
LAMBDA CALCULUS

1. Background

λ-calculus is a formal system with a variety of applications in mathematics,
logic, and computer science. It examines the concept of functions as processes,
rather than the usual set-theoretic notion of functions in extension, and it provides
an alternative model for computable functions. Functional programming languages
like Haskell and ML owe a great deal to lambda calculus for their existence. λ-
calculus is itself, in some sense, a very simple programming language, although it
would be impractical to implement for most purposes. However, as a programming
language, what it lacks in practicality, it makes up for in simplicity, and since it
is equivalent to most computer languages, it provides a great way to study their
properties.

λ-calculus was invented in the 1930’s by Alanzo Church and Stephen Kleene.
Originally, in addition to being used to study function theory, λ-calculus was in-
tended to provide a foundation for mathematics, but this system was shown to
be inconsistent. Despite this, Church reduced λ-calculus to its functional aspect,
which is the system we use today.

2. Description of the Language

We will assume familiarity with the basics of λ-calculus, but here we will include
a brief description of the language and transformation rules.

The language of λ-calculus, Λ, can be defined recursively as follows:

λ-terms. T ∈ Λ iff one of the following holds:

(1) T is a member of a countable set of variables {a, b, c,..., x1, x2,...}.
(2) T is of the form (MN) where M and N are in Λ.
(3) T is of the form (λX.Y) where X is a variable and Y is in Λ.

Λ is the smallest language with this property.

An element of the form (MN) is called an application, and an element of the
form λX.Y is called an abstraction. In order to reduce parentheses we will assume
application is left-associative. Also, instead of saying “T is of the form M” we will
write “T ≡ M”.

Example. The following are all examples of λ -terms:

(1) λp.pλx.y

(2) xλm.λn.nm

(3) xλmn.nm -whenever we have consecutive abstractions as in the previous
example, we can concatenate them like this.

(4) (λp.p(λxy.x))(λm.mab)
(5) (λx.xx)(λy.y)

1



2 LAMBDA CALCULUS

Example (5) is an instancs of a redex, which is an application with an abstraction
on the left. We interpret abstractions λx.P as descriptions of what they do to
arguments. The term P describes explicitly what the abstraction will return, using
the variable x to represent the term applied to the abstraction. So the abstraction
in example (5) takes a term x and outputs 2 copies of it. Hence it takes (λy.y)
and returns (λy.y)(λy.y), and we say “(λx.xx)(λy.y) contracts to (λy.y)(λy.y),” or
more succinctly, “(λx.xx)(λy.y) ⊲1 (λy.y)(λy.y).” If P takes 0 or more contractions
to get to the term Q, then we say “P reduces to Q,” or “P ⊲ Q.”

We say two terms P and Q are β-equivalent, or “P =β Q” if they both reduce
to a common term. For our purposes, we will drop the β subscript.

3. λ-definability, Church Numerals and Recursion

In order to show that λ-calculus is actually useful, we will show that we can
encode natural numbers and many of the basic arithmetic operations into the lan-
guage. There are many possible ways to do this, but we will use the conventional
system put forth by Church:

Church Numerals. For every natural number n, we associate with it a λ-term n

of the form

n ≡ λxy.xny,

where xn denotes x repeated n times.

So we see that each number n, as a Church numeral, takes in two arguments and
applies the first argument n times to the second argument. This will make it easy
to define basic arithmetic operations, since many of them, like multiplication and
exponentiation, are simply repeated applications of a particular function.

Definition. A function φ : N
k → N is λ − definable if there is a λ-term F such

that for every n1, n2,..., nk ∈ N, we have that

Fn1 . . . nk = φ(n1, . . . , nk).

That is, F is the same as φ, except that it operates on the Church numerals.

All of the basic operations on natural numbers are λ-definable. We can build
them up quite easily due to the form of the Church numerals:

[inc] ≡ λn.λxy.x(nxy)

[add] ≡ λmn.m[inc]0

[mul] ≡ λmn.m([add]n)0

[exp] ≡ λmn.n([mul]m)1

In [add], [mul], and [exp], we see that the abstractions take a given Church
numeral, replace the repeated part by a given function, and replace the end part
by a starting value. For instance, in [mul], the repeated part of one of the inputs m
is replaced by the function ([add]n) that adds n to a given input, and the end part
is replaced by the starting value 0. So we see that [mul] implements multiplication
as repeated addition.



LAMBDA CALCULUS 3

In order to define more complex functions, it is useful to create a pairing operator
and corresponding selectors. Before, in [add], [mul], and [exp], we could only replace
the repeating part of a number by unary operators and replace the end part by a
single value. With pairing operators and selectors, however, we could effectively
pass multiple values through each repeated function. So we define the [cons], [car],
and [cdr] operators (paying tribute to the LISP naming conventions):

[cons] ≡ λabm.mab

[car] ≡ λp.p(λxy.x)

[cdr] ≡ λp.p(λxy.y)

We see that the pairing operator [cons] is specifically designed with selectors
[car] and [cdr] in mind:

[car]([cons]AB) ≡ (λp.p(λxy.x))((λabm.mab)AB)

⊲ (λp.p(λxy.x))(λm.mAB)

⊲ (λm.mAB)(λxy.x)

⊲ (λxy.x)AB

⊲ A

It is clear that [cdr] works the same way, except at the last step it returns B
instead of A.

So now we can make some more complicated functions, like [fac], which returns
the factorial of a given number. Typically, in a program, the factorial function is
defined iteratively, with a counter variable that multiplies an accumulated value on
each step. Now with our pairing operators, we can create [fac] in an analoguous
way, replacing the end part of the input number n by the pair (1,1), and replacing
the repeating part of n by the function that takes a pair (a,b) and returns the pair
(a+1,a*b). Applied n times, the function will return (n+1,n!), so we need to take
the [cdr] at the end. Thus [fac] can be defined as follows:

[fac-iter] ≡ (λp.[cons]([inc]([car]p))([mul]([car]p)([cdr]p)))

[fac] ≡ λn.[cdr](n[fac-iter]([cons]1 1))

Continuing on with our development of a useful set of operators, a logical next
step would be to create some form of conditional operator, something essential to
just about any programming language. Suppose we would like to implement an
if-then-else construct that performs a test, and depending on the outcome, returns
one of two specified outputs. That is, we want to create an operator [if-then-else]
that takes 3 inputs A, B, and C, where A holds a boolean value, and B and C
are the two possible outputs. Boolean values can be represented many ways in
lambda calculus, but we will represent it with our given Church numerals, where 0
represents false and 1 represents true. So to begin, our function will take B and C,
and pair them together with [cons]. Then we will want to find some way to apply
[car] to this pair if A is 1 and [cdr] if A is 0. To do this, we can use the fact that 0
ignores its first input, whereas 1 does not:



4 LAMBDA CALCULUS

[if-then-else] ≡ λabc.a(λx.[car])[cdr]([cons]bc)

We can see with a simple reduction that this function works:

[if-then-else]0AB ≡ 0(λx.[car])[cdr]([cons]AB)

⊲ [cdr]([cons]AB)

⊲ B

[if-then-else]1AB ≡ 1(λx.[car])[cdr]([cons]AB)

⊲ (λx.[car])[cdr]([cons]AB)

⊲ [car]([cons]AB)

⊲ A

So far we have been avoiding a rather important operator, the predecessor opera-
tor, and now we have enough machinery to define it. Since we do not have negative
numbers, we will have the predecessor operator take 0 to 0.

[pred-iter] ≡ (λp.[cons]1([if-then-else]([car]p)([inc]([cdr]p))0))

[pred] ≡ λn.[cdr](n[pred − iter]([cons]0 0))

We see that the [pred] operator is similar to [fac] in that it replaces the repeating
part of the input number n by a function that operates on and returns pairs. In
this case, we replace the end part of n by the pair (0,0) and apply to it n times the
function that takes a pair (a,b) and returns (1,0) if a=0 and (1,b+1) if a=1.

With [pred] we can now define [monus] which subtracts n from m if n≤m and
returns 0 otherwise:

[monus] ≡ λmn.n[pred]m

Now that we have shown many of the basic arithmetic operations to be λ-
definable, we may ask what other natural number functions are definable. Clearly,
not all can be defined, since the set of functions from N

k to N is uncountable and the
set of λ-terms is countable. It can be shown quite easily that all primitive recursive
functions are definable, by introducing the recursion operator. But this is far from
a desirable set of functions, since there are many computable functions that are not
primitive recursive, like Ackerman’s function, for instance. Although we will not
prove it here, Kleene had shown that every total recursive function is λ-definable.
We will use this fact in the next section to derive a general undecidability theorem.

4. The Undecidability Theorem

The first undecidability proof in mathematics was given by Alonzo Church in
1936, using λ-calculus. The following proof is a more general form, but proves the
same result, that there is no algorithm to decide whether or not two λ-terms are
equivalent.

To begin, we will make a few major assumptions. First, we assume that there
is an algorithm that defines an injective map #:Λ → N that associates with every
λ-term a natural number. This is called a Godel numbering of the terms, which



LAMBDA CALCULUS 5

allows us to perform computations within λ-calculus on other λ-terms. We also
assume that these terms are numbered so that there are total recursive functions τ

and ν such that

τ(#A, #B) = #(AB) and ν(n) = #n

Before we state the theorem, we begin with a few definitions.

Definition. Let A and B be disjoint sets of natural numbers. They are called
recursively separable iff there is a total recursive function φ such that

n ∈ A =⇒ φ(n) = 1

n ∈ B =⇒ φ(n) = 0

We say two sets of terms A and B are recursively separable if the sets of Godel
numbers associated with A and B are recursively separable.

Definition. A set of terms A is closed under equality if

P ∈ A and P = Q =⇒ Q ∈ A

One more thing: let [[X ]] denote #X .

Scott-Curry Undecidability Theorem. No pair of non-empty sets of terms
closed under equality is recursively seperable.

Proof. Suppose not. Then there is a total recursive function φ , and a pair of non-
empty sets of terms A and B such that φ separates A and B. Since every recursive
function is definable in λ-calculus, let F be the λ-term defining φ. That is,

X ∈ A =⇒ F [[X ]] = 1,(1)

X ∈ B =⇒ F [[X ]] = 0.(2)

Now let T and V be the terms which define the functions τ and ν. Then we have
that

T [[X ]][[Y ]] = [[XY ]],(3)

V n = [[n]](4)

Now in order to find a contradiction, we will construct, using any two terms A
∈ A and B ∈ B we want, another term J with the property that

F [[J ]] = 1 =⇒ J = B,(5)

F [[J ]] = 0 =⇒ J = A.(6)

Clearly, both of these statements cannot be true. If F [[J ]] = 1, then J must be
in B, but this implies by the definition of F that F [[J ]] = 0. Likewise, if F [[J ]] = 0,
we conclude by the same reasoning that F [[J ]] = 1, so we reach a contradiction.
Now to construct J, we will want it to have the following property:

J = [if-then-else](F [[J ]])BA(7)



6 LAMBDA CALCULUS

If we construct such a J, then we see that if F [[J ]] = 1, then J = [if-then-else]1BA =
B, and if F [[F ]] = 0, then J = [if-then-else]0BA = A. So let

J ≡ H [[H ]] where H ≡ λy.[if-then-else](F (Ty(V y))BA

Now we perform a simple β reduction to see that J has the desired property (7):

J = H [[H ]]

= (λy.[if-then-else](F (Ty(V y)))BA)[[H ]]

= [if-then-else](F (T [[H ]](V [[H ]])))BA

= [if-then-else](F (T [[H ]][[[[H ]]]]))BA

= [if-then-else](F ([[H [[H ]]]]))BA

= [if-then-else](F ([[J ]]))BA

�

References

[1] Barendregt, H. P., The Lambda Calculus, North-Holland Publishing Company, New York, NY,
1981.

[2] Hindley, J. R., Seldin, J. P., Introduction to Combinators and λ-Calculus, Cambridge Univer-
sity Press, New York, NY, 1986.


