ∈ C[x], and f(x)
is not constant, then f(x) has at least one complex root.

Proof. Suppose f(x) is a nonconstant complex polynomial. Then by lemmas 5
and 6 since all real polynomials have real roots, and thus all complex polynomials
do, f(x) has a complex root. This proves the theorem.
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