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1. Introduction

A prime partition of a positive integer n is a collection of positive
integers {a1, a2, ..., ak}, not necessarily distinct, so that every ai is either
1 or a prime, and a1 + a2 + ... + ak = n. The number of different
prime partitions (with the same terms in different orders counted as
equivalent) is denoted q(n).

Theorem 1.

ln q(n) = θ

(√
n

ln n

)

2. A Lower Bound

Proposition 2.

ln q(n) ≥ 2
√

2

√
n

ln n

Proof. One specific kind of prime partition of n is the kind in which all
primes are distinct and less than x(n), where x(n) is the largest prime
such that 2 + 3 + 7 + · · ·+ x ≤ n. Call this particular prime partition
a ”simple prime partition.” The number of simple prime partitions is
less than q(n), so an approximation would yield a lower bound for
q(n). There are exactly 2π(x(n)) such prime partitions, where π(x(n))
is the number of primes less than or equal to x(n). This is because
every prime partition whose primes are all distinct and less than x(n)
is formed by taking a subset of the primes from 2 to x(n), and adding
enough ones to make the total sum equal to n. Now ln(2π(x(n))) =
θ(π(x(n)) so it is enough to show π(x(n)) = θ(

√
n

ln n
).

Lemma 3. ∑
p≤x

p ∼ x2

2 ln x

1



2 S. CONSTANTIN

Proof. By a consequence of the Prime Number Theorem, the nth prime
pn ∼ n ln n.∑

p≤x

p ∼
π(x)∑
n=1

n ln n = 1 ln 1 + 2 ln 2 + . . . π(x) ln π(x).

We also know by the Prime Number Theorem that π(x) ∼ x
ln x

. So

π(x)∑
n=1

n ln n ∼
x

lnx∑
n=1

n ln n.

For large x, this approaches∫ x
ln x

1

n ln n dn =

x2

(ln x)2
ln( x

ln x
)

2
− x2

4(ln x)2
+

1

4
∼ x2

2 ln x
− x2

4(ln x)2
∼ x2

2 ln x
.

�

Now use this identity to show that π(x(n)) ∼ 2
√

2
√

n
ln n

. It is true

that x(n) ∼
√

2n ln n since composing this function with x2

2 ln x
we get

√
2n ln n

2

2 ln
√

2n ln n
=

2n ln n

2 ln(n ln n))
∼ n.

Substituting, we get

π(x(n)) ∼ π(
√

2n ln n)

π(x(n)) ∼
√

2n ln n

ln
√

2n ln n
= 2

√
2n ln n

ln 2 + ln n + ln ln n

∼ 2

√
2n ln n

ln n
∼ 2

√
2

√
n

ln n
�

3. An Upper Bound

Proposition 4.

q(n) ≤
√

2 ln

(
5e√
2

)√
n

ln n

Proof. Here is one way to construct an upper bound for q(n): Choose
n primes, with repetition permitted, of the primes between 0 and x(n).
Add the number of such choices to the number of choices of n

x(n)
primes

between 0 and 2x(n), then choices of n
2x(n)

primes between 0 and 4x(n),

and continue, multiplying these quantities until we reach a power of two
for which 2kx(n) > n. The number of primes chosen within each block



ASYMPTOTIC BEHAVIOR OF THE NUMBER OF PRIME PARTITIONS 3

[2kx(n), 2k+1x(n)] is n
2kx(n)

because if every prime is greater than 2k,

then any sum of more than n
2kx(n)

will automatically be too large to be

a partition of n.
What is the highest allowable power of two? If

2k
√

2n ln n = n,

then

k =
ln( n√

2n ln n
)

ln 2
∼ ln n

2 ln 2
.

So, using the fact that the number of ways to choose k objects at a

time from n is

(
n + k − 1

k

)
, we can write a product expression for

this upper bound.

q(n) ≤
ln n
2 ln 2∏
k=0

(
π(2k+1x(n))− π(2kx(n)) + n

2kx(n)
− 1

n
2kx(n)

)
Use the fact (which will be proven in 5) that(

n
k

)
<
(en

k

)k

.

If we let z = 2kx(n), this yields

q(n) ≤
ln n
2 ln 2∏
k=0

e
n
z (

z2

n ln z
+ 1− z

n
)

n
z

Note that n
z

= 1√
2

√
n

ln n
and that z

ln z
∼ 2k+2 n

z
. So the kth term of the

product is asymptotically equal to(
5e(
√

n
2 ln n

)√
n

ln n

) 1

2k

√
n

2 ln n

Now let y be
√

n
2 ln n

. This makes the kth term of the product equal to

=

(
5e(
√

n
2 ln n

)√
n

ln n

) 1

2k

√
n

2 ln n

=

(
5ey√
2y

) 1

2k y

=

(
5e

2

) 1

2k y

.



4 S. CONSTANTIN

Now when we take the natural log of this, we should have a constant
multiple of

√
n

ln n
. We see that

ln

ln n
2 ln 2∏
k=0

(
5e√
2
)

1

2k

√
n

2 ln n =

ln n
2 ln 2∑
k=0

1

2k

√
n

2 ln n
ln

5e√
2

∼
√

2 ln

(
5e√
2

)√
n

ln n

�

4. Proof of an Upper Bound of the Binomial Coefficient

Proposition 5. (
n
k

)
< (

ae

b
)b

Proof. The Taylor expansion of ex is

ex = 1 + x +
x2

2! x3

3!

+ · · ·+ xk

k!
+ . . .

Therefore, for any individual k,

xk

k!
< ex.

In particular, letting x = k,

kk

k!
< ek

or

1 <
kek

kk

Now observe that

n!

k!(n− k)!
=

n(n− 1)(n− 2)...(n− k + 1)

k!
≤ nk

k!
.

Recalling that the previous expression was greater than one, we have(
n
k

)
<

nk

k!

k!ek

kk
=
(ne

k

)k

.

�
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5. An Upper Bound for q(n) using Generating Functions

Another way to estimate partitions is using generating functions.
The Hardy-Ramanujan formula for p(n), the number of unrestricted
prime partitions, was based on the fact that p(n) is the coefficient of
xn in the product

Π
1

1− xn

where x is between 0 and 1. There is a similar generating function for
q(n), that is,

Π
1

1− xp

where p is a prime less than n and x is between 0 and 1. Expanding
this sum it becomes clear that for every prime partition there is a
corresponding contribution to the xn term. Now note that

q(n) ≤ 1

xn
Π

1

1− xp

since there are other terms in the product than the xn term. So

ln q(n) ≤ − ln x +
∑
p≤n

1

1− xp
.

And we claim this is θ(
√

x
ln x

), so at least the first term must be of that
order. This gives us a generous necessary value for x;

−n ln x = θ(

√
n

ln n
)

x = e
− 1√

n ln n ∼ 1− 1√
n ln n

.

Now it’s left to calculate the sum, and in future we will keep

x = 1− 1√
n ln n

.

Now consider ∑
p≤n

ln
1

1− xp
.

We will prove that this is θ(
√

n
ln n

), but we will not keep track of the
actual constant factor, and the symbol ∼ will be used to mean ”asymp-
totically equivalent, possibly with a constant factor.” Note that

ln
1

x
∼ 1√

n ln n
.
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Also note that
1

1− x
=
√

n ln n

so

ln
1

1− x
∼ ln n.

We divide the sum into three cases:

Case 1 : p <

√
n

ln n

Case 2 :

√
n

ln n
≤ p ≤

√
n ln n

Case 3 : p >
√

n ln n

For simplicity, let

M1 =

√
n

ln n
and

M2 =
√

n ln n.

Lemma 6 (Case 1). ∑
p≤M1

ln
1

1− xp
∼
√

n

ln n
.

Proof. In this case,

p ≤
√

n

ln n
,

so since 1
1−xp is a decreasing function of p,∑

p≤M1

ln
1

1− xp
≤ ln

1

1− x2
π(

√
n

ln n
).

Using the Prime number Theorem, this yields

(ln
1

1− x
+ ln

1

1 + x
)

√
n

ln n

ln
√

n
ln n

.

As n becomes large, x approaches 1, so ln 1
1+x

approaches 0. Thus the
previous expression is equivalent to

(ln n + 0)

√
n

ln n

ln
√

n
ln n

∼ ln x

√
n

(ln n)3/2

=

√
n

ln n
.
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�

Lemma 7 (Case 2).

M2∑
p=M1

ln
1

1− xp
∼
√

n

ln n
.

Proof. We split this expression into a dyadic sum, breaking it up into
powers of e and replacing it with

ln M2∑
k=ln M1

ek+1∑
p=ek

ln
1

1− xep .

The expression inside the nested sum is a decreasing function of p,
so the sum is less than its highest value multiplied by the number of
terms:

ln M2∑
k=ln M1

ln
1

1− xek π(ek+1).

Using the prime number theorem, this is asymptotically equivalent to

ln M2∑
k=ln M1

ln
1

1− xek

ek+1

k + 1

Since k is at least ln M1, this sum is less than or equal to

1

ln M1

ln M2∑
k=ln M1

ln
1

1− xek ek+1

≤ 1

ln M1

ln M2∑
k=ln M1

∫ k

k−1

ln(
1

1− ext )e
t+2dt

=
e2

ln M1

∫ ln M2

ln M1

ln
et

1− xet dt.

Computing this integral, we find it equal to a constant times

1

ln M1

∫ M2

M1

ln
1

1− xu
du

=
1

ln M1

1

ln x

∫ xM
1

xM
2

ln
1

1− v

dv

v

∼ 1

ln n
∗
√

n ln n ∗
∫ xM1

xM2

ln
1

1− v

dv

v
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But the integral is less than a constant. Because ln(1 − v) is close to
zero for these values of v, and 1

v
is bounded since xM2 ≥ e−1.so the

entire expression is less than or equal to

1

ln n
∗
√

n ln n =

√
n

ln n
.

�

Lemma 8 (Case 3).

n∑
p=M2

ln
1

1− xp
∼
√

n

ln n
.

Proof. Note that

ln
1

1− xp
≤ xp

1− xp

since ln 1
1−xp = ln(1 + xp

1−xp ) ≤ xp

1−xp . Again we construct a dyadic sum.

n∑
p=M2

xp

1− xp
=

ln n∑
k=1+ln M2

k∑
p=k−1

xep

1− xep

This is a decreasing function of p, so the inner sum is less than its
largest term times the number of terms:

≤
ln n∑

k=1+ln M2

xek

1− xek π(ek)

Using the Prime Number Theorem, this is asymptotically equal to

ln n∑
k=1+ln M2

xek

1− xek

ek

k
.

Since k ≥ 1 + ln M2, the previous expression is less than if we divided
by the largest possible value of k, so

≤ 1

1 + ln M2

ln n∑
k=1+ln M2

xek

1− xek ek

Now, what’s inside the sum is a monotonically increasing function, so
it is less than the integral:

≤ 1

1 + ln M2

∫ 1+ln n

2+ln M2

xet

1− xet e
tdt
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We calculate by substitution:

1

1 + ln M2

∫ en

e2M2

xu

1− xu
du

=
1

1 + ln M2

∗ 1

ln x

∫ xen

xe2M2

dy

1− y

∼ 1

1 + ln M2

∗ 1

ln x
ln(

1− xe2M2

1− xen
)

≤ 1

1 + ln M2

∗ 1

ln x
ln(1− xe2M2)

∼
√

n ln n ∗ 1

ln n
ln(1− xe2M2)

∼
√

n

ln n
ln(1− xe2M2).

Now ln(1− xe2M2) is bounded by a constant, since

xp = (1− 1√
n ln n

)
√

n ln n p√
n ln n ∼ (e−1)

p√
n ln n

Therefore, the entire sum is less than or asymptotically equal to√
n

ln n
∗ C

so it’s of the order of √
n

ln n
.

�

Since all three sections of the sum are of the order of
√

n
ln n

, the entire
sum is of that order, and the upper bound is justified.
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