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I have selected several problems from Marcus’ Number Fields. Some con-
sist of legwork for theorems and will be designated accordingly. Others are
found in the lists of problems at the end of each chapter. Some introduction
will be provided before many problems.

Let ω = e2πi/m, a primitive mth root of unity. Let us call Q[ω] the mth

cyclotomic field over Q.

Proposition (page 12). If m is odd then Q[ω] = Q[ω2]. Alternatively, the
mth cyclotomic field is the same as the 2mth.

Proof. Let m be odd, m > 0. Let ω = e2πi/2m.
Note: Q[ω] ⊃ Q[ω2] since ω2 ∈ Q[ω].

−ω = e2πie2πi/2m = e2πi+2πi/2m = e2(m+1)πi/2m = ωm+1 = ω2n = (ω2)n

for some n since m is odd. So −ω ∈ Q[ω] and −1 ∈ Q so ω ∈ Q[ω2].
Hence Q[ω] ⊂ Q[ω2] and therefore Q[ω] = Q[ω2].

Exercise 2.5. Let f ∈ Z/pZ with p prime. Show f(xp) = (f(x))p.

Proof. By induction on the number of terms.
1 term:

f(xp) = a(xp)m = a(xpm) = a(xm)p = 1a(xm)p = ap−1a(xm)p 1
= (axm)p = (f(x))p

(1: Multiplication is commutative in Z/pZ.)
Assume true for n terms.
n + 1 terms: Let f(x) = g(x) + h(x) where g(x) has n terms and h(x) has 1
term.

f(xp) = g(xp) + h(xp) = (g(x))p + (h(x))p 2
= (g(x) + h(x))p = (f(x))p

(2: Since ap + bp = (a + b)p in Z/pZ.)
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Exercise 2.14. Show that 1 +
√

2 is a unit in Z[
√

2], but not a root of 1.
Use powers of 1 +

√
2 to find infinitely many solutions to the diophantine

equation a2 − 2b2 = ±1.

Proof. Note that (
√

2 + 1)(
√

2− 1) =
√

2
2 − 12 = 1. So 1 +

√
2 is a unit in

Z[
√

2].
To check that it is not a root of 1, remember that Z[

√
2] ⊂ R and that it is

in fact a subring. Now note that (1+
√

2)n > (1+
√

2)n−1 since (1+
√

2) > 1.
This argument shows that all the powers of 1 +

√
2 are distinct and hence

not a root of 1. Also (1 +
√

2)n ∗ (1 −
√

2)n = (−1)n so (1 +
√

2)n is a unit
and since the norm in Z[

√
2] is multiplicative, N((1+

√
2)n) = |a2−2b2| = 1.

This gives infinitely many solutions to a2 − 2b2 = ±1 since the powers are
distinct.

Exercise 2.15.

a) Show that Z[
√
−5] contains no element of norm 2 or 3.

b) Verify that 2∗3 = (1+
√
−5)(1−

√
−5) = 6 is an example of non-unique

factorization in Z[
√
−5]

Proof.

a) By way of contradiction, assume so.
Then ∃a, b ∈ Z s.t. ‖a + b

√
−5‖ = 2 or = 3. ‖a + b

√
−5‖ = |a2 +

5b2| = 2 or = 3 So, taking this equation mod 5, we are left with
a2 ≡ 2 (mod 5) or a2 ≡ 3 (mod 5) since 5b is divisible by 5 and
−2 ≡ 3 (mod 5). But note, a4 ≡ 1 (mod 5) for a 6= 0 so a2 ≡ ±1
(mod 5).⇒⇐

b) ‖2‖ = 4 so if a|2 then ‖a‖|4 ⇒ ‖a‖ = 1 or 4 since there are no elements
of norm 2. So either a is a unit or 2 = au where u is a unit. Similarly
for 3. But note, ‖1 ±

√
−5‖ = 6 and 4 6 |6 and 9 6 |6. Hence these are

two non-unique factorizations of 6.
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Exercise 2.27. Let G and H be two free abelian groups of rank n in K, with
H ⊂ G.

a) Show that G/H is finite.

b) Show that G has a generating set β1, . . . , βn such that (for appropriate
integers di) d1β1, . . . , dnβn is a generating set of H.

c) Show that disc(H) = |G/H|2disc(G).

d) Show that if α1, . . . , αn ∈ R = A
⋂

K then they form an integral basis
for R iff disc(α1, . . . , αn) = disc(R).

e) Show that if α1, . . . , αn ∈ R = A
⋂

K and disc(α1, . . . , αn) is square
free then the αi form an integral basis for R

Proof.

a) Without loss of generality, G = Z⊕Z⊕· · ·⊕Z since they are isomorphic.
Since H ≤ G then H = k1Z⊕ k2Z⊕ · · · ⊕ knZ with ki ∈ Z\{0}, since
H restricted to each coordinate must be a subgroup of Z and it is of
rank n. Hence,

G/H =
Z⊕ Z⊕ · · · ⊕ Z

k1Z⊕ k2Z⊕ · · · ⊕ knZ
∼= Z/k1Z⊕ Z/k2Z⊕ · · · ⊕ Z/knZ

So, since ki is never 0, then G/H is a finite abelian group which is
isomorphic to a direct sum of at most n cyclic groups.

b) Further, if β1, . . . , βn ∈ K generate G then k1β1, . . . , knβn generate H
since they do under the canonical isomorphism into Z⊕ · · · ⊕ Z.

c) From b), β1, . . . , βn is a basis for G and k1β1, . . . , knβn is a basis for H.
Also, 

k1β1

k2β2
...

knβn

 =


k1 0 · · · 0

0 k2
. . . 0

...
. . . . . .

...
0 0 · · · kn




β1

β2
...

βn


Note that disc(α1, . . . , αk) = |σi(αj)|2 (the square of the determinant
of the matrix). Also, since H ⊂ G of equal rank, then an embed-
ding of one corresponds to an embedding of the other (by multiplica-
tion or division). So by applying σi to each of the n equations, we
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arrive at the equation [σj(kiβi)] = M [σj(βi)] where M is the previ-
ous diagonal matrix. So, now, by taking determinants and squaring,
we see that disc(k1β1, . . . , knβn) = |M |2disc(β1, . . . , βn) so we have
disc(H) = |G/H|2disc(G). (Since the determinant of a diagonal ma-
trix is the product of the diagonal elements.)

d) Note: Integral basis implies equality of discriminants by Theorem 11.

So, we must prove the converse. The αi are linearly dependent iff their
discriminant (in R) is 0 (Theorem 7). So, we can assume that they
generate a free abelian group of rank n. Call this H. αi ∈ R ⇒ H ⊂ R.
Now, by c) we see that |R/H| = 1 and hence H = R.

e) Similarly to d), we see that the αi form a basis for a subgroup H with
equal rank to R. Then disc(H) = |R/H|2disc(R) and since |R/H| is
an integer, then it must be 1. So they are equal.

Exercise 3.2. Prove that a finite integral domain is a field; in fact show that
for each α 6= 0 we have αn = 1 and hence αn−1 = α−1.

Proof. Let K be a finite integral domain, α ∈ K, α 6= 0. Then ∃k, l ∈ N, k 6=
l s.t. αk = αl since K is finite. Assume without loss of generality that k > l.
So, αk = αk−l+l = αk−lαl = αl. Hence αk−l = 1 by cancelation. Also,
αk−l−1 = α−1.

Exercise 3.7. Show that if I and J are ideals in a commutative ring s.t. 1 ∈
I + J , then 1 ∈ Im + Jn ∀m, n ∈ N.

Proof. Note: 1 = α + β with α ∈ I, β ∈ J .
Let k = m + n. Then:

1 = 1k = (α + β)k =
k∑

i=0

(
k

i

)
αiβk−i

and each term is in either Im or in Jn. Since if i ≤ m then k − i ≥ n so
αiβk−i ∈ Jn. Similarly if i > m then αiβk−i ∈ Im.
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