ACTING FREELY

GABRIEL GASTER

1. PREFACE

This article is intended to present a combinatorial proof of Schreier’s Theorem,
that subgroups of free groups are free. While a ‘one line’ proof exists using the
theory of covering spaces, the advantage of this proof (besides its pleasing, combi-
natorial nature) is that the techniques employed generalize and are useful in other
proofs. The fundamental idea at play is that if a group acts freely on a graph X,
then the Cayley graph is a contraction of X. Using this idea, one reveals a struc-
ture at work whenever a group acts freely on a graph—and the result, along with
some stronger consequences relating the index and rank of a subgroup, falls out.
This paper assumes the audience has had a short first course in algebra and some
familiarity with groups and group actions.

2. FREE GROUPS

A free group comes from thinking about the most loosely defined, general notions
of torsion-free! groups. Intuitively speaking, they are the barest groups with the
simplest structure. We will see that any group is the quotient of a subgroup of a free
group modulo some equivalence relations. That is, any group sits embedded within
the structure of a free group. Before more discussion of their concrete structure,
with an eye toward the universal property, we come to the following

Definition 2.1. Given any set S = {s;|i € I}, the free group generated by S,
F(S), is the unique group such that there is an injection ¢ : S — F(5), and for any
other group H and any map ¢ : S — H there is a unique group homomorphism
¢ : F(S) — H such that gou(s) = ¢(s) V s € S, making the folowing diagram
commute. We call S the generating set for F(.S).

S —= F(S)
@ 7 .
+ 4
H
FIGURE 1

Example 2.2. Given the set S = {s}, F'(S) would, by the definition, be a group
containing ¢(s). We can conclude that the cyclic group generated by ¢(s), (:(s)) =
{t(s)* | k ez} C F(S).
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Now, there is an injection from our generating set S into any old (non-empty)
group H, including, say R* under multiplication, which is torsion-free, i.e.

forall s € RT, and any i,j € Z,i #j = s' # .

It’s therefore clear that for there to exist a homomorphism ¢ : F(S) — R*, it
must be that ¢(s) # 1 € F(S) and, furthermore, (¢(s)) must have infinite order. If
this were not the case, then

JkeNst. «(s)*=1and

~ k ~ ~ k

po(us)” =¢(1) = (gous))
even though ¢(s)¥ # 1, and the diagram would not commute. \,,/ Thus, (:(s)) C
F(S). Since (t(a)) = Z, we have obtained an injective homomorphism v : Z —
F(S). If («(s)) # F(S) and there was t € F(S) s.t. t ¢ (u(s)), then @(t) could
= @(s) or = §(s)? or = $(s)%. In any case, because t is not in any way related
to the set S, the choice of @(t) does not affect whether or not the diagram (1)
commutes. Therefore there is not a unique @. \,/

That’s great because it’s just what we could have hoped for; plus we’ve proven
our first

Claim 2.3. The free group generated by one element is isomorphic to the infinite
cyclic group, namely (Z,+).

Note that there’s another, perhaps simpler proof that F({s}) = Z. It uses an
extremely useful

Lemma 2.4. If an object F(A) exists as defined by the universal property, (i.e. that
F(A) is the unique object that makes the following Figure 2 of structure preserving
maps commute) then it is unique (up to some structure preserving, bijective map).

A—1 F(A) A—"L> F(A)
s 2 ////
|, 1,7
A ¥ 75
4 F(A)2
FIGURE 2

Proof. Say there were two objects F/(A); and F(A)s that made the diagram com-
mute. Then there would be a map from ¢ : F(A); — F(A)2 and 5 : F(A)y —
F(A)q, and the second diagram would commute. That would mean that g o7 :
F(A); — F(A); and, since the diagram commutes, @ o ¥ is the identity, proving
that @ is a bijective structure preserving map, whence F'(A); & F(A),. O

From Example 2.2 we saw that, for S = {s}, (1(s)) = Z satisfies the constraints
of the universal property; we could have immediately then concluded from Lemma
2.4 that F(S) = Z.

With this tool in hand, we turn to the question of finitely-generated free groups,
ie. F(S) for which S = {s1,s9,...,s,}. Just as before, as we immediately con-
cluded (from the closure of the binary operation) that (c(s)) C F({s}), we can now
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conclude that (t(s1),t(s2),...,t(sg)) = S* C F(S). For which S* is all possible
finite reduced ‘words’ of the form

L(sil)éll’(siz)62 e L(Sh)eik
for which s;, € S, ¢; € {1} and for all j € {1,...,k}, s; = 5541 = € = €j41.
You should check that S* is a group in which the group operation is, simply, place
two words next to each other and if you see an ¢(s;) next to an «(s;)™', cross
’em out. Since any group containing an injection from S will contain elements of

this form, S* satisfies the universal property and, by Lemma 2.4, we’ve proven our
second

Theorem 2.5. If S has finitely many elements then F(S) = S*.

N.B. The fact that ¢ is an injection allows us to see S C F(S). Since we've
proven the existence of unique free groups for finite sets S, and since the notation
t(a) is so cumbersome, in practice, and for the rest of this article, we’ll say that
S C F(S), and F(S) has elements which are words of the form a;“as - - - ax for
a; € 8.

We would want that F'(S1) 2 F(S3) for |Si| # |S2|, i.e. that free groups with
different numbers of generators are actually different. The first case is simple.

Lemma 2.6. F({s}) % F({s1, s2}).

Proof. The order of the letters matters in the words of S*; if s152 = s2s7 then there
would not be a homomorphism from F({s1,s2}) to a non-abelian group G with
trivial center to make the diagram in Figure 1 commute. That means that s;so #
s281 and F'({s1, s2}) is not abelian. But F({s}) = (Z,+), which is abelian. O

The more general case requires a bit work—first dealing with the free abelian
group.
Claim 2.7. Forn #m, Z™ 2 7"

Proof. Assume the opposite, that Z™ = Z™, then Z™/2Z™ = Z"/2Z™. But
|Z™ /272 = 2™ and |Z™/2Z"| = 2". But then the groups have different cardi-
nality so they cannot be isomorphic. O

Claim 2.8. F(Sl) % F(SQ) fO’f' |Sl| 7é |SQ|

Proof. The proof is obvious once we consider the abelianizations of the two groups,
ie. F(S1)/F'(S1), where F/(S1) is the commutator supgroup, ie. F'(Sy) =
{aba=1b7]a,b € F(S;). It follows that F’(S;) < F(S;) and F(S1)/F'(S1) is
abelian. Then if F'(S1) & F(S3), then F’(S1) & F'(S3), and finally F(S;)/F’(S1) &
F(S3)/F'(S2).

On the other hand, there is a canonical homomorphism (by the universal prop-
erty) @ : F(S1) — ZI®' commuting with ¢ : S; — ZI1|. The homomorphism
sends {a1,az,...,a5,} to the Z-basis consisting of elements containing one 1 and
the rest 0’s. Clearly, F'(S;) Cker(®). Consider an element of the ker(®), with-
out loss of generality, assume the first letter in the word has positive power, i.e.
a1a2 - - - ap. We see that > —s, €I = 0; i.e. the sum of the powers of identical
‘letters’ is 0. Clearly words of this form of length 0 belong to the commutator
subgroup. Inducting on the length of the words, given a word of length n + 1,
aras® ---a;"t, then it must be in some coset of F(Sy)/ker(S1). Then multiply-
ing by an element of F’(S;) C @ will not change the element’s coset. We know

a;=s
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Y a,—a, € = 0, so consider the occurence of the inverse of a; in the word; say it oc-

€2 ... gttt = -1 ep+2 ... gSntl
curs after p letters. Then ajas a,\ =a1 w a1 Gyt a, ;. But
‘p letters’
1 —1 €p+2 €n+t1 -1,-1 -1 €n+1 : < <
ar war " a,Yy - a, and (wayw™'a"")a; ™" -+ - a,] are in the same coset, con-
« . — — — €, €
taining (wajw=ta=1)a;~!- ca = appot?---a ", namely the coset F'(S7).

Then F'(S7) =ker(¢). But then by the first isomorphism of theorem, F'(S1)/F’(S1) =
7511, Similarly, F(Ss)/F'(Ss) = ZI52!. Since generators of a group will generate
any quotient of the group, we see F(S;)/F'(S1) = ZI51 2 71921 = F(8y)/F'(S,),
SO F(Sl) %F(SQ) ([l

That’s great because now, in good faith, we can finally name different free groups!
We can say that the rank of a free group F(S) is the order of the generating set
|S| = k. We write k = 7p(g), and F(S) = Fj. Much of the work we’ve done has
been working up to the following

Theorem 2.9. The rank of a free group is well-defined.

3. GRAPHS

Given a group G and a set S, recall that we say G acts on the right on S if

(1) For the identity, 1 € G and for all s € S, s-1 =s.
(2) For any g,h € G,s€ S, (s-g)-h=s-(gh).
Note that it follows from 1 and 2 that g € G yields a bijection from S to itself.

Example 3.1. The symmetric group on n elements, S,, acts on any set of n
elements—indeed, S, is all possible bijections from a set of n elements to itself.
Since any finite group G, |G| = n, is a subgroup of Sy, then in fact, any group
action on a set can be seen a subgroup of the permutations of S,,;.

An oriented graph T is a set of elements called vertices (the singular form is
vertex), denoted vert(I') = V, and a collection of ordered pairs of vertices called
edges, edge(T') = E. For vi,ve € V, if (v1,v2) = e € E then the origin of e,
o(e) = vy, while the tail of e, t(e) = vo. We say two vertices are adjacent if they are
the origin and tail of some edge. A path is a set of vertices {v1,...,v;} so that for
all i € {1,...,k — 1}, either (v;,v;41) or (v; + 1,v;) € E. A directed path is a path
in which for all ¢ € {1,...,k—1}, (v;,v;41) € E. The length of a path {vy,..., v}
is k. A circuit is a path of non-trivial length from a vertex to itself. A graph is
connected if for all v1,vy € V), there is a path {vy,...,v2}. A tree is a connected,
non-empty graph containing no circuits.

Any connected graph will contain trees as subgraphs—indeed the paths from any
vertex to any other will yield subtrees. The subtrees of a graph could be ordered
by inclusion. Clearly the finite union of trees in an ascending chain will be be a
tree. If the infinite union were not a tree, it would contain a circuit which would
be realized after a finite union (since circuits are finite). Therefore, if a graph X
has subtrees T; for ¢ € I; then any chain T;, C T;, C T, - -- is bounded above by
the tree Uijel T; and, by Zorn’s Lemma, there is a maximal subtree T' of X.
Claim 3.2. A maximal subtree T of X contains all vertices of X.

Proof. It T did not contain all the vertices of X, then there would be v €vert(X) so
that v ¢vert(T). But X is connected, so Va €vert(T'), there is a path from z to v.
Consider all paths from vert(7T') to v. There is a path P := {x1,x9,...,2,-1,v} of
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minimum length?. For all y € P such that y # x; €vert(T), y ¢vert(T), otherwise
the path {y,...,z,—1,y} would have shorter length than P. But then, since the
adjoining of distinct paths to trees is still a tree, T'U P is a bigger subtree of X,
contradicting the assumption that 7" was maximal. ([l

Example 3.3. Given a group G and a set S C G, one could construct the graph
I'(G, S) in which vertI'(G, S) = G and, between any two vertices g, h € G there is
an edge (g, h) if and only if there is a s € S so that gs = h. T'(G,S) is called the
Cayley Graph of G.

In the previous example, G could act naturally on I'(G,S) under the group
operation, i.e. for g € G, g takes a vertex v € I'(G, S) to gv € G, another vertex
of I'(G, S). The Cayley graph in some sense gives us a physical representation of
an abstract group. This allows us to draw conclusions about a group based off of
observations of its Cayley Graph.

Claim 3.4. T'(G, S) is connected if and only if S generates G.

Proof. Say I'(G, S) is connected, that means that for all h € G there is some series
(si) € S, i € I so that (J[,c;s:) (1) = g, i.e. S generates G. Likewise, we can
conclude that if S generates G then I'(G, S) is connected. g

Aside. So we see that if S is not a generating set, I'(G, S) is disconnected. If we
can draw conclusions about I'(G, S) when it is connected, those conclusions could
extend to the case when I'(G, S) is disconnected: breaking down I'(G, S) into the
disjoint union of connected components, our old observations apply. Therefore we
restrict our considerations to I'(G, S) for S, a generating set.

This new machinery devoloped allows us to draw powerful analogies between
properties of groups (free-ness, finitely generated, abelian, etc.) and properties of
the graphs (tree-ness, connectedness, etc.) in which they act on.

Claim 3.5. I'(G, S) is a tree if and only if G is a free group with generating set S.

Proof. If G is free with basis S, then for all g € G, ¢ = a1a2% - - ar* (see
Theorem 2.5), with a; € S, ¢; € {£1}, and €; = €;41 if a; = a;41. Since S generates
G, from Claim 3.4, we see that I is connected.

If T were not a tree, it would contain a circuit. That means, for some vertex
vy €vert(I), there is a path of non-trivial length from vy to v1, namely {v1,v2, ..., vp, v1}.
Then there are two distinct paths from v; to vp,, namely

arag---an(v1) = vy
bvi) = v,
for b # a1, a; # a;_ll where i € {1,2,...,n}. But that means, in G
ajas - - ap(vy) = b(vy) whence,
aias - - - Gy = b,
a contradiction. \

If T is a tree, S clearly generates G since I is connected. If G is not a free group,
then 3 § # 1 € F(S) whose image in G is 1. Then, let us choose § of minimum

2by the well ordering principle
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length®, ie. g =a{'a$?---as for a; € S, ¢; € {£1}, and smallest n (N.B. We can
do this since the length of elements of F'(S) is in Z>¢, a well-ordered set). But then
we see that

aita?---apr(l) = 1
and there is a circuit from 1 to 1. O

Note that a group’s action on a graph not only gives a bijection of the graph
onto itself, but it also gives a morphism of the graph to itself (a map of edges and
vertices, respectively, preserving adjacency). This follows from the associativity of
the group action.

An inversion of an edge (e1, e2) is (eq, e1). If a group acts without inversion, then
Vg € G, (e1,es) €edge(X), gler,ea) # (e2,e1). If a group acts without inversion,
then the morphism of the graph maps vertices to vertices, without changing the
direction of any of the edges. One might even say a morphism without inversion is
a morphism that preserves the orientation (direction) of the graph.

A group’s action partitions a set into orbits. If a group acts on a graph (V, E),
the orbit of a vertex v is {x € V|3 g € G s.t. g(v) = z}. It’s clear the orbits of the
group action partition the graph into equivalence classes. If that’s the case, then
we can make the

Definition 3.6. If a group, G, acts on a graph, X, without inversion, then the
quotient graph X/G, X mod G, is the partitioning of the edges and vertices into
equivalence classes via the group action. That is, for vy,vy €vert(X), vy ~ vq if
there is g € G s.t. g(v1) = va. Then there is a map ¢ : vert(X) — vert(X/G).
Likewise, if there is an edge (vi,vs) for vi,ve €vert(X), then there is an edge
(p(v1), p(v2)) €edge(X/G).

Aside. Why should we specify that G act without inversion on X in order to take
the quotient graph? If G acted with inversion, then the orientation of the quotient
graph X/G would not be inherited from X. The orientation of Cayley Graphs
plays an essential role in revealing the group structure. If the Cayley Graph were
unoriented, then Cayley Graph of Zs would be a tree, invalidating our key Claim
3.5.

Example 3.7. Consider the infinite ordered path P = Z with no circuits. For
a1, a9 € Z, (a1,az) €edge(P) if and only if ag — a; = 1. Note, P =T(Z,1).

Let Z act on P, forn € Z, p € P, by n : p — p+ n. Then clearly Z acts on
P without inversion—if an edge were inverted that would mean there was n € Z
such that (a1 +n) — (a2 + n) = 1, which would contradict the assumption that
as —ap = 1.

Clearly connectedness is preserved under the quotient map. Similarly, if there is
a circuit in X, then there will be a circuit in X/G. The converse is taken care of
in the following

Claim 3.8. For a group G acting without inversion on a connected graph X, every

subtree T' of X maps onto a subtree of X/G under the quotient map.

3The length of an element in F(S) is defined analogously to the length of a path in T(F(S),S).
One might define the length of f € (F(S) to be the length of the path from 1 to f € I'(G, S)
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Proof. Consider the set of all subtrees of X whose image under the quotient map
is in T”. This set can be ordered under inclusion, and, by Zorn’s Lemma, it has
a maximal element T. Say the image of T is T # T’. Then there is ¢/ €edge(T”)

such that there is no e €edge(T) and o(e) evert(T). If t(e') evert(T) then there
is a path from o(e/) — t(¢/), P C vert(T) which means that ¢/ ¢ P and another
distinct path, namely e’ from o(e’) — t(e’). At the same time, {e'} U P C vert(T),
so T contains a circuit, contradicting the fact that T is a tree.

But then there is an e €edge(X) such that o(e) €edge(T) and t(e) ¢edge(T).
But then adjoining the edge e and the vertex t(e) to T' is a bigger tree whose image

under the quotient map is in 7", contradicting the maximality of T. O

So every tree in X/G ‘lifts’ to a tree in X. A lift, T of a maximal tree of
X/G is called a tree of representatives. The name suggests that the tree should be
representative of G’s action on X. This is exactly the case. Every vertex of T is
contained in a distinct orbit of G and every orbit has a ‘representative’ vertex in
T. To see that every orbit is covered, we realize that a maximal tree T' of X/G
contains all vertices of X/G. Then if T is a tree of representatives for X, then
T maps onto T” under the quotient map. Therefore any orbit of G will map to a
vertex in X/G, and there will be a ¢ evert(T') which maps to that vertex.

4. FREE ACTIONS ON TREES

We say a group action is transitive on a graph if for any two vertices in the
graph, there is a group element than can send one to the other. If a group action
on a graph is ‘non-trivial’ then non-trivial group elements act non-trivially, that
is, they don’t leave everything fixed. We're looking for a stronger constraint on a
group’s action.

Definition 4.1. A group’s action on a graph is free if non-trivial group elements
leave nothing fixed, i.e. for any g € G, v € vert(I'), g #e, = g(v) # v.

Curious that we should describe a group’s action as free—given that we already
have a notion of what it means for a group to be free. It’s clear that groups act
freely* and transitively® on their Cayley Graphs. To a certain extent, a group’s
action on the Cayley Graph extends to a group’s action on any graph. If a group
acts freely on a tree, then it need not act transitively. If, however, we contract
the graphs so that the group does act transitively, we come to the Cayley Graph.
This is exactly the construction that we will use later on in the proof of Theorem
4.2. Here is where the power of the machinery developed is felt: through proving
things (easily) about a group’s action on it’s Cayley Graph, we derive facts about
a group’s action on any graph. In this manner, we derive (very easily) facts about
the structures of these groups.

It’s not hard for one to imagine that these ideas are related, that if a group’s
action on a graph is free then the group is free. This is not so far from the truth.

There is one exeption though, if a group acts freely on a circuit of length n, a
simple (and not very efficient) upper bound for the cardinality of the group is n!:
there are only finitely many non-trivial morphisms of a graph onto itself. Since free
groups are infinite, clearly free groups cannot act freely on circuits. Therefore, if a

4by virtue of there being a unique idempotent that is the identity in a group
5by virtue of cancellation in any group
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group acts freely on a graph with no circuits, it makes sense that the group might
be free. So, accounting for this case, we get our

Theorem 4.2. Let G act freely on a tree X, then G is a free group. In particluar, let
T be a tree of representatives for X/G := X*. If S = {g # 1lg € G, 3 e €edge(T),
o(e) evert(T) and t(e) cvert(Tg)}, then S generates G.

Proof. T'— X* is injective since T is a tree of representatives, i.e. T C X is the
lift of a maximal subtree of X*. (T)g — (T'g), i.e. there is a bijection from G to
translates of T" and the translates are pairwise disjoint for non-trivial g € G.

Let X’ be the contraction graph of X, crushing Tg to a single vertex called
(Tg). X' is a tree; if not, there is some circuit, i.e. two distinct paths from
(T) evert(X'), to T. That is, there are paths P, = {(T's1),(Tss), -+ ,(Ts,) =
T} and P, = {(Tt)),(Tta),--- ,(Tty) = T} for s;,t; € G. Considering some
v evert(T), (v)s15g - - 8p, (V)t1ts - -ty €vert(T). But since 7' and T are distinct
trees in X, they are connected and there is a distinct path Py = (v)s182+- -8, —
(v)tity -+ tp,. Then the P U Py U (Pp)~ ! is a circuit in X.

So there is a bijection « : vert(X') — vert I'(G,S), giving an isomorphism
¢ : X' = T(G,S). Thus G acting freely on I'(G, S) implies that G acts freely on
X', which in turn implies that G is free with basis S. (]

So we have characterized free groups in terms of their actions on any graphs by
their actions on their Cayley Graphs. A free action on a graph is pretty special-it
follows immediately from the definition that, if a group acts freely on a graph, any
subgroup will also act freely on a graph. Thus, with no undue timeliness, we have
arrived at a big time idea, and it’s only a

Corollary 4.3 (Schreier). Fvery subgroup of a free group is free.

5. SUBGROUPS OF FREE (GROUPS

We now progress to some counting arguments, relating the index of a subgroup
to the rank of a subgroup. First we need some preliminary ideas about trees. In a
path {a1,a9,...,a,} for a; # a; for i # j, the number of vertices is one more than
the number of edges. This seems like it should generalize to trees, too, and it does.

Lemma 5.1. IfT" is a connected graph with finitely many vertices, v = |vert(T')|,
e = |edge(T")|, then
(1) e=v—1 <= T isa tree.

Proof. IfT' is a trivial tree, namely the tree with one vertex, then equation (1) holds.
Inducting on finite trees, we see that any finite tree is the union of finitely many
finite paths. A finite path clearly satisfies the equality. If 7" is the graph resulting
in adjoining a finite path P to a tree T', since adjoining entails identifying one vertex
of P to T, if vp = |vert(P)|, ep = |edge(P)| and vy = |vert(T)|, er = |edge(T)|
then vy :=vert(T") = vp + vy — 1, while eqs :=edge(T") = ep + e, i.e.

err = ep+ter
= (Up—l—l—UT)—l

= ’UTI—l
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If e = v —1, let IV be a maximal subtree of I'. Then v/ = |vert(I”)|, ¢ =
ledge(I")|, and €’ = v" — 1 since I" is a tree. Also, we proved in Claim (3.2) that
v’ = v. Clearly, since I is a subtree of T, ¢/ < e. But then

v —1 = e < = v—1
v—1 = "< e = v-1
—— e/ =
And IV =T, so our maximal tree was the whole graph. O

We can now apply this characterization of trees to the tactics in our proof of
Theorem 4.2, obtaining an analogous relation on the quotient graph.

Theorem 5.2. Let G act freely on a directed tree X. We know from Theorem 4.2
that G is free, generated by S. Let T be a tree of representatives mod G, then if
X* = X/G has finitely many vertices, vert(X*) = V*, and edge(X*) = E*, then

IS|=1 = |E*| = V7|

Proof. Let W be a set of directed edges that start in 7" and don’t end in 7. From
Theorem 4.2, we saw that |S| = |[W|. Similarly, let W* be the image of W in X*.
Clearly W is in bijection with W* since W consists of edges between different orbits
of X under G. So |W| = |W*|, and |S| = |[W*|.

Let T* C X* be the image of T C X, T™ is a maximal tree of X*, so |V*| =
|vert(7™)].

For e € E*, either e €edge(T™*) or e cedge(W*): in X*, every edge, e starts
in T* since it’s a maximal tree. If e ends in 7™ then e €edge(T*)—since otherwise
there would be a circuit. If e does not end in 7%, by definition, it’s in W*. We’ve
shown that E* = edge(T*) LI W*, i.e. |E*| = |[W*| + |edge(T*)|. Then

[E*[=V*[ = (IW"| + |edge(T™)[) — [vert(T™)]
= W[+ (ledge(T™)| — |vert(T™)|)
= |W¥ -1 (applying Lemma 5.1 since T™ is a tree)
= |5]-1

proving the theorem. O

This tells us, in particular, the quotient of the cayley graph I'(F(S), S) by F(S)
is a single vertex with |S| edges. But it can also give us some strong constraints
on the possible index of free groups of a given rank. Really, the theorem gives us a
correspondance between the index of a subgroup and its rank.

Corollary 5.3 (Schreier). For G, a free group with generating set S, H < G so
that |G : H| = n,

rg—1 = n(rg—1)

Proof. Let T' = T'(G, S) be the Cayley Graph of Gj; it is a tree on which G acts
freely. Then if I'y = T'/G and T's = I'/H, v; = |vert(I'y)| and vy = |vertl's)],
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e1 = |edge(T'1)| and e = |edge(T'2)|, then by virtue of H having index n in G,
vin = vg and e;n = ey. By application of Theorem 5.2, we see

nirg —1) = n(e; —vy)
es — U9  but

es —v2 = rg—1 whence

nirg—1) = ryg—1

O

So we know that subgroups of free groups are free. Corollary 5.3 tells us that
the index of a subgroup of a free group uniquely determines that subgroup’s rank.
This is a powerful tool for analyzing subgroups of free groups.

Example 5.4. If F; is generated by {z,y}, consider a homomorphism ¢ : F» —
Z/nZ given by ¢(x) = ¢(y) = 1 € Z/nZ. Clearly, ker(p) < Fy and, since [Z/nZ :
(1)] = n, [Fy : ker(¢)] = n. Therefore, by Corollary 5.3, ker(¢) is a free group of
rank n + 1.

This proves that F; < Fy for all i € N, ¢ > 2. It’s obvious that F; < F3 since the
generating set of I is contained in the generating set of Fy. It is also worth note
that Fj is not a finite index subgroup of Fy—this follows trivially from Corollary 5.3
as well. In addition, F» < F,, Vn € N>j. F} is also the exception here, since it is
cyclic and only contains subgroups isomorphic to itself or the trivial group. So we
have every finitely generated free group as a subgroup of the free group of rank 2
and we have that the free group of rank 2 is a subgroup of every other free group
with the exception of I} = Z.
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