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1. ABSTRACT

D. Sleator, R. Tarjan, and W. Thurston discovered that the diameter of the
triangulation graph I'y, was bounded above by 2k —10.[2] I will show that for a pair
of triangulations K and J to realize this distance, they must satisfy the following
two conditions:

(1) K and J may share no diagonals
(2) No elementary move 7 on K is such that 7K shares a diagonal with J

I will also offer an elementary proof of a lemma from [2] stating that, if K and
J share a diagonal, that diagonal is never moved in the shortest path from K to J
in the triangulation graph.

2. DEFINITIONS

Definition 1 (2-Simplex). A 2-simplex is a collection of three non-collinear points
connected by line segments (i.e. a triangle). An n-simplex is defined analogously
for dimensions other than 2, however I will only discuss the case when n = 2. The
dimension of an n-simplex is n.

Definition 2 (Simplicial Complex). A simplicial complex . is a set of simplices
such that for any two simplices v, m € 7, either yN® =0 or yNm = § where
0 € L. The dimension of & will be the greatest dimension of simplex in ..

Definition 3 (Polygonal Triangulation). Let K be a two-dimensional simplicial
complez (i.e., a collection of triangles). If K is homeomorphic to a disk, then it is
called a triangulation of a disk. Furthermore, if K is a k-gon divided by diagonals
into k — 2 triangles, then K will be called a polygonal triangulation. See Figure 1.

A k-gon dissected into k — 2 triangles will be called a k-triangulation for the
purposes of this paper. Note that a k-triangulation has k—3 diagonals. The vertices
of a triangulation K will be enumerated vy, ... , vy, moving clockwise around the
outside of the k-gon.

Definition 4 (Outer Triangle). If there is a vertex v; such that there is an edge
connecting vi—1 and viy1, then v; will be called an outer vertex. The triangle
V;—10;V;41 will be called an outer triangle. The edge v;_1v;4+1 s said to cut off
the outer vertex v;. It is clear that every polygonal triangulation of the disk has at
least two outer triangles. In Figure 1, the vertices at the top and bottom are outer
vertices.
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FIGURE 1. A polygonal 8-triangulation

Elementary moves (also called diagonal flips [4] or diagonal transformations [1])
are the desirable manipulations of triangulations for the problems under consider-
ation since they preserve the structure of a triangulation. The definition contained
in Negami’s paper is as follows:

Definition 5 (Negami’s Flip). Let abc and acd be two triangles in a triangulation
K which share the common side ac. A diagonal flip is made by removing the
segment ac and inserting the segment bd in the quadrilateral abed. If the segment
bd is already in K, then this diagonal flip cannot be made.[4] See Figure 2.

—

FIGURE 2. A diagonal flip

Nakamoto and Ota use the term diagonal transformation instead of diagonal flip.
I will use the term elementary move interchangeably with diagonal transformation
and diagonal flip.

If 7 is an elementary move and K a triangulation, then the triangulation reached
by performing 7 on K will be K’ if the specific elementary move used is clear or
unimportant, or 7K if the elementary move is to be stressed. Performing several
elementary moves consecutively works the same way as composition of maps. If 7, a
are elementary moves, then the composition, performing 7 then «, will be written
(aoT)K, or simply a7 K. An elementary move may also be identified by the specific
move of the diagonal, e.g. 7 = ac — bd is the elementary move on the quadrilateral
abced that deletes ac and draws in bd.

Negami and others have previously described an equivalence relation on k-
triangulations K ~ J if J is the product of a series of diagonal transformations
on K. That is, if 371, 72, ..., 7, elementary moves such that J =7,0---o7m K.
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Definition 6 (Triangulation Graph). The triangulation graph I'y has as its vertices
all k-triangulations of the disk. An edge is formed between two vertices K and J if
J7 an elementary move such that J = 7K.

Definition 7 (Irreducible Cycles). A cycle a = v1,v9,v3,...,05-1,Vs,v1 in the
triangulation graph will be called irreducible if there does not exist a cycle a’ =
V1, V2, W1, .. ., Wm, Vs, V1 such that a’ is shorter than a.

Definition 8 (Elementary Move Set). For the purposes of this paper, I will asso-
ciate a set EM(K) to the triangulation K, where EM(K) = {m, ..., 7.} is the
set of elementary moves that can be made on K. Two elementary moves 7 and «
will be called disjoint if 7 € EM (a(K)) and o € EM(7(K)). Otherwise, they will
be said to be adjacent. It is clear that, for a k-triangulation K, |[EM(K)| =k — 3.

I will also sometimes discuss a triangulation as a graph itself. In this case, I will
let deg(v) denote the degree of a vertex v, and I will denote by dégx (v) the interior
degree of v in K. That is, the degree of v excluding the border of the polygon, or,
equivalently, the number of diagonals with an end at v. The interior degree will be
the more useful, since in polygonal triangulations, the border is fixed.

Definition 9 (Radial Triangulation). A polygonal triangulation K will be called
a radial triangulation at v; if all diagonal meet at a vertex, v;. Equivalently, if
K € Ty, then a radial triangulation is a triangulation K in which Jv; such that
dégk (v;) = k — 3. See Figure 3.

FIGURE 3. A radial triangulation

3. FORMULATION OF THE PROBLEM

Recall that in graph theory, for a graph G, V(G) generally denotes the set of
vertices of G. Recall also that a genus g surface (denoted Xg) is the connect sum
of g tori. Negami has proven the following theorem:

Theorem 10 (Negami’s Theorem). For any genus g surface, 3N such that if K, K’
are k-triangulations of X4, |V(K)| = |V(K')| > N, then K ~ K'. [4]

For this paper, the concept of a genus g surface is not required. Since I am only
discussing triangulations of the disk, the following theorem suffices:

Theorem 11. The graph Ty, is connected for all k.
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D. Sleator, R. Tarjan and W. Thurston were the first to describe the triangulation
graph [2]. They also improved on a previous upper bound for its diameter from
2k — 6 to 2k — 10, and proved that their new upper bound is also a lower bound.
That is, there exist K, .J € I'y, such that the distance from K to J is 2k — 10.

An important open question is the following: given two triangulations K and
J in Ty, what is the length of the shortest path connecting them? [2] begins to
examine this question. They determined that, given triangulations K and J, if
there is an elementary move 7 € EM(K) such that 7K has a diagonal in common
with J, then there is a minimal path from K to J in which 7 is the first elementary
move performed. But there are triangulations even as small as 6-triangulations in
which K and J do not share any diagonals, nor would any elementary move on K
set a diagonal that is contained in J in place. It is unclear in this situation how to
construct the shortest path from K to J.

4. PROPERTIES OF THE TRIANGULATION GRAPH

A few properties of the triangulation graph follow immediately from its construc-
tion:

Lemma 12. Ty is regular of degree k — 3 (i.e. every vertex in the triangulation
graph is adjacent to exactly k — 3 other vertices).

Proof. This follows directly from the fact that VK € I'y, |[EM(K)| = k — 3, since
an edge in I'y corresponds with an elementary move on K. (]

Lemma 13. Ty contains k distinct (although not disjoint) subgraphs isomorphic
to ]-—‘k—l'

Proof. Such a subgraph can be found in I'y by choosing a triangulation, K. Then
fix an outer triangle in K. More specifically, fix the diagonal. The remained of
the k-gon is clearly a (k — 1)-gon, and performing elementary moves (leaving our
fixed diagonal in place) will create a subgraph of T’ that is isomorphic to T'y_;. As
there are k vertices in a k-gon, this process may be performed k times (each time
on a triangulation with a different outer vertex), yielding k subgraphs isomorphic
to ].—‘kfl. O

Lemma 14. Every vertex of Ty is contained in at least two distint subgraphs of 'y,
which are isomorphic to I'y_1.

Proof. 1t is enough that any k-triangulation has at least two outer vertices. Then
each outer triangle can be fixed and the desired subgraph can be constructed as
above. O

In [2], Negami’s theorem was taken as proven. But Negami gives a complicated
proof that is not necessary when only considering polygonal triangulations of the
disk, as in [2] and here. The following lemma and theorem suffice:

Lemma 15. Given a triangulation K € Ty and a vertex v of K, 311,...,7, such
that 1, ... K = J, where J is the radial triangulation at v and r = k—3—dégx (v).

Proof. This is meaningless for £ < 4, and clearly true for £ = 4. For k > 4, the
claim follows from induction.

Assume the claim is true for k¥ — 1. Take K in I'y for k£ > 4. K has two outer
vertices, so at least one of them is not the vertex v at which we are trying to form
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the radial triangulation. So choose one of the outer vertices, call it v;, which is not
v. Fix v; and the edge which cuts it off. Note that v is in the remaining (k —1)-gon,
so the radial triangulation at v can be formed by a series of elementary moves which
do not affect the fixed edge. Then there are two cases. If v was adjacent to v;, then
the result is the desired radial triangulation. If v was not adjacent to v;, then there
exists and elementary move 7 = v;_1v;41 — v;v which will result in the desired
radial triangulation. O

Theorem 16. The graph I'y is connected for all k.

Proof. Assume the contrary. Consider two triangulations K and J such that there
does not exist a set of elementary moves that transforms K into J. But any given
triangulation can be transformed into a radial triangulation at a vertex v in the
polygon by k — 3 — dég(v) elementary moves.

Let the sequence of elementary moves that transforms K into the radial tri-
angulation at v be 7,...,7., where r = k — 3 — dégx(v). Construct a similar
sequence wy,...,ws in J, where s = n — 3 — dég;(v). Then a path from K to J
is constructed by first traversing the path from K to a radial triangulation, and
then from the radial triangulation to J. So the sequence of elementary moves
Thyeeos Trywy Lwi o wy ! takes K to J. O

This also provides an explanation of the upper bound for the diameter of I'y,
found by Sleator, Tarjan, and Thurston:

Theorem 17. The diameter of T'y is no greater than 2k — 10 for k > 12.

Proof. By the method above (transforming a triangulation into and then out of
a radial triangulation), a triangulation K can be transformed into J by 2k — 6 —
dégk (()v) — dégy(v) elementary moves for a vertex v. The sum over vertices in K
of dégk (v;) is 2k — 6, so the average is 2 — % So the average over v; of dégk (v;) +
dégy(v;) is 4—22. For k > 12, there exists a vertex v such that dégx (v)+dég,(v) >
4, so K is transformed into J by at most 2k — 6 — 4 = 2k — 10 elementary moves.
2] O

But under what conditions do two triangulations realize this distance? First, a
lemma in [2], whose proof I will not here present, is necessary:

Lemma 18 (Lemma 3 of [2]). Let K and J be two triangulations. Let T be an
elementary move on K such that TK shares one more diagonal with J than K
shares with J. Then:
(1) There is a shortest path from K to J in Ty, such that T is the first elementary
move made, and
(2) If K and J share a diagonal, then that diagonal is never moved in the
shortest path from K to J.

If K and J are to be at a distance of precisely 2k — 10 elementary moves in 'y,
I here present the following necessary conditions:

Theorem 19. If K and J are k-triangulations, k > 14, such that the shortest path
in Ty from K to J has length 2k — 10 (i.e. the Sleator, Tarjan, Thurston bound is
realized), then:

(1) K and J share no diagonals, and

(2) For every elementary move 7 € EM(K), TK and J share no diagonals.
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Proof. Tt is enough to prove the second claim, since the first follows from the second.

Consider the upper bound of 2k — 10 in [2] for the diameter of I'y. In fact, a
weaker upper bound of 2k — 6 shown by K. Culik and D. Wood [3] is required.
This bound follows from the fact that there are k — 3 diagonals. Then the method
described previously of moving from K to a radial triangulation and then to J will
take at most 2(k — 3) = 2k — 6 elementary moves for all k > 3.

Consider k > 23. Assume that there is an elementary move 7 € EM (K) such
that 7K shares a diagonal with J. By the lemma from [2], there is a shortest path
from K to J beginning with 7. Perform 7 to get K’ = 7K. Now cut each of K’
and J along the shared diagonal. In both cases, the result is one j-triangulation
and one (k — j + 2)-triangulation, where j > 13. (Throughout this proof, when a
triangulation is cut into two triangulations with j and (k — j + 2) vertices, I will
assume j > (k—j+2) without loss of generality.) To transform the j-triangulation
within K’ into the j-triangulation within J requires at most 25 — 10 elementary
moves, by the upper bound in [2]. Similarly, it takes at most 2(k — j + 2) — 6
elementary moves to transform one (k — j 4 2)-triangulation into the other. (Here
it is necessary to use the upper bound in [3] since it is possible that k —j 42 < 12.)
So the entire path from K to J will be at most 1425 —10+2(k—j+2)—6 = 2k—11
elementary moves. This is a contradiction, since it was assumed that K and J were
2k — 10 elementary moves apart.

Unfortunately, for 14 < k < 22, this proof does not work, since it cannot be
guaranteed that j > 12. Fortunately, [2]provides calculations of the exact diameter
of T'y, for k < 18.

k|3 4
diameter ‘ 0 1

8§ 9 10 11 12 13 14 15 16 17 18
7 9 11 12 15 16 18 20 22 24 26

5 6 7
2 4 5
Again, perform 7 on K such that K’ shares a diagonal with J. Now there are a
few cases for each value of k:

For k =22, j > 12. If j = 12, then k — j + 2 = 12, and the table shows that
K’ and J are at most 30 elementary moves away, thus K and J are at most 31
elementary moves away. But 2(22)—10 = 34 > 31. And if j > 12, then the previous
proof applies.

Similar calculations may be made for 13 < k < 22, but they are straightforward,
so I will not include them here. Instead, here are the calculations in table form,
with the checking left to the reader:

k|14 15 16 17 18 19 20 21 22
2k-10(18 20 22 24 26 28 30 32 34
max cutting distance | 17 18 20 21 23 25 27 28 31

O

In a sense, though, this leaves us no better able to determine the shortest path
from K to J in the triangulation graph. The lemma from [2] allows us to construct,
under very specific conditions, such a path, but very few pairs of triangulations
meet the conditions. However, I would think the following generalization of the
lemma to be true:

Conjecture 20. Let the geodesic number (K, J) be the minimum number of
elementary moves such that there exists a sequence T1,...,7., where r = (K, J)
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with the property that 1.0...0om K shares one more diagonal with J than does K .[5]
Then there exists a shortest path from K to J which begins with 1,..., 7.
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