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1. Introduction

Traditional Riemann integration, while powerful, leaves us with much to be
desired. The class of functions that can be evaluated using Riemann’s technique, for
example, is very small. Another problem is that a convergent sequence of Riemann
integrable functions (we will denote this class of functions as R-integrable) does not
necessarily converge to an R-integrable function, and furthermore the fundamental
theorem of calculus is not general- that is to say when integrating a function f

we often find a function F such that F ′ = f and
∫ b

a
f = F (b) − F (a) to evaluate.

The problem with the Riemann technique is that f may have a primitive F but
that does not guarantee that it is R-integrable which prevents us from applying
the above equation. There have been many steps to cover and fix the holes left
by Riemann. Lebesgue, Perron, and Denjoy all made major advancements in the
theory of integration; the later two generalized the fundamental theorem of calculus,
fixing the latter problem. The techniques they used, however, were inaccessible and
complicated.

In the 1960’s Kurzweil and Henstock came up with a new integration technique
that is so powerful it includes every function the others can integrate. The technique
had the added advantage of being simple, requiring only slightly more effort to learn
than the Riemann integral. There was in fact a (failed) movement to replace the
teaching of the Riemann integral with that of the Kurzweil-Henstock integral (also
called generalized Riemann integral and gauge integral). This paper will serve as
a brief introduction to the power and simplicity behind this relatively modern idea
that simplifies and strengthens of one of the corner stones of analysis.

Before continuing it is important to acknowledge and note that all of the ideas
of this paper are drawn from Robert G. Bartle’s A Modern Theory of Integration.
The purpose of the paper is to spread awareness of gauge theory and Bartle’s book
which is a wonderful resource for learning this new method.

2. What Are Gauges Anyways?

Definition 2.1. Let I = [a, b] a nondegenerate subinterval of the number line
(that is to say a 6= b). We say δ : I 7→ R is a gauge on I if δ(x) > 0 for all
x in I. The interval around t ∈ I controlled by the gauge δ is the interval
B[t; δ(t)] := [t− δ(t), t+ δ(t)].

Definition 2.2. Let I = [a, b], nondegenerate, and let Ṗ be a tagged partition of
I (that is to say for each subinterval Ii comprising the partition P choose a point
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ti ∈ Ii- denote Ṗ := {(Ii, ti)|i = 1, ..., n} = {(Ii, ti)}n
i=1). If δ is a gauge on I, then

we say Ṗ is δ-fine if

Ii j [t− δ(t), t+ δ(t)] for all i = 1, ..., n; (2.1)

that is to say if Ii is contained in the interval controlled by ti for each i. If Ṗ is
δ-fine write Ṗ � δ.

Examples of Gauges (a) δf : I 7→ R and δf (x) = δc for all x ∈ I, where δc is
some number greater than zero. We call this a constant gauge. This is the type
of gauge used in Riemann integration and makes it clear (or soon will make it clear)
that if a function is R-integrable it is R∗-integrable.

(b) If we have two gauges, δ1 and δ2, on I define a new gauge δ to be the
minimum of the two at each point. If a partition is δ-fine it will also be δ1 and
δ2-fine. This method also works for finitely many gauges on I.

(c) Gauges can also be used to force particular point to be tagged for any δ-fine
partition. Let I := [0, 1], δ(0) := 0, and δ(t) := 1/2t for t ∈ I\{0}. Then any δ-fine
partition of I must have 0 as a tagged point. This fact is left as an exercise.

Existence of δ-fine partitions

Theorem 2.3. If I := [a, b] is a nondegenerate compact interval in R and δ is a
gauge on I, then there exists a partition of I that is δ-fine.

Proof. The idea is to prove by contradiction assuming that the interval I is not
δ-fine for any partition. Break the interval into two halves. Then at least one of
the halves must not be δ-fine. Pick a non-δ-fine half and break it into halves. At
least one of these quarter length intervals must also not be δ-fine. Continuing this
process of halving we will get an arbitrarily small interval E = [a, b] which is not
δ-fine. Pick a point t in E. Then |δ(t) − t| > 0 and is some real value. Since E is
of arbitrary length we can make a and b as close to t as we choose, namely closer
than |δ(t) − t| > 0 thus E is δ-fine which contradicts the statement that I is not
δ-fine. �

The Generalized Reimann Integral

Definition 2.4. A function f : I 7→ R is said to be generalized Riemann
integrable (or gauge integrable) on I if there exists a number A ∈ R such that
for every ε > 0 there exists a gauge δε on I such that if Ṗ := (Ii, ti)

n
i=1 is any tagged

partition of I that is δ-fine, then

|

(
n∑

i=1

f(ti)(ti+1 − ti)

)
−A| 6 ε (2.2)

The collection of all funtions that are generalized Riemann integrable on an
interval I will be denoted by R∗(I).

Theorem 2.5. Uniqueness Theorem. There is at most one number A that
satisfies the property in Definition Definition 2.4.

We say A is the integral of f evaluated on I.
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3. Applications of Gauges

There are several reasons that non-constant gauges work better than constant
ones. First, one can enclose a finite or countable set of points in an null interval
(an interval of arbitrarily small length) (see Dirichlet’s function below). The fact
that we can force particular points to be tagged also comes in handy (see the first
example in section 4).

Dirichlet’s Funtion. The function is defined as f : [0, 1] 7→ R where

f(x) :=
{

1 if x is rational
0 if x is irrational (3.1)

This function is not R-integrable, but we will show it is R∗-integrable. Since the
rational numbers are countable let {rk : k ∈ N} be an enumeration of them. Take
ε > 0 and define the gauge

δε(t) :=
{
ε/2k+1 if t = rk

1 if t is irrational (3.2)

Let Ṗ := (Ii, ti)
n
i=1 be a δε-fine partition of [0,1]. If the tag ti is irrational then

f(ti) = 0 and the contribution to the sum is zero. Other wise the contribution is 1
times the length of the interval Ii which is less than ε/2k since Ṗ is δε-fine. Since
only the rational tags will contribute, and in this way, we have

|

(
n∑

i=1

f(ti)(ti+1 − ti)

)
| 6

∞∑
k=1

ε/2k = ε. (3.3)

Since ε is arbitrary the function is integrable and
∫ 1

0
f = 0.

Absolute Integration. In a more impressive display of power, we can show
that every convergent series gives rise to an R∗-integrable function. The function
is as follows:

Let
∑∞

k=1 ak be and convergent series in R and let it converge to B. Let cn :=
1− 1/2n for n ∈ N ∪ {0}. Define now g(x) : [0, 1] 7→ R as

g(x) :=
{

2kak for x ∈ [ck−1, ck), k ∈ N
0 x = 1 (3.4)

We claim that this function is indeed in R∗([0, 1]) and that
∫ 1

0
g = B. The key

observation is that the length of the intervals cancels out 2k term in each of the
constant intervals. We get

∑∞
k=1 g(xk)(ck − ck−1) =

∑∞
k=1 2kak((1− 1/2k)− (1−

1/2k−1)) where xk ∈ [ck−1, ck). Finding an appropriate gauge and completing the
proof is left to the reader as an exercise (or can be found in Bartle’s book).

Once this fact is established it is clear that if a function f is R∗-integrable, then
we do not know if |f | is, since a convergent sequence need not converge absolutely.
For example, the function arising as above as the harmonic series multiplied by
negative one every other term

h−1(x) :=
{

(−1)k2k1/k for x ∈ [ck−1, ck), k ∈ N
0 x = 1 (3.5)
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is in R∗([0, 1]), while the function arising from the harmonic series is not

h(x) :=
{

2k1/k for x ∈ [ck−1, ck), k ∈ N
0 x = 1 (3.6)

This is a sharp change from Riemann and Lesbegue integration where we can
always assume that ”f is integrable” implies ”|f | is integrable.”

4. fundamendtal

One of the most beautiful and immediate results of applying gauges is the di-
rect consequence of incredibly powerful and generalized Fundamental Theorems of
calculus. This is the problem that motivated and was solved by Perron and Den-
joy. Amazingly enough we already have (almost) everything we need to prove the
more general and weaker fundamental theorem. First we will look at an example
of the problems we run into when working with the Riemann integral. Then, with
a few more definitions we will briefly explore the fundamental theorems concerning
integrating derivatives and differentiating integrals.

Example. Recall that the function m : [0, 1] 7→ R] defined as m(x) := 1/
√
x

for x ∈ (0, 1] and m(0) := 0 is not in R([0, 1]). This function has the primitive
M(x) = 2

√
x on the entire interval but 0. The fundamental theorem for Riemann

integration, which attempts to assert that M(1)−M(0) = 2
√

1− 0 = 2 =
∫ 1

0
m, is

meaningless here since the integral does not exist.

Definition 4.1. (a) A set Z ⊂ R is a null set (or a set of meassure zero if for
every ε > 0 there exists a countable collection {Jk}∞k=1 of open intervals such that

Z ⊆
∞⋃

k=1

Jk and
∞∑

k=1

l(Jk) < ε (4.1)

where if Jk = (a, b) then l(Jk) = |b− a|.
(b) If A ⊆ R, then a function f : A 7→ R is said to be a null function if the set

{x ∈ A|f(x) 6= 0} is a null set.
(c) If Q(x) is a statement about the point x ∈ I and if E ⊂ I, we say that E is

an exceptional set for Q if the satement Q(x) holds for all x ∈ I − E.
(d) If above E is a null set, we say Q(x) holds almost everywhere (a.e.) on

I.
(e) If E is a countable set (or finite), we say that Q(x) holds with countably

(finitely) many exceptions (c.e. (f.e.)).

Definition 4.2. Let I : [a, b] ⊂ R and let F, f : I 7→ R.
(a) We say F is a primitive of f on I if the derivative of F ′(x) exists and

F ′(x) = f(x) for all x ∈ I.
(b) We say F is an a-primitive (or c-primitive, or f-primitive) of f on I

if F is continuous on I, and there exists a null (or countable, or finite) set E of
points x ∈ I where either F ′(x) does not exist, or does not equal f(x). We call E
the exceptional set of f .

(c) If f ∈ R∗(I) and u ∈ I, then the function defined as

Fu(x) :=
∫ x

u

f where x ∈ I (4.2)

is called the indefinite integral of f with base point u. Any function that
differs by a constant from one of these functions is call an indefinite integral.
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The Straddle Lemma
We will use this lemma to prove one of the following theorems.

Lemma 4.3. Straddle Lemma. Let F : I 7→ R be differentiable at a point t ∈ I.
Given ε there exists δε(t) > 0 such that if u, v ∈ I satisfy

t− δε(t) ≤ u ≤ t ≤ v ≤ t+ δε(t) (4.3)

then we have
|F (v)− F (u)− F ′(t)(u− v)| ≤ ε(v − u) (4.4)

Proof. Since the derivative of F at t exists, by the definition of the derivative we
have that given ε > 0 there exists a δε such that if 0 < |z − t| ≤ δε(t), z ∈ I, then

|(F (z)− F (t))/z − t− F ′(t)| ≤ ε (4.5)

We pick u < t and v > t to be points controlled by the interval created by δε around
t. The proof can be completed from here using the above equation and finding the
appropriate bound ε(v − u). �

Integrating Derivatives

Theorem 4.4. Fundamental Theorem I. If f : [a, b] 7→ R has a primitive F on
[a,b], then f ∈ R∗([a, b]) and ∫ b

a
f = F (b)− F (a).

Proof. The proof follows from the straddle lemma. We apply the same gauge that
arises from the differentiablity of F at each point in the interval. �

The example with m(x) = 1/
√
x has the f-primitive M(x) := 2

√
x where E,

the exceptional set, is {0}. By explicitly calculating using gauge integration we
get

∫ 1

0
m = 2 we also clearly have M(1) −M(0) = 2

√
1 − 0 = 2. This leads the

question of wether the fundamental theorem will hold for finitely many points, or
even countably many. It in fact does:

Theorem 4.5. Fundamental Theorem I*. If f : [a, b] 7→ R has a c-primitive
F on [a, b], then f ∈ R∗([a, b]) and∫ b

a
f = F (b)− F (a).

Proof. The idea is to contain the countable exceptional set in a gauge like the one
we used for Dirichlet’s function and to use the gauge arising from diffentiability on
the rest of the interval. For more detail see Bartle. �

Now we can apply this theorem to the example:
∫ 1

0
m = 2 = 2

√
1 − 0 =

M(1)−M(0).

Differentiating Integrals

Theorem 4.6. Fundamental Theorem II. Let f ∈ R∗([a, b]) have a right (left)
hand limit A at a point c ∈ [a, b). Then the indefinite integral

Fu(x) :=
∫ x

u

f (4.6)

has a right hand derivative at c equal to A.
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Theorem 4.7. Fundamental Theorem II*. Let f ∈ R∗([a, b]). Then any
indefinite integral F is continuous on [a, b] and is an a-primitive of f .

The proofs of the second set of fundamental equations will be omitted yet stating
them leads to two natural questions. First, can we extend the first theorem to
require that f have only an a-primitive? Secondly, can we tighten the second
theorem to ensure an indefinite integral is a c-primitive? The answer to both these
questions is no. To illustrate this by counter example we turn to the Cantor set
and the Cantor-Lebesgue singular function (also known as the Devil’s staircase”).

First recall the Cantor set, or middle thirds set, which is constructed recursively
by starting with the interval [0, 1] and removing the middle third. We now have
two intervals of length one third and on the next step we remove the middle third
of these two intervals. Continue infinitely many times. We define the interval [0, 1]
as Γ0 and the nth step as Γn. The cantor set is the intersection of these sets for
n ∈ N.

Theorem 4.8. The Cantor set Γ is an uncountable null set.

Proof. Notice that Γn has length 1/3n so that for any ε we can choose an n such
that l(Γ) < l(Γn) < ε. Thus Γ is null.

Next we show it is uncountable. Assume it is countable and that {xn : n ∈ N}
is an enumeration of Γ. Let I1 be one of the 21 closed intervals in Γ1 such that
x1 3 I1. If n ≥ 2, let In be the first interval in In−1 ∩ Γn with length 1/3n such
that xn 3 In. In this way we obtain a point z =

⋂∞
k=1 Ik such that z ∈ Γ. Thus

xk 6= z for all k ∈ N and the set is not countable. �

Cantor-Lebesgue singular function (The Devil’s staircase). Notice that Γk

is comprised of 2k closed intervals, and that its compliment is comprised of 2k − 1
closed intervals Define the linear function Λk : [0, 1] 7→ R as Λk(0) = 0, Λk(1) = 1,
and Λk(x) = i/2k for x ∈ Γc

k with x in the ith subinterval comprising of Γc
k. If x

is in the jth subinterval of Γk, let Λk(x) be the straight lines linking the (j − 1)th
constant segment in Γc

k to the jth constant segment in Γc
k. If j− 1 is 0, we link the

line on the left to 0(= Λk(0)); if j = 2k we link the line on the right to 1(= Λk(1)).
Exercise: Sketch Λk for the first few values of k.

Finally we claim that the sequence of functions {Λk(x)}∞k=1 converges to a limit
function which we call the Cantor-Lebesgue singular function and we denote
it as Λ(x).

Theorem 4.9. The Cantor-Lebesgue singular function Λ : [0, 1] 7→ R is continuous
and increasing on [0, 1] and its derivative is zero for all points x ∈ [0, 1]− Γ.

Now we return to the previous questions. We want the first theorem to state:
”If f : [a, b] 7→ R has an a-primitive F on [a, b], then f ∈ R∗([a, b]) and

∫ b

a
f =

F (b)− F (a).” Applying Λ as the a-primitive to Λ′ we would have
∫ 1

0
Λ′ = 0 6= 1 =

Λ(1)− Λ(0).
Turning now to the second theorem, we want to assert: ”Let f ∈ R∗([a, b]).

Then any indefinite integral F is continuous on [a, b] and is a c-primitive of f .” Let
ψ(x) = 1 for x ∈ Γ and ψ(x) := 0 for x ∈ [0, 1]−Γ. This is a null function implying
ψ ∈ R∗([0, x]) and Ψ(x) :=

∫ x

0
ψ = 0 for x ∈ [0, 1]. This implies Ψ′ = 0 for all

x ∈ [0, 1]. But then ψ(x) 6= Ψ(x) for x ∈ Γ which is an uncountable null set.
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5. What Next?

So far we have seen the potential power that applying nonconstant gauges has in
integration theory. For further study we still have to see the extent of the class of
functions that gauge theory is capable of handling. As it will turn out the class of
R∗-integral functions is closely related to the collection of measurable functions. We
also have only studied compact intervals and have left infinite intervals for further
study. There is also more work required to show that the class of Lebesgue-integral
functions is contained in the class of R∗-integral functions. The interested reader is
referred to A Modern Theory of Integration by Robert G. Bartle to continue study
in this topic.


