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We define the differential operator ∂
∂z

on infinitely differentiable functions
(also called smooth or C∞ functions) on some open set in C by ∂

∂z
= 1

2
( ∂

∂x
+

i ∂
∂y

). A quick calculation shows that ∂
∂z

obeys the product rule. Recall that

a function f is holomorphic if and only if ∂
∂z

(f) = 0.
A function is biholomorphic, or an analytic isomorphism, if it is holomorphic

and has holomorphic inverse. The inverse function theorem of complex
analysis tells us that a holomorphic function is biholomorphic in some neighborhood
of any point at which its derivative does not vanish.

The notation G b X means G is relatively compact in X; that is, the
closure of G is compact and contained in X.

A Riemann surface is a (connected) one-dimensional complex manifold.
An open Riemann surface is a noncompact Riemann surface.

We recall a familiar theorem from complex analysis:

Runge theorem. Let Ω ⊂ C be an open set and let K ⊂ Ω be compact.
Suppose Ω \K has no relatively compact connected components. Then given
f holomorphic on a neighborhood on K and ε > 0, there exists a function g
holomorphic on Ω such that ‖f − g‖K < ε.

This theorem was proved by Runge in 1885. In 1948, Behnke and Stein
extended the result to open Riemann surfaces. Their result is still generally
known as the Runge theorem.

Runge approximation theorem. Let X be an open Riemann surface and
Y an open subset of X such that X\Y has no compact connected components.
Then every holomorphic function on Y can be uniformly approximated on
compact sets by functions holomorphic on X.
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For a modern proof using functional analysis, see Forster, Lectures on
Riemann Surfaces.

Our main goal is the following theorem.

Mergelyan-Bishop theorem. If X be a Riemann surface, K ⊂ X is
compact, X \K has no relatively compact connected components, and if f is
a continuous function on K holomorphic on the interior of K, then f can be
uniformly approximated on K by functions holomorphic on X.

Remark: This theorem in the case X = C is a result of Mergelyan from
1954 (see Rudin, Real and Complex Analysis, Chapter 20); it was extended
by Bishop to Riemann surfaces in 1958. Observe that we can assume X
is an open Riemann surface, for if X is compact the theorem is entirely
vacuous: either K = X, in which the theorem is trivial, or K 6= X, and
X \ K is relatively compact (because a closed subset of a compact set is
compact) so the hypotheses of the theorem are not satisfied. Mergelyan’s
theorem is proved using techniques of measure theory, and Bishop’s proof was
also measure theoretical. The book Extensions of Holomorphic Functions by
Jarnicki and Pflug contains (pages 86-90) a simpler proof of the Mergelyan-
Bishop theorem, but their proof has a minor error. The remainder of this
paper is a corrected version of Jarnicki and Pflug’s proof of the Mergelyan-
Bishop theorem. I make no claim to originality. I have followed their notation
except when it seemed confusing or contradictory to me. I thank Raghavan
Narasimhan for suggesting this topic to me and for his help.

We first collect some facts we will need in the proof.
Lemma 1: Let E be a bounded set in the complex plane and let dµ

represent Lebesgue measure on the plane. Then
∫

E
1
|z|dµ < ∞.

Proof : Write the integral in polar coordinates, and find 0 < R < ∞ such
that E ⊂ D(0, R). Then∫

E

1

|z|
dµ ≤

∫ R

0

rdr

∫ 2π

0

1

r
dθ = 2πR.

Lemma 2: Let φ be a compactly supported smooth function on C, and
define a function u on C by

u(z) = − 1

π

∫
C

φ(η)

η − z
dµ,

where dµ represents Lebesgue measure on the complex plane.
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Then u is a smooth function on C and

∂u

∂z
= φ.

For a proof, see Narasimhan, Complex Analysis in One Variable, Chapter
5. The equation ∂u

∂z
= φ is known as the inhomogeneous Cauchy-Riemann

equation. Note that (in contrast with the situation in several variables), u
does not necessarily have compact support. We will also need the following
result, which is a simple consequence of the Mittag-Leffler theorem for open
Riemann surfaces (see Forster, Lectures on Riemann Surfaces):

Lemma 3: Let X be an open Riemann surface and a a point in X. Then
there exists a meromorphic function f on X whose only zero is at a and with
ordaf = 1.

The first step of the proof is to use the Mergelyan theorem to prove a
local result.

Proposition 1 If X, K, and f are as before, and a ∈ K, then there
exists a neighborhood V of a such that f can be uniformly approximated on
V ∩K by functions holomorphic on V ∩K

Proof. Choose a chart π : U → E, where π is biholomorphic and E is a
convex proper open set in C containing the origin. Let V = π−1(1

2
E). Then

U \V is connected. Suppose U \ (V ∩K) = (U \V )∪ (U \K) is disconnected.
Then there is a component A of U \K contained in V and therefore relatively
compact, but A will also be a component of X \K, and by hypothesis X \K
has no relatively compact connected components. Therefore U \ (V ∩ K)
is connected. Consequently π(U \ (V ∩ K)) = E \ π(V ∩ K) is connected,
and C \ π(V ∩K) is also connected, and therefore has no relatively compact
connected components. Therefore we can apply the Mergelyan theorem for
the plane to the function π−1 ◦ f on the set π(V ∩K) to obtain a sequence
(f ′j) that converges uniformly to π−1 ◦ f on π(V ∩ K). Setting fj = π ◦ f ′j,

we obtain functions fj converging uniformly to f on V ∩K.

We can then complete the proof by establishing the following theorem.

Localization theorem. Let X be an open Riemann surface, let K ⊂ X be
compact, and let f be a continuous function on K. Suppose that for every
point a ∈ K, there exists a neighborhood U of a such that f can be uniformly
approximated on K ∩ U by functions holomorphic on K ∩ U . Then f can be
uniformly approximated on K by functions holomorphic on X.
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We begin with a lemma.
Lemma 4: Let X be a Riemann surface, let G0 b G b X be open

subsets of X, and choose finitely many charts πi : Ui → E, 1 ≤ i ≤ N
such that {Ui} is a cover of G. Then there is a positive constant C0 with
the following property: if ω is a C∞ form of type (0, 1) on G and we write
ω locally by ω|Ui∩G= π∗i (ωjdzj), and ‖ωi‖πi(Ui∩G) ≤ C ′

ω for all i, then there

exists a function u ∈ C∞(G0) with ∂u = ω|G0 and ‖u‖G0 ≤ C0C
′
ω.

Corollary: Let K ⊂ G b X, with K compact and G open. Choose
finitely many charts πi : Ui → E, 1 ≤ i ≤ N such that {Ui} is a cover of G.
Then there is a positive constant C with the following property: given δ > 0,
if ω is a C∞ form of type (0, 1) on G and we write ω locally by ω|Ui∩G=
π∗i (ωjdzj), and ‖ωi‖πi(Ui∩K) ≤ Cω for all i, then we can find a neighborhood

G0 of K, G0 ⊂ G, such that there exists a function u ∈ C∞(G0) with ∂u = ω
on some neighborhood of K, and ‖u‖K ≤ CCω +Mδ for some fixed constant
M .

Remark: This corollary is necessary to fix the error in Jarnicki and
Pflug’s proof. When they apply lemma 3 in the proof of the localization
theorem, the sets G and G0 depend on ε, and therefore the constants obtained
from lemma 3 also depend on ε. We avoid this problem by obtaining an
independent estimate on K.

Proof. Choose G0 such that ‖ωj‖πj(Uj∩G0) ≤ 2‖ωj‖πj(Uj∩K) +δ for all j. Then
choose a C∞ function α on G such that there exists a neighborhood A of
K with α(x) = 1 for x ∈ A, α(x) = 0 for x /∈ G0, and ‖α‖G = 1. Now
apply lemma 4 to the form αω to obtain u ∈ C∞(G0) with ∂u = αω = ω
on some neighborhood of K, and ‖u‖K ≤ C0(2Cω + δ) = 2C0Cω + C0δ.
To finish the proof, we must establish that C0 is independent of our choice
of δ, for our choice of G0 depended on δ. Suppose δ1 > δ2 > 0. We can
choose (with the obvious notation) G0,δ1 and G0,δ2 so that G0,δ2 ⊂ G0,δ1 .
Applying lemma 4 to G0,δ1 , we obtain a smooth function u on G0,δ1 with
∂u = ω|G0,δ1

and ‖u‖G0,δ1
≤ C0,δ1C

′
ω. Clearly u also satisfies ∂u = ω|G0,δ2

and
‖u‖G0,δ2

≤ C0,δ1C
′
ω, so we can set G0,δ2 = G0,δ1 . Therefore C0 is independent

of δ.

Proof of Lemma 4 : Choose a point a ∈ G0. Using lemma 3, find a
meromorphic function fa on X whose only zero is a and with ordafa = 1.
Choose a neighborhood Va of a contained in Uτ for some τ and r > 0 with
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that fa : Va → rE is a biholomorphism and fa(G\Va)∩(rE) = ∅. Multiplying
fa by a constant, we can assume that r = 1.

Now by the compactness of G0 we can find finitely many points a1, . . . , ak ∈
G0 and for each an a meromorphic function fan whose only zero is an with
ordanfan = 1 and a neighborhood Vn of an such that: (i) fan : Vn → E is
biholomorphic, (ii) fan(G \ Vn) ∩ (E) = ∅, (iii) G0 ⊂ ∪k

n=1Vn ⊂ G, and (iv)
Vn is contained in one of the sets Ui.

Now choose a partition of unity ϕn on G0 with respect to the open cover
(Vn)k

n=1. Define ω′
n on Vn by ω′

n = ϕnω. Let z̃n be the complex variable
on the coordinate neighborhood (Vn,fan), and find functions ω̃′

n such that
ω′

n = f ∗an
(ω̃′

n)dz̃n.
Define

gn(z) = − 1

π

∫
C

ω̃′
n(η

η − z
dµ,

where dµ represents Lebesgue measure on the complex plane. Then by lemma
1, ∂gn

∂z
= ω̃′

n. We have

‖gn‖C

‖ω̃′
n‖C

=
1

π
supz∈C

∣∣∣∣∫
E

ω̃′
n(η)

‖ω̃′
n‖C(η − z)

dµ

∣∣∣∣
≤ 1

π
supz∈C

∫
E

∣∣∣∣ ω̃′
n(η)

‖ω̃′
n‖C(η − z)

∣∣∣∣ dµ

≤ 1

π

∫
D

1

|z|
dµ

where D is a fixed bounded open set. Therefore by lemma 1, we have
‖gn‖C ≤ C ′

0‖ω̃′
n‖C where C ′

0 is a fixed positive constant independent of ω and
of n.

Note that as ω̃′
n(η) = 0 if η /∈ E, we have ∂gn

∂z
= 0 on C \ E, so gn

is holomorphic on C \ E. We just showed that gn is bounded, so we can
consider gn as a function defined on the Riemann sphere and holomorphic at
infinity.

Now define ĝn = gn ◦ fan . Clearly each ĝn is a smooth function on X. As
fan is holomorphic on G0, fan(G \ Vn) ∩ (E) = ∅, and gn is holomorphic on
C \ E, ĝn is holomorphic on G0 \ Vn. We can calculate that on G0

∂ĝn = ∂(gn ◦ fan) = f ∗an
(∂gn) = f ∗an

(ω̃′
n)dz̃n = ω′

n.

5



Now let u =
∑N

n=1 ĝn. Clearly u is smooth, and on G0

∂u =
N∑

n=1

∂gn =
N∑

n=1

ω′
n =

N∑
n=1

ϕnω = ω

and

‖u‖G0 ≤
N∑

n=1

‖gn‖G0 ≤ C0C
′
ω,

for some fixed positive constant C0, where the last inequality comes from
changing coordinates between the πj and the fan and the fact that ‖gn‖C ≤
C ′

0‖ω̃′
n‖C. This completes the proof of the lemma.

We can now finish the proof of the localization theorem. By the compactness
of K, we can choose a finite number of charts πj : U ′

j → E, πj biholomorphic,
E ⊂ C convex and bounded, 1 ≤ j ≤ N , in such a way that if we define Uj =
π−1

j (1
2
E), we have K ⊂ ∪N

j=1Uj and so that f can be uniformly approximated

on K ∩ U j by functions holomorphic on K ∩ U j for all j = 1, . . . , N .
Now let ε > 0, and let fj be holomorphic on K∩U j with ‖f−fj‖K∩Uj

< ε
2
.

As an easy application of the fact that power series converge on disks, we
see that there exist open sets Ωj, K ∩U j ⊂ Ωj b U ′

j with fj holomorphic on

Ωj. Now be continuity, choose open sets Ξj, K ∩ U j ⊂ Ξj ⊂ Ωj such that
‖f − fj‖Ξj

< ε for all 1 ≤ j ≤ N .
Now choose an open set G with K ⊂ G b ∪N

j=1Uj. Choose a partition of
unity ϕj for G with respect to the cover (Uj)

N
j=1.

If 1 ≤ j ≤ N , 1 ≤ k ≤ N , define

hj,k(z) =

{
ϕj(z)(fj(z)− fk(z)) z ∈ Ξj ∩ Ξk

0 z ∈ Ξk \ U j

Then hj,k is a C∞ function on its domain, which is (Ξj ∩Ξk)∪ (Ξk \U j);
we will denote this set by Ξ′

j,k. Now let Ξ′
k = ∩N

j=1Ξ
′
j,k. If z ∈ K ∩ Uk and

1 ≤ j ≤ N , then z ∈ Ξk and if z /∈ Ξj, then z /∈ U j (because U j ∩K ⊂ Ξj.
Therefore z ∈ Ξ′

j,k, and K ∩ Uk ⊂ Ξ′
k, so (Ξ′

k)
N
k=1 is a cover of K.

Next we define hk =
∑N

j=1 hj,k; clearly the domain of hk is Ξ′
k and

hk is C∞. Let z ∈ Ξ′
k ∩ K. Then |hk(z)|= |

∑
ϕj(z)(fj(z) − fk(z)|≤∑

|ϕj(z)(fj(z) − fk(z)|, where the sums are over those j ∈ 1, . . . , N with
z ∈ Uj. Recall that ‖fj − f‖K∩Ξj

< ε. Therefore ‖fj − fk‖K∩Ξj∩Ξk
< 2ε, so

using the fact that ϕ is a partition of unity, we have ‖hk‖K∩Ξ′k
< 2ε.
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Consider the form ∂hk|K∩Ξ′k
= π∗

(
∂(hk◦π−1

k )

∂zk
dzk

)
. Because ∂

∂z
obeys the

product rule, we can find, using the fact that Ξ′
k is relatively compact and

that fj − fk is holomorphic, a constant C∗ independent of j and ε such that

supx∈K∩Ξ′k

∣∣∣∣∂(hk ◦ π−1
k )

∂zk

(πk(x))

∣∣∣∣ ≤ C∗2ε.

By continuity, find an open set G0, K ⊂ G0 b G ∩ (∪N
k=1Ξ

′
k) such that

supx∈G0∩Ξ′k

∣∣∣∣∂(hk ◦ π−1
k )

∂zk

(πk(x))

∣∣∣∣ ≤ C∗3ε.

A quick calculation tells us that hk − hj = fj − fk on G ∩ Ξ′
k ∩ Ξ′

j, so

hk−hj if holomorphic on G∩Ξ′
k∩Ξ′

j, so ∂hk = ∂hj on G∩Ξ′
k∩Ξ′

j, so we can

piece together a C∞
(0,1) form α on G ∩ (∪N

k=1Ξ
′
k) with α = −∂hk on G ∩ Ξ′

k.
Let δ > 0. By the corollary to lemma 4, there exists a smooth function u

on G0 with ∂u = α on some neighborhood B of K and ‖u‖K < CC∗3ε + Mδ
for fixed constants C, C∗, and M .

Set gk = u+hk on Ξ′
k∩G0, then ∂gk = ∂u+∂hk = 0 so gk is holomorphic,

and ‖gk‖Ξ′k∩K < 2ε + CC∗3ε + Mδ. Now gk − gj = hk − hj = fj − fk on
Ξ′

k ∩Ξ′
j ∩G0, so gk + fk = gj + fj on Ξ′

k ∩Ξ′
j ∩G0, so we can piece together a

holomorphic function F on G such that F |Ξ′k∩G= fk + gk. Furthermore, for
x ∈ Ξ′

k ∩K we have

|f(x)− F (x)|= |f(x)− fk(x)− gk(x)|

≤ |f(x)− fk(x)|+|gk(x)|< ε + 2ε + CC∗3ε + Mδ.

This proves that f can be uniformly approximated on K by holomorphic
functions on an open neighborhood of K. By the Runge theorem, f can
be uniformly approximated on K by holomorphic functions on X. This
completes the proof of the localization theorem.
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