
Turing Machines, Oracle Turing Machines, and
the Turing Hierarchy

Stephen Flood

August 9, 2006

Given the many functions that are used in mathematics and our own
finitude, it is a natural question to ask which of them can be computed
in a finite amount of time by a finite computing agent. Clearly, it will be
impossible to fully compute any function that has an irrational number in
either its domain or range. If an irrational number is in the domain of a
function, it would be impossible even to read the input in a finite amount of
time. Similarly, if an irrational number is in the range of a function, it would
be impossible to write the number in a finite amount of time.

Because of this, it makes sense to restrict our questions about the com-
putability of a function to functions from rational numbers to rational num-
bers. Because of the bijection between natural numbers and rationals, it also
makes sense to further restrict the question to functions from the natural
numbers to the natural numbers.

In order to determine which of these functions are computable, we model
the ‘best’ possible finite computer: one with infinite memory.

1 Turing Machines

Definition 1. A Turing Machine can be thought of as consisting of 5 parts:

1. An infinite two way tape consisting of cells, each of which contain either
a 1 or a blank (B).

2. A Read/Write head that rests on one cell of the tape that can be in
one of finitely many states q. We denote the set of all possible states
by Q.

1



Finite Set
of Controls

Tape Head in state q0q0

. . . B B B 1 1 1 1 1 . . 1. B . . .
?

�

Figure 1: A Turing Machine in starting state q0, with first input symbol 0.

3. A set of transition rules of the following form: If the head in state q
reads a cell with contents s, the head changes to state p, writes t to
the tape cell, and either moves left or right. This is written δ(q, s) =
(p, t,D), or equivalently (q, s, p, t, D), where D is either left or right.

4. A special state q0 ∈ Q called the start state.

5. A subset F ⊆ Q consisting of the accepting states.

A computation on a finite input begins with the input written on the tape,
and the read/write head on the leftmost non-blank cell in state q0. The
computation proceeds according to the transition rules until (if ever) the
head enters an accept state (a state p ∈ F). If this happens, the number of
1’s written on the tape after the computation halts is called the output of
the computation.

Since there are only finitely many states and tape symbols, it follows
that there are only finitely many transition rules. This allows us to number
every possible Turing Machine code by the natural numbers in such a way
that, given the number encoding a Turing machine program, it is possible to
immediately recover the program.

• We write ϕe(x), where x ∈ N to denote the computation of the Turing
machine encoded by e where the input tape consists of a string of x 1’s.

• We write ϕe(x) ↓ if the computation of the Turing machine encoded
by e on in put x enters an accept state after applying finitely many
transition rules. We write ϕe(x) = t if ϕe(x) ↓ and there are t 1’s on
the tape at the end of the computation.

2



• We write ϕe(x) ↑ if the computation of the Turing machine encoded
by e on in put x never enters an accept state. In this case, we say that
the computation diverges.

• We say that a computation accepts after s steps, if after at most s
moves of the read/write head, the head enters an accepting state. Oth-
erwise, we say that the computation of s steps diverges. We refer to
the computation of e on x after s steps by writing ϕe,s(x).

Definition 2. We =def dom(ϕe) = { x | ϕe(x) ↓}.

Definition 3. If U ⊆ N , we say that a function f : U → N is partially
computable (p.c.) if there is a T.M. m s.t.

f(s) = t ⇐⇒ ϕm(s) = t

Where the Turing machine takes a string of s 1’s as input, and halts with a
string of t 1’s on the tape, and

ϕm(r) ↑ ⇐⇒ r /∈ dom(f)

Definition 4. We say that a function f : N → N is computable if f is p.c.
and total.

Definition 5. We define the characteristic function of a set A to be the
function

χA(x) =def

{
1 if x ∈ A
0 if x /∈ A

Definition 6. a set A ⊆ N is computable if the characteristic function χA is
computable.

Definition 7. a set A ⊆ N is computably enumerable (c.e.) if it is the domain
of a partial computable function.

Remark. we write < ·, · > to mean the usual bijection N× N→ N.

Proposition 8. a set A is c.e. iff A is the range of some total computable
function or A = ∅.

3



Proof. ⇐=. If A = ∅ then A is c.e. Now suppose A = ran(f) for f a total
computable function. Then let m be the index of the Turing machine that,
on input x checks if there is any x s.t. f(y) = x, and halts and accepts iff
there is such a y. Clearly A = Wm.

=⇒. Let A = We 6= ∅. Find the least integer < a, t > s.t. a ∈ We,t.
Define the computable function f by

f(< s, x >) =

{
x if x ∈ We.s+1 −We.s;
a otherwise

Clearly A = rng(f). Then if x ∈ We, choose the least s s.t. x ∈ We,s+1.
Then f(< s, x >) = x, so x ∈ rng(f).

Examples of computable sets include most subsets of the natural numbers
that you normally think of, such as the evens, the odds, the primes, and any
finite set. Examples of noncomputable sets are harder to obtain, as are sets
that are not even c.e.

Definition 9. K =def { x | ϕx(x) ↓}.

Definition 10. K0 =def { < x, y > | ϕx(y) ↓}.

Proposition 11. K is c.e.

Proof. define a T.M. with index u s.t. ϕu(x) = ϕx(x) In other words, on
input x, u simulates the Turing machine encoded by x on x.
Clearly x ∈ K ⇐⇒ ϕu(x) ↓, hence K = Wu is c.e..

Proposition 12. K is not computable.

Proof. Suppose K does have a computable characteristic function. Then the
function

f(x) =def

{
ϕx(x) + 1 if x ∈ K
0 if x /∈ K

is computable. But ∀ x, f 6= ϕx. →←

Claim 13. K and K0 have the ‘same information content’ in the following
sense: although neither is computable, if we know the characteristic function
of one then we can computably acquire the characteristic function of the other.

4



Proof. =⇒ clearly, x ∈ K ⇐⇒ < x, x >∈ K0

⇐= If we wish to determine whether or not an arbitrary < x, y >∈ K0,
we can write a program that on input < x, y >, outputs a program m(x, y)
s.t. ϕm(x,y)(m(x, y)) = ϕx(y). In other words, m is a computable function.

Intuitively, m can be constructed to output a Turing machine code
with extra information on the end, s.t. when given a Turing machine code
with extra information on the end, simulates the first part of the code on
the second part of the code. The actual precise proof of the existence of
this function involves the s-m-n theorem, which is beyond the scope of this
talk.

In other words, even though neither K nor K0 are computable, each is
computable given the other. This idea the motivation for the Oracle Turing
Machine.

2 Oracle Turing Machine

An oracle Turing machine is the same as a normal Turing Machine, only with
the addition of a second tape, called the oracle tape. The cells on the oracle
tape can contain either blanks (B), 0’s, or 1’s. Given a set A, an Oracle
Turing Machine with Oracle A will have the characteristic function of
the set A written onto the tape. The Oracle tape head begins on the cell
containing χA(0). The next cell to the right of this cell contains χA(1), and
so on in increasing order. To the left of the cell that the Oracle tape head
begins on, there are all blanks.

Finite Set
of Controls

Input Tape Head in state q0

Oracle Tape Head in state p0

q0

p0

. . . B B B 1 1 1 1 1 . . 1. B . . .

. . . B B B χA(0)χA(1)χA(2)χA(3)χA(4) . . .

?

6

�

�

Figure 2: An Oracle Turing Machine with oracle A.

5



An oracle Turing machine computation proceeds in the same way as a
normal Turing machine computation. Although the oracle head has a start
state p0, the Turing machine halts iff the read/write head enters an accept
state. The key difference between a Turing machine with oracle A and a
normal Turing machine is that a halting computation of the oracle Turing
machine can check whether or not finitely many numbers are in A.

Remark. Since any description of an Oracle Turing machines is finite, it
is again possible to effectively encode them into the natural numbers. We
write ΦA

e (x) to denote the computation of the eth oracle Turing machine with
Oracle A on input x.

Definition 14. Fin =def { x | Wx is finite}.

Claim 15. Fin is neither computable nor c.e.

Definition 16. We say that a set B is c.e. in A if ∃e s.t. B=dom(ΦA
e ).

Proposition 17. Fin is c.e. in K0.

Proof.

x ∈ Fin ⇐⇒ (∃z)(∀y > z)[ϕx(y) ↑]

We will define a Turing machine with index m s.t. on input < x, z >, m
simulates

ϕx,1(z + 1)
ϕx,2(z + 2)
ϕx,2(z + 1)
ϕx,3(z + 3)
ϕx,3(z + 2)
ϕx,3(z + 1)
...

It is clear from this definition that ∀s, m simulates ϕx,s(z + t), ∀t ≤ s.
We specify that m halts on input < x, y > ⇐⇒ ϕx,s(z + t) ↓ for some
s, t ∈ N.
But such a s, t exist ⇐⇒ < m,< x, z >>∈ K0

It therefore follows that

x ∈ Fin ⇐⇒ ∃z ϕm(< x, z >) ↑

6



⇐⇒ ∃z < m, < x, z >>/∈ K0

Therefore, we can define a Turing machine n s.t. ΦK0
n (x) checks all possible

z ∈ N until, if ever ϕm(< x, z >) ↑, and halts if it finds such a z.
Then Fin = dom(ΦK0

n )

This proof shows that K0, and therefore K, are very natural sets to use as
oracles, since both K and K0 directly encode information about the behavior
of a Turing machine on some input string.

3 The Turing Hierarchy

We generalize the set K by defining the jump operator.

Definition 18. We define KA =def { x |ΦA
x (x) ↓}. We say that KA is called

the jump of A and is denoted by A′ (read as ‘A prime’).

Proposition 19. A′ is c.e. in A.

Proof. This is immediate from the definition of A′.

Proposition 20. A′ is not computable in A.

Proof. suppose A′ is computable in A. Then the function

f(x) =def

{
ΦA

x (x) + 1 if x ∈ A
0 if x /∈ A

is computable in A. But ∀ x, f 6= ΦA
x . →←

Definition 21. We say that A ≤T B iff A is computable in B.

Definition 22. We say that A ≡T B iff A ≤T B and B ≤T A.

Definition 23. We define deg(A) = { B | B ≡T A}.
Definition 24. We define deg(∅(n))=def 0(n).

The Turing Hierarchy is the infinite increasing chain of degrees:

0 < 0′ < 0′′ < 0(3) < 0(4) < . . . < 0(n) < . . .

In a very precise sense, if B is any computable set,

∅ ≡ B

∅′ = K∅ ≡ K

∅′′ ≡ Fin

7



4 Further Study

There are several undergraduate courses that touch on computability theory.
One good course is Mathematical Logic II (MATH 25800). This is a winter
quarter course that will be taught by Joseph Mileti. It is an introduction
axiomatic set theory, computability theory, and model theory. Its main pre-
requisite is Mathematical Logic I (MATH 25700). A second good course is
Introduction to Complexity Theory (MATH 28100). This course is a mix-
ture between computability theory (what can be computed) and complexity
theory (how fast can something be computed).

If you are looking for further reading in computability theory in partic-
ular, or mathematical logic in general, you should contact Professor Soare.
The material presented in this talk comes from a working draft of Professor
Soare’s new book in computability theory.

8


