ASYMPTOTIC BEHAVIOR OF THE NUMBER OF PRIME PARTITIONS

S. CONSTANTIN

1. Introduction

A prime partition of a positive integer n is a collection of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, not necessarily distinct, so that every a_{i} is either 1 or a prime, and $a_{1}+a_{2}+\ldots+a_{k}=n$. The number of different prime partitions (with the same terms in different orders counted as equivalent) is denoted $q(n)$.

Theorem 1.

$$
\ln q(n)=\theta\left(\sqrt{\frac{n}{\ln n}}\right)
$$

2. A Lower Bound

Proposition 2.

$$
\ln q(n) \geq 2 \sqrt{2} \sqrt{\frac{n}{\ln n}}
$$

Proof. One specific kind of prime partition of n is the kind in which all primes are distinct and less than $x(n)$, where $x(n)$ is the largest prime such that $2+3+7+\cdots+x \leq n$. Call this particular prime partition a "simple prime partition." The number of simple prime partitions is less than $q(n)$, so an approximation would yield a lower bound for $q(n)$. There are exactly $2^{\pi(x(n))}$ such prime partitions, where $\pi(x(n))$ is the number of primes less than or equal to $x(n)$. This is because every prime partition whose primes are all distinct and less than $x(n)$ is formed by taking a subset of the primes from 2 to $x(n)$, and adding enough ones to make the total sum equal to n. Now $\ln \left(2^{\pi(x(n))}\right)=$ $\theta\left(\pi(x(n))\right.$ so it is enough to show $\pi(x(n))=\theta\left(\sqrt{\frac{n}{\ln n}}\right)$.

Lemma 3.

$$
\sum_{p \leq x} p \sim \frac{x^{2}}{2 \ln x}
$$

Proof. By a consequence of the Prime Number Theorem, the nth prime $p_{n} \sim n \ln n$.

$$
\sum_{p \leq x} p \sim \sum_{n=1}^{\pi(x)} n \ln n=1 \ln 1+2 \ln 2+\ldots \pi(x) \ln \pi(x)
$$

We also know by the Prime Number Theorem that $\pi(x) \sim \frac{x}{\ln x}$. So

$$
\sum_{n=1}^{\pi(x)} n \ln n \sim \sum_{n=1}^{\frac{x}{\ln x}} n \ln n
$$

For large x , this approaches

$$
\int_{1}^{\frac{x}{\ln x}} n \ln n d n=\frac{\frac{x^{2}}{(\ln x)^{2}} \ln \left(\frac{x}{\ln x}\right)}{2}-\frac{x^{2}}{4(\ln x)^{2}}+\frac{1}{4} \sim \frac{x^{2}}{2 \ln x}-\frac{x^{2}}{4(\ln x)^{2}} \sim \frac{x^{2}}{2 \ln x}
$$

Now use this identity to show that $\pi(x(n)) \sim 2 \sqrt{2} \sqrt{\frac{n}{\ln n}}$. It is true that $x(n) \sim \sqrt{2 n \ln n}$ since composing this function with $\frac{x^{2}}{2 \ln x}$ we get

$$
\frac{\sqrt{2 n \ln n}^{2}}{2 \ln \sqrt{2 n \ln n}}=\frac{2 n \ln n}{2 \ln (n \ln n))} \sim n .
$$

Substituting, we get

$$
\begin{aligned}
& \pi(x(n)) \sim \pi(\sqrt{2 n \ln n}) \\
& \pi(x(n)) \sim \frac{\sqrt{2 n \ln n}}{\ln \sqrt{2 n \ln n}}=2 \frac{\sqrt{2 n \ln n}}{\ln 2+\ln n+\ln \ln n} \\
& \sim 2 \frac{\sqrt{2 n \ln n}}{\ln n} \sim 2 \sqrt{2} \sqrt{\frac{n}{\ln n}}
\end{aligned}
$$

3. An Upper Bound

Proposition 4.

$$
q(n) \leq \sqrt{2} \ln \left(\frac{5 e}{\sqrt{2}}\right) \sqrt{\frac{n}{\ln n}}
$$

Proof. Here is one way to construct an upper bound for $q(n)$: Choose n primes, with repetition permitted, of the primes between 0 and $x(n)$. Add the number of such choices to the number of choices of $\frac{n}{x(n)}$ primes between 0 and $2 x(n)$, then choices of $\frac{n}{2 x(n)}$ primes between 0 and $4 x(n)$, and continue, multiplying these quantities until we reach a power of two for which $2^{k} x(n)>n$. The number of primes chosen within each block
$\left[2^{k} x(n), 2^{k+1} x(n)\right]$ is $\frac{n}{2^{k} x(n)}$ because if every prime is greater than 2^{k}, then any sum of more than $\frac{n}{2^{k} x(n)}$ will automatically be too large to be a partition of n.

What is the highest allowable power of two? If

$$
2^{k} \sqrt{2 n \ln n}=n
$$

then

$$
k=\frac{\ln \left(\frac{n}{\sqrt{2 n \ln n}}\right)}{\ln 2} \sim \frac{\ln n}{2 \ln 2} .
$$

So, using the fact that the number of ways to choose k objects at a time from n is $\binom{n+k-1}{k}$, we can write a product expression for this upper bound.

$$
q(n) \leq \prod_{k=0}^{\frac{\ln n}{2 \ln 2}}\binom{\pi\left(2^{k+1} x(n)\right)-\pi\left(2^{k} x(n)\right)+\frac{n}{2^{k} x(n)}-1}{\frac{n}{2^{k} x(n)}}
$$

Use the fact (which will be proven in 5) that

$$
\binom{n}{k}<\left(\frac{e n}{k}\right)^{k}
$$

If we let $z=2^{k} x(n)$, this yields

$$
q(n) \leq \prod_{k=0}^{\frac{\ln n}{2 \ln 2}} e^{\frac{n}{z}}\left(\frac{z^{2}}{n \ln z}+1-\frac{z}{n}\right)^{\frac{n}{z}}
$$

Note that $\frac{n}{z}=\frac{1}{\sqrt{2}} \sqrt{\frac{n}{\ln n}}$ and that $\frac{z}{\ln z} \sim 2^{k+2} \frac{n}{z}$. So the kth term of the product is asymptotically equal to

$$
\left(\frac{5 e\left(\sqrt{\frac{n}{2 \ln n}}\right)}{\sqrt{\frac{n}{\ln n}}}\right)^{\frac{1}{2^{k}} \sqrt{\frac{n}{2 \ln n}}}
$$

Now let y be $\sqrt{\frac{n}{2 \ln n}}$. This makes the kth term of the product equal to

$$
\begin{gathered}
=\left(\frac{5 e\left(\sqrt{\frac{n}{2 \ln n}}\right)}{\sqrt{\frac{n}{\ln n}}}\right)^{\frac{1}{2^{k}} \sqrt{\frac{n}{2 \ln n}}} \\
=\left(\frac{5 e y}{\sqrt{2} y}\right)^{\frac{1}{2^{k}} y} \\
=\left(\frac{5 e}{2}\right)^{\frac{1}{2^{k}} y}
\end{gathered}
$$

Now when we take the natural log of this, we should have a constant multiple of $\sqrt{\frac{n}{\ln n}}$. We see that

$$
\begin{gathered}
\ln \prod_{k=0}^{\frac{\ln n}{2 \ln 2}}\left(\frac{5 e}{\sqrt{2}}\right)^{\frac{1}{2^{k}} \sqrt{\frac{n}{2 \ln n}}}=\sum_{k=0}^{\frac{\ln n}{2 \ln 2}} \frac{1}{2^{k}} \sqrt{\frac{n}{2 \ln n}} \ln \frac{5 e}{\sqrt{2}} \\
\sim \sqrt{2} \ln \left(\frac{5 e}{\sqrt{2}}\right) \sqrt{\frac{n}{\ln n}}
\end{gathered}
$$

4. Proof of an Upper Bound of the Binomial Coefficient

Proposition 5.

$$
\binom{n}{k}<\left(\frac{a e}{b}\right)^{b}
$$

Proof. The Taylor expansion of e^{x} is

$$
e^{x}=1+x+{\frac{x^{2}}{2!} \frac{x^{3}}{3!}}+\cdots+\frac{x^{k}}{k!}+\ldots
$$

Therefore, for any individual k ,

$$
\frac{x^{k}}{k!}<e^{x} .
$$

In particular, letting $x=k$,

$$
\frac{k^{k}}{k!}<e^{k}
$$

or

$$
1<\frac{k e^{k}}{k^{k}}
$$

Now observe that

$$
\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} \leq \frac{n^{k}}{k!} .
$$

Recalling that the previous expression was greater than one, we have

$$
\binom{n}{k}<\frac{n^{k}}{k!} \frac{k!e^{k}}{k^{k}}=\left(\frac{n e}{k}\right)^{k} .
$$

5. An Upper Bound for Q(n) using Generating Functions

Another way to estimate partitions is using generating functions. The Hardy-Ramanujan formula for $\mathrm{p}(\mathrm{n})$, the number of unrestricted prime partitions, was based on the fact that $p(n)$ is the coefficient of x^{n} in the product

$$
\Pi \frac{1}{1-x^{n}}
$$

where x is between 0 and 1 . There is a similar generating function for $q(n)$, that is,

$$
\Pi \frac{1}{1-x^{p}}
$$

where p is a prime less than n and x is between 0 and 1 . Expanding this sum it becomes clear that for every prime partition there is a corresponding contribution to the x^{n} term. Now note that

$$
q(n) \leq \frac{1}{x^{n}} \Pi \frac{1}{1-x^{p}}
$$

since there are other terms in the product than the x^{n} term. So

$$
\ln q(n) \leq-\ln x+\sum_{p \leq n} \frac{1}{1-x^{p}}
$$

And we claim this is $\theta\left(\sqrt{\frac{x}{\ln x}}\right)$, so at least the first term must be of that order. This gives us a generous necessary value for x;

$$
\begin{aligned}
&-n \ln x=\theta\left(\sqrt{\frac{n}{\ln n}}\right) \\
& x=e^{-\frac{1}{\sqrt{n \ln n}}} \sim 1-\frac{1}{\sqrt{n \ln n}} .
\end{aligned}
$$

Now it's left to calculate the sum, and in future we will keep

$$
x=1-\frac{1}{\sqrt{n \ln n}} .
$$

Now consider

$$
\sum_{p \leq n} \ln \frac{1}{1-x^{p}}
$$

We will prove that this is $\theta\left(\sqrt{\frac{n}{\ln n}}\right)$, but we will not keep track of the actual constant factor, and the symbol \sim will be used to mean "asymptotically equivalent, possibly with a constant factor." Note that

$$
\ln \frac{1}{x} \sim \frac{1}{\sqrt{n \ln n}}
$$

Also note that

$$
\frac{1}{1-x}=\sqrt{n \ln n}
$$

so

$$
\ln \frac{1}{1-x} \sim \ln n
$$

We divide the sum into three cases:

$$
\text { Case 1:p< } \sqrt{\frac{n}{\ln n}}
$$

$$
\text { Case 2: } \sqrt{\frac{n}{\ln n}} \leq p \leq \sqrt{n \ln n}
$$

$$
\text { Case } 3: p>\sqrt{n \ln n}
$$

For simplicity, let

$$
M_{1}=\sqrt{\frac{n}{\ln n}}
$$

and

$$
M_{2}=\sqrt{n \ln n}
$$

Lemma 6 (Case 1).

$$
\sum_{p \leq M_{1}} \ln \frac{1}{1-x^{p}} \sim \sqrt{\frac{n}{\ln n}}
$$

Proof. In this case,

$$
p \leq \sqrt{\frac{n}{\ln n}}
$$

so since $\frac{1}{1-x^{p}}$ is a decreasing function of p,

$$
\sum_{p \leq M_{1}} \ln \frac{1}{1-x^{p}} \leq \ln \frac{1}{1-x^{2}} \pi\left(\sqrt{\frac{n}{\ln n}}\right)
$$

Using the Prime number Theorem, this yields

$$
\left(\ln \frac{1}{1-x}+\ln \frac{1}{1+x}\right) \frac{\sqrt{\frac{n}{\ln n}}}{\ln \sqrt{\frac{n}{\ln n}}} .
$$

As n becomes large, x approaches 1 , so $\ln \frac{1}{1+x}$ approaches 0 . Thus the previous expression is equivalent to

$$
\begin{gathered}
(\ln n+0) \frac{\sqrt{\frac{n}{\ln n}}}{\ln \sqrt{\frac{n}{\ln n}}} \sim \ln x \frac{\sqrt{n}}{(\ln n)^{3 / 2}} \\
=\sqrt{\frac{n}{\ln n}} .
\end{gathered}
$$

Lemma 7 (Case 2).

$$
\sum_{p=M_{1}}^{M_{2}} \ln \frac{1}{1-x^{p}} \sim \sqrt{\frac{n}{\ln n}}
$$

Proof. We split this expression into a dyadic sum, breaking it up into powers of e and replacing it with

$$
\sum_{k=\ln M_{1}}^{\ln M_{2}} \sum_{p=e^{k}}^{e^{k+1}} \ln \frac{1}{1-x^{e^{p}}}
$$

The expression inside the nested sum is a decreasing function of p, so the sum is less than its highest value multiplied by the number of terms:

$$
\sum_{k=\ln M_{1}}^{\ln M_{2}} \ln \frac{1}{1-x^{e^{k}}} \pi\left(e^{k+1}\right) .
$$

Using the prime number theorem, this is asymptotically equivalent to

$$
\sum_{k=\ln M_{1}}^{\ln M_{2}} \ln \frac{1}{1-x^{e^{k}}} \frac{e^{k+1}}{k+1}
$$

Since k is at least $\ln M_{1}$, this sum is less than or equal to

$$
\begin{gathered}
\frac{1}{\ln M_{1}} \sum_{k=\ln M_{1}}^{\ln M_{2}} \ln \frac{1}{1-x^{e^{k}}} e^{k+1} \\
\leq \frac{1}{\ln M_{1}} \sum_{k=\ln M_{1}}^{\ln M_{2}} \int_{k-1}^{k} \ln \left(\frac{1}{1-e^{x^{t}}}\right) e^{t+2} d t \\
=\frac{e^{2}}{\ln M_{1}} \int_{\ln M_{1}}^{\ln M_{2}} \ln \frac{e^{t}}{1-x^{t}} d t .
\end{gathered}
$$

Computing this integral, we find it equal to a constant times

$$
\begin{aligned}
& \frac{1}{\ln M_{1}} \int_{M_{1}}^{M_{2}} \ln \frac{1}{1-x^{u}} d u \\
= & \frac{1}{\ln M_{1}} \frac{1}{\ln x} \int_{x_{2}^{M}}^{x_{1}^{M}} \ln \frac{1}{1-v} \frac{d v}{v} \\
\sim & \frac{1}{\ln n} * \sqrt{n \ln n} * \int_{x^{M_{2}}}^{x^{M_{1}}} \ln \frac{1}{1-v} \frac{d v}{v}
\end{aligned}
$$

But the integral is less than a constant. Because $\ln (1-v)$ is close to zero for these values of v, and $\frac{1}{v}$ is bounded since $x^{M_{2}} \geq e^{-1}$.so the entire expression is less than or equal to

$$
\frac{1}{\ln n} * \sqrt{n \ln n}=\sqrt{\frac{n}{\ln n}} .
$$

Lemma 8 (Case 3).

$$
\sum_{p=M_{2}}^{n} \ln \frac{1}{1-x^{p}} \sim \sqrt{\frac{n}{\ln n}}
$$

Proof. Note that

$$
\ln \frac{1}{1-x^{p}} \leq \frac{x^{p}}{1-x^{p}}
$$

since $\ln \frac{1}{1-x^{p}}=\ln \left(1+\frac{x^{p}}{1-x^{p}}\right) \leq \frac{x^{p}}{1-x^{p}}$. Again we construct a dyadic sum.

$$
\sum_{p=M_{2}}^{n} \frac{x^{p}}{1-x^{p}}=\sum_{k=1+\ln M_{2}}^{\ln n} \sum_{p=k-1}^{k} \frac{x^{e^{p}}}{1-x^{e^{p}}}
$$

This is a decreasing function of p , so the inner sum is less than its largest term times the number of terms:

$$
\leq \sum_{k=1+\ln M_{2}}^{\ln n} \frac{x^{e^{k}}}{1-x^{e^{k}}} \pi\left(e^{k}\right)
$$

Using the Prime Number Theorem, this is asymptotically equal to

$$
\sum_{k=1+\ln M_{2}}^{\ln n} \frac{x^{e^{k}}}{1-x^{e^{k}}} \frac{e^{k}}{k} .
$$

Since $k \geq 1+\ln M_{2}$, the previous expression is less than if we divided by the largest possible value of k , so

$$
\leq \frac{1}{1+\ln M_{2}} \sum_{k=1+\ln M_{2}}^{\ln n} \frac{x^{e^{k}}}{1-x^{e^{k}}} e^{k}
$$

Now, what's inside the sum is a monotonically increasing function, so it is less than the integral:

$$
\leq \frac{1}{1+\ln M_{2}} \int_{2+\ln M_{2}}^{1+\ln n} \frac{x^{e^{t}}}{1-x^{e^{t}}} e^{t} d t
$$

We calculate by substitution:

$$
\begin{aligned}
& \frac{1}{1+\ln M_{2}} \int_{e^{2} M_{2}}^{e n} \frac{x^{u}}{1-x^{u}} d u \\
&= \frac{1}{1+\ln M_{2}} * \frac{1}{\ln x} \int_{x^{e^{2} M_{2}}}^{x^{e n}} \frac{d y}{1-y} \\
& \sim \frac{1}{1+\ln M_{2}} * \frac{1}{\ln x} \ln \left(\frac{1-x^{e^{2} M_{2}}}{1-x^{e n}}\right) \\
& \leq \frac{1}{1+\ln M_{2}} * \frac{1}{\ln x} \ln \left(1-x^{e^{2} M_{2}}\right) \\
& \sim \sqrt{n \ln n} * \frac{1}{\ln n} \ln \left(1-x^{e^{2} M_{2}}\right) \\
& \sim \sqrt{\frac{n}{\ln n}} \ln \left(1-x^{e^{2} M_{2}}\right) .
\end{aligned}
$$

Now $\ln \left(1-x^{e^{2} M_{2}}\right)$ is bounded by a constant, since

$$
x^{p}=\left(1-\frac{1}{\sqrt{n \ln n}}\right)^{\sqrt{n \ln n} \frac{p}{\sqrt{n \ln n}}} \sim\left(e^{-1}\right)^{\frac{p}{\sqrt{n \ln n}}}
$$

Therefore, the entire sum is less than or asymptotically equal to

$$
\sqrt{\frac{n}{\ln n}} * C
$$

so it's of the order of

$$
\sqrt{\frac{n}{\ln n}} .
$$

Since all three sections of the sum are of the order of $\sqrt{\frac{n}{\ln n}}$, the entire sum is of that order, and the upper bound is justified.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Clarendon Press, Oxford, 1979.
[2] I am very grateful to Prof. Laszlo Babai, for suggesting this problem and guiding my work; to Emma Smith, my graduate mentor, for her advice; and to Prof. Peter Constantin, for teaching me the technique of dyadic sums.

