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0.1 Note on document:

This document is meant for personal use only, much of the material is directly
taken from or based on other sources such as S.B.S Varadhan’s lecture notes on
Probability Theory, Sheldon Ross’s textbook A First Course In Probability, and
proofs from my mentor Dani Zarnescu and my fellow students: Robert Prag
and Muhammed Waliji.

0.2 Layout of Document

This document is a brief introduction to probability theory. Section 1 introduces
the main ideas and theorems of probability and measure theory. Section 2 intro-
duces various concepts of convergence dealing with probability and introduces
some of the important limit theorems of probability. And finally in Section 3
we introduce the concept of conditional probability and Markov chains. Spread
throughout the document there are examples illustrating many of the concepts
mentioned (but in the interest of space not all concepts are illustrated in such
a way).

1 Measure Theory

1.1 Measure Theory and Probability

Many undergrads learn a fair amount about probability without ever using mea-
sure theory. Why should such a student learn about Measure-Theoretic Prob-
ability? The first reason is that the extension of probability to measure-theory
is fairly natural and intuitive since probabilities already measure sets. Another
reason is that using measure-theory nicely generalizes probability theory. This
allows discrete probabilities and continuous probabilities to be treated under
the same framework (whereas without measure-theory many concepts and the-
orems need to be defined and proved twice - once for discrete probabilities and
a second time for continous probabilities). A third and final reason is that using
measure-theory allows one to use the analytic tools of measure theory.

Definition 1.1 A class B of subsets A ⊂ Ω is a field if the following two
properties hold: First, the whole space Ω and the empty set Φ are in B. Second,
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for any two sets A and B in B, the sets A ∪ B and A ∩ B are again in B.
Additionally, B is considered a σ-field if An ∈ B for every n, then A = ∪nAn ∈
B.

Definition 1.2 A finitely additive probability measure is a nonnegative set
function P (·) defined for sets A ∈ B (where B is a σ-field) that satisfies the
following properties:

P (A) ≥ 0 ∀ A ∈ B (1)

P (Ω) = 1 and P (Φ) = 0 (2)

If A ∈ B and B ∈ B are disjoint, then

P (A ∪B) = P (A) + P (B) (3)

Additionally, P (·) is considered a countably additive probability measure if for
any sequence of pairwise disjoint sets An A =

⋃
n An then,

P (A) =
∑

n

P (An) (4)

Definition 1.3 A probability measure P on a field F is said to be countably
additive on F if for any sequence An ∈ F with An ↓ Φ, we have P (An) ↓ 0.

Definition 1.4 For any class F of subsets of Ω the σ-field generated by F
(which we’ll often denote B) is the unique smallest σ-field that contains F .

Theorem 1.1 (Caratheodory Extension Theorem) Any countably additive
probability measure P on a field F extends uniquely as a countably additive prob-
ability measure to the σ−field B generated by F .

Let I = {Ia,b : −∞ ≤ a < b ≤ ∞} where Ia,b = {x : a < x ≤ b} if b < ∞,
and Ia,∞ = {x : a < x < ∞}. The class of sets that are finite disjoint unions
of members of I is a field F if the empty set Φ is added to the class. If we are
given a function F (x) on the real line which is nondecreasing, continuous from
the right and satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

we can define a finitely additive probability measure P by first first defining

P (Ia,b) = F (b)− F (a)

for intervals and then extending it to F by defining it as the sum for disjoint
unions from I.

The Borel σ-field B on the real line is the σ-field generated by F .
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Theorem 1.2 (Lebesgue) P is countably additive on F if and only if F (x) is
a right continuous function of x. Therefore, for each right continuous nonde-
creasing function F (x) with F (−∞) = 0 and F (∞) = 1 there is a unique prob-
ability measure P on the Borel subsets of the line, such that F (x) = P (I−∞,x).
Conversely, every countably additive probability measure P on the Borel sub-
sets of the line comes from some F . The correspondence between P and F is
one-to-one.

The function F is called the distribution function corresponding to the prob-
ability measure P .

1.2 Exercise 2.5

Prove that if two distribution functions agree on the set of points at which they
are both continuous, they agree everywhere.

Proof: Let F and G be two such distribution functions. Suppose to the
contrary, then there exists a point x0 ∈ R s.t. F and G are both discontinuous
at x0 and F (x0) 6= G(x0). Since F and G are both distribution functions then
they are both right continuous at x0. Therefore, for any sequence of points
{xn} (xn 6= x0 ∀n ∈ Z+) converging to x0 from the right then the sequence
{F (xn)} converges to F (x0) and the sequence {G(xn)} converges to G(x0).
Since the functions are monotone and right continous they have only countably
many points where they are discontinuous. Hence by ignoring those points for
both F and G we can choose a sequence {xn} where F (xn) and G(xn) are
both continous ∀n ∈ Z+ and hence ∀n ∈ Z+ then F (xn) = G(xn). Then
{F (xn)} = {G(xn)} −→ F (x0) = G(x0).
⇒⇐

Definition 1.5 A random variable or measurable function is a map f : Ω → R
such that for every Borel set B ⊂ R, then f−1(B) = {w : f(w) ∈ B} is a
measurable subset of Ω. The expectation or mean of a random variable is
defined as E[X] =

∫
X(w)dP . The variance is defined as V ar[X] = E[X2] −

(E[X])2.

A function that is measurable and satisfies |f(w)| ≤ M ∀w ∈ Ω for some
finite M is called a bounded measurable function.

The following statements lay the foundation of an integration theory.

1. If A ∈ Σ (where Σ are the measurable sets of Ω), then the indicator
function A:

1A(w) =
{

1 if w ∈ A
0 if w /∈ A

is bounded and measurable.

2. Sums, products, limits, compositions and reasonable elementary opera-
tions like min and max performed on measurable functions lead to mea-
surable functions.
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Example of concepts:  In a popular role-playing game players create characters with 
various ‘ability scores’ (determining that characters strength, intelligence and other 
physical or mental attributes) that take integer values from 3 to 18 (with 10 or 11 
considered average) – these numbers will be our sample space.  One method of 
determining these ‘ability scores’ is to roll 4 dice, discard the lowest dice, and use the 
sum of the three remaining dice.  The probability of getting each of the possible scores 
from 3 to 18 using this method is conveniently graphed below and compared to the 
method of only rolling 3 dice and using the sum.  We also find that the expectation of the 
original method is approximately 12.2446 (compared to 10.5 for only using 3 dice).  We 
also give an example of an distribution function F(z) for the values of z between the 
various ability scores x (for completeness F(z) equals zero for all z less than 3 and one for 
all z greater than 18). 
 

Ability Score (x) 4-Dice 4-Dice 4-Dice 4-Dice F(z) 

 Ways to Roll
Probability 

p(x) x*p(x) x ≤ z < (x+1) 
3 1 0.0008 0.0023 0.0008 
4 4 0.0031 0.0123 0.0039 
5 10 0.0077 0.0386 0.0116 
6 21 0.0162 0.0972 0.0278 
7 38 0.0293 0.2052 0.0571 
8 62 0.0478 0.3827 0.1049 
9 91 0.0702 0.6319 0.1752 

10 122 0.0941 0.9414 0.2693 
11 148 0.1142 1.2562 0.3835 
12 167 0.1289 1.5463 0.5123 
13 172 0.1327 1.7253 0.6451 
14 160 0.1235 1.7284 0.7685 
15 131 0.1011 1.5162 0.8696 
16 94 0.0725 1.1605 0.9421 
17 54 0.0417 0.7083 0.9838 
18 21 0.0162 0.2917 1.0000 

Total 1296 1.0000 12.2446  
     
     
     
     
     
     
     
     
     
     

 



3. If {Aj : 1 ≤ j ≤ n} is a finite disjoint partition of Ω into measurable sets,
the function f(w) =

∑
j cj1Aj

(w) is a measurable function and is referred
to as a simple function.

4. Any bounded measurable function f is a uniform limit of simple functions.

5. For simple functions f =
∑

cj1Aj the integral
∫

f(w)dP is defined to be∑
j cjP (Aj). It enjoys the following properties:

(a) If f and g are simple, so is any linear combination af + bg for real
constants a and b and

∫
(af + bg)dP = a

∫
fdP + b

∫
gdP .

(b) If f is simple so is |f | and |
∫

fdP | ≤
∫
|f |dP ≤ supw |f(w)|

6. If {fn} is a sequence of simple functions converging to f uniformly, then
{an} =

∫
fndP is a Cauchy sequence of real numbers and therefore has a

limit a as n → ∞. The integral
∫

fdP of f is defined to be this limit
a. It can be shown that choosing a different approximating sequence {gn}
for f leads to the same a =

∫
fdP .

7. Now the integral is defined for all bounded measurable functions and en-
joys the following properties:

(a) If f and g are bounded measurable functions and a, b are real con-
stants then the linear combination af + bg is again a bounded mea-
surable function, and∫

(af + bg)dP = a

∫
fdP + b

∫
gdP

(b) If f is a bounded measurable functions so is |f | and |
∫

fdP | ≤∫
|f |dP ≤ supw |f(w)|.

(c) Also, for any bounded measurable f ,∫
|f |dP ≤ P ({w : |f(w)| > 0}) sup

w
|f(w)|

(d) If f is a bounded measurable function and A is a measurable set then
we define ∫

A

f(w)dP = 1A(w)f(w)dP

and we can write for any measurable set A,∫
fdP =

∫
A

fdP +
∫

Ac

fdP

Definition 1.6 A sequence {fn} is said to converge to a function f everywhere
or pointwise if

lim
n → ∞

fn(w) = f(w)

for every w ∈ Ω.
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Definition 1.7 A sequence {fn} of measurable functions is said to converge to
a measurable function f almost everywhere or almost surely if there exists a
measurable set N with P (N) = 0 such that

lim
n → ∞

fn(w) = f(w)

for every w ∈ N c

Definition 1.8 A sequence {fn} of measurable functions is said to converge to
a measurable function f in measure or in probability if

lim
n → ∞

P [w : |fn(w)− f(w)| ≥ ε] = 0

for every ε > 0.

Lemma 1.1 If {fn} → f almost everywhere then {fn} → f in measure.

1.3 Exercise 1.12

If {fn} → f in measure it is not necessarily true that {fn} → f almost
everywhere:

Counterexample: Consider the interval [0,1] and divide it successively into
2,3,4 · · · parts and enumerate the intervals in succession. That is, I1 = [0, 1

2 ], I2 =
[ 12 , 1], I3 = [0, 1

3 ], I4 = [13 , 2
3 ], I5 = [23 , 1], and so on. If fn(x) = 1In

(x) then {fn}
tends to 0 in measure but not almost everywhere.

However the following statement is true:
If {fn} → f as n → ∞ in measure, then there is a subsequence {fnj

} such
that {fnj

} → f almost everywhere as j →∞.
Example: Using the previous counterexample, take the subsequence of in-

tervals of the form Inj
= [0, 1

j+1 ] ∀j ∈ Z+ and let N = 0 (which clearly has
measure 0 since it is a single point). Then if fn(x) = 1In

(x) then {fnj
} tends

to 0 ∀x /∈ N .
Proof of claim: Since {fn} → f in measure then

∀ε > 0 lim
n→∞

P (w : |fn(w)− f(w)| ≥ ε) = 0

then we can choose a subsequence {fnj} such that the following holds ∀j ∈ Z+:

P (w : |fnj
(w)− f(w)| ≥ 2−j) < 2−j

Let Ej = {x : |fnj (w)− f(w)| ≥ 2−j}, then it is clear that,

∀w /∈
⋃
j≥k

Ej ⇒ |fnj − f(w)| ≤ 2−k

And,
∀w /∈

⋂
k

⋃
j≥k

⇒ fnj
(w) → f(w)
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Also,

lim
k→∞

P (
⋃
j≥k

Ej) = 0 since P (
⋃
j≥k

Ej) ≤
∑
j≥k

P (Ej) ≤
∑
j≥k

1
2j

Hence {fnj
} converges to an f for all x outside a set of measure zero.

2 Weak Convergence

Definition 2.1 If α is a probability distribution on the line, its characteristic
function is defined by

φ(t) =
∫

exp[itx]dα

Definition 2.2 A sequence {αn[I]} of probability distributions on R is said to
converge weakly to a probability distribution α ({αn} ⇒ α) if,

lim
n→∞

αn[I] = α[I]

for any interval I = [a, b] such that the single point sets a and b have probability
0 under α.

Definition 2.3 A sequence {αn} of probability measures on the real line R with
distribution functions Fn(x) is said to converge weakly to a limiting probability
measure α with distribution function F (x)({Fn} ⇒ F ) if

lim
n→∞

Fn(x) = F (x)

for every x that is a continuity point of F.

Theorem 2.1 (Lévy-Cramér continuity theorem) The following are equiv-
alent:

1. {αn} ⇒ α or {Fn} ⇒ F

2. For every bounded continuous function f(x) on R

lim
n→∞

∫
R

f(x)dαn =
∫

R
f(x)dα

3. If φn(t) and φ(t) are respectively the characteristic functions of αn and α,
for every real t,

lim
n→∞

φn(t) = φ(t)

Definition 2.4 Two events A and B are said to be independent if P [A ∩B] =
P [A]P [B].
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Example: Let us roll two dice. Let A be the event that the first roll is a
1 and B be the event that the sum of the two dice is a 2. Then P [A ∩ B] =
P [B] = 1

36 6=
1

216 = 1
6

1
36 = P [A]P [B] and hence A and B are not independent.

However, suppose instead that B is the event that the sum of the two dice is 7.
Then P [A ∩B] = 1

36 = 1
6

1
6 = P [A]P [B] and now A and B are independent.

Definition 2.5 Two random variables X and Y are independent if the events
X ∈ A and Y ∈ B are independent for any two Borel sets A and B on the line
i.e.

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B]

for all Borel sets A and B.

Definition 2.6 A finite collection {Xj : 1 ≤ j ≤ n} of random variables are
said to be independent if for any n Borel sets A1, . . . , An on the line

P [∩1≤j≤n[Xj ∈ Aj ]] =
∏

1≤j≤n

P [Xj ∈ Aj ]

Theorem 2.2 (Weak Law of Large Numbers) If X1, X2, . . . , Xn are inde-
pendent and identically distributed with a finite first moment and E(Xi) = m <
∞, then X1+X2+···+Xn

n converges to m in probability as n →∞.

Theorem 2.3 (Strong Law of Large Numbers) If X1, X2, . . . , Xn are in-
dependent and identically distributed with E|Xi|4 = C < ∞, then X1+X2+···+Xn

n
converges to E[X1] almost everywhere as n →∞.

Theorem 2.4 (Lévy’s Theorem) . If X1, X2, . . . , Xn, . . . is a sequence of
independent random variables, then the following are equivalent:

1. The distribution αn of Sn = X1+· · ·+Xn converges weakly to a probability
distribution α on R.

2. The random variable Sn converges in probability to a limit S(w).

3. The random variable Sn converges with probability 1 to a limit S(w).

Let us look at the space Ω of real sequences {xn : n ≥ 1}. There is B, the
product σ-field on Ω. In addition there are the sub σ-fields Bn generated by
xj : j ≥ n. Bn are ↓ with n and B∞ = ∩nBn (which is also a σ-field) is called the
tail σ-field. The typical set in B∞ is a set depending only on the tail behavior
of the sequence.

Theorem 2.5 (Kolmogorov’s Zero-One Law) If A ∈ B∞ and P is any
product measure then P (A) = 0 or 1.

Corollary 2.1 Any random variable measurable with respect to the tail σ-field
B∞ is equal with probability 1 to a constant relative to any given product mea-
sure.
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2.1 Exercise 3.16

How can different product measures cause these constants to be different?
It is clear that if X is a random variable measurable with respect to the tail σ-
field B∞ is equal with probability 1 to a constant m relative to a given product
measure P then E[X] = m. But E[X] =

∫
X(w)dP . Clearly this expectation

depends on the product measure P and hence the constants m can be different
depending on the product measure.

Theorem 2.6 (Central Limit Theorem) Let X1, . . . , Xn, . . . be a sequence
of independent identically distributed random variables with E[Xi] = 0 and 0 <
V ar[X] = σ2 < ∞. Then the distribution of X1+···+Xn

n converges as n →∞ to
the normal distribution with density

p(x) =
1

σ
√

(2π)
exp[− x2

2σ2
]

3 Dependent Random Variables

Definition 3.1 Conditional probability is defined to be

P (B|A) =
P (A ∩B)

P (A)

if (Ω,F , P ) is a probability space, A ∈ F is a set of positive measure, and if B
is an arbitrary set in F

If Ω is partitioned into a finite or countable number of disjoint measurable
sets A1, · · · , Aj , · · · then

P (B) =
∑

j

P (Aj)P (B|Aj)

.
Example: Suppose zombies attack the University of Chicago and start to

bite students who eventually (if not eaten entirely) transform into new zombies
after a short period of time. It is well known that such an infected student will
start to drool from his mouth before completely turning into a zombie with a
probability of 0.90 whereas the normal University of Chicago student (excluding
Computer Science majors) only drools from his mouth with a probability of 0.05.
If we notice that our fellow student John Gauss (who is not a Computer Science
major) is drooling and we previously had an a priori belief that he has been
bitten by a zombie (and hence infected) of 0.4 (he has bandages on his arm)
then what is the conditional probability that he is infected given that he is
drooling?

Answer: Given that John Gauss is drooling there is about a 92.3% chance
that he has been infected, you should consider killing him with an Ax(iom)
before he bites you and turns you into a zombie!
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Let B = the event that John has been bitten and D = the event that John
drools.

P (B|D) =
P (B ∩D)

P (D)
=

P (B)P (D|B)
P (D)

=
P (B)P (D|B)

P (B)P (D|B) + P (BC)P (D|BC)

=
(0.4)(0.90)

(0.4)(0.90) + (0.6)(0.05)
≈ 0.923

Consider a sequence of random variables X0, X1, . . . and suppose the set of
possible values of these random variables is {0, 1, . . . ,M} (this can be relaxed
further - i.e. to Z. We say that the system is in state i at time n if Xn = i.
The sequence of random variables is said to form a Markov chain if each time
the system is in state i there is some fixed probability (which I will denote Pij)
that it will next be in state j. That is, for all i0, . . . , in−1, i, j,

P{Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0} = Pij

The values Pij , 0 ≤ i ≤ M, 0 ≤ j ≤ N , are called the transition probabilities
of the Markov chain. For each i = 0, 1, . . . ,M then Pij ≥ 0 and

∑M
j=0 Pij = 1.

It is possible to arrange the transition probabilities Pij as follows:∣∣∣∣∣∣∣∣∣
P00 P01 · · · P0M

P10 P11 · · · P1M

...
...

. . .
...

PM0 PM1 . . . PMM

∣∣∣∣∣∣∣∣∣
Knowledge of the transition probability matrix and the distribution of X0

allows us to compute many probabilities of interest. For instance, the joint
probability mass function of X0, . . . , Xn is given by

P{Xn = in, Xn−1 = in−1, . . . , X1 = i1, X0 = i0}

= P{Xn = in|Xn−1 = in−1, . . . , X0 = i0}P{Xn−1 = in−1, . . . , X0 = i0}

= Pin−1,inP{Xn−1 = in−1, . . . , X0 = i0}

...

= Pin−1,inPin−2,in−1 · · ·Pi1,i2Pi0,i1P{X0 = i0}

Example:
Suppose that whether the stockmarket rises or falls tomorrow depends on

previous stockmarket movements only through whether or not it fell or rose
today. Suppose further that if it rose today, then it will rise tomorrow with
probability α, and if it fell today then it will rise tomorrow with probability β.
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If we say that the system is in state 0 when the market rises and state 1
when it does not, then the preceding system is a two-state Markov chain having
transition probability matrix: ∣∣∣∣ α 1− α

β 1− β

∣∣∣∣
That is, P00 = α = 1− P01, P10 = β1− P11.

We can also define the n-stage transition probability, P
(n)
ij , that a system

presently in state i will be in state j after n additional transitions.

Theorem 3.1 (The Chapman-Kolmogorov equations)

P
(n)
ij =

M∑
k=0

P
(r)
ik P

(n−r)
kj ∀ 0 < r < n

Although the P
(n)
ij denote conditional probabilities we can use them to derive

expressions for unconditional probabilities:

P{Xn = j} =
∑

i

P{Xn = j|X0 = i}P{X0 = i}

=
∑

i

P
(n)
ij P{X0 = i}

It turns out that if P
(n)
ij > 0 ∀ i, j = 0, 1, . . . ,M for some n > 0 (such a

Markov chain is said to be ergodic) then P
(n)
ij converges as n →∞ to a value πj

that depends only on j. That is, for large values of n, the probability of being
in state j after n transitions is approximately equal to πj no matter what the
initial state was.

Theorem 3.2 For an ergodic Markov chain

πj = lim
n→∞

P
(n)
ij

exists, and the πj, 0 ≤ j ≤ M , are the unique nonnegative solutions of

πj =
M∑

k=0

πkPkj

M∑
j=0

πj = 1
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Consider our example on stockmarkets, from the previous theorem it follows
that the limiting probabilities of the stockmarket rising or falling (π0 and π1),
are given by

π0 = απ0 + βπ1 (5)
π1 = (1− α)π0 + (1− β)π1 (6)

π0 + π1 = 1 (7)

which yields:

π0 =
β

1 + β − α
π1 =

1− α

1 + β − α

For instance, if α = 0.7, β = 0.3, then the limiting probability of the stock
market rising on the nth day is π0 = 1

2 .
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