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Abstract

This paper will investigate the classical Burnside problem as it was
originally proposed in 1902 and will focus on developing a counterexample
to this conjecture involving automorphism groups on binary rooted trees.
This example is more widely known as the first Grigorchuk group. I
will introduce all the relevant ideas about binary rooted trees and their
connection to the Grigorchuk group, so that this survey will be more self-
contained. Although we will see that Burnside’s original conjecture is
false in its full generality, I will also present a short historical overview of
some related results that have since been attained.

1 Introduction to Burnside’s Problem

Although having studied under the great algebraist Arthur Cayley while at
Cambridge, William Burnside did not begin his mathematical career in this
field. In fact, his university studies were focused in applied mathematics and
later hydrodynamics. It was years later that his research shifted from applied
mathematics to finite group theory, the subject that would later bring him fame.
Today Burnside can be regarded as one of the most influential figures in the his-
tory of this subject, after having drawn the interest of many mathematicians
throughout the twentieth century with his proposed problems. Before stating
his question, we will need a few preliminary definitions.

Definition 1.1: Let G be a group and S C G. Let I={H <G| S C H}.
Then (S) = (yey(H) is the subgroup of G generated by S. A group G is
said to be finitely generated if it is generated by some finite subset S C G, ie.
G=(9).

Definition 1.2: Let G be a group. An element g € G has finite order if
dn € Z such that g™ = 1.

Definition 1.3: A group G is periodic if Vg € G, In € Z such that ¢ = 1,
ie. Every element in G has finite order.



Now we are ready to state Burnside’s question:
Is it the case that all finitely generated, periodic groups are finite?

It may seem at first that this question should be answered in the affirmative.
For there are only finitely many generators for the group, each of which has
finite order. So this amounts to at most a finite number of distinct elements.
Then all the finite products of the generators are also elements in the group,
and thus these elements will each have finite order as well. It may seem as
though we could somehow make the leap from this information to conclude that
the group must then be finite. But this intuitive simplicity is only apparent.
In the following sections we will define the first Gigorchuk group - one of the
best known counterexamples to the Burnside problem - which will show that
the answer to this question is no.

2 Graphs and Trees

The definition of the Grigorchuk group involves permutations that act on cer-
tain types of graphs. Formally, a graph G is a pair of sets G = (V, E) where
V is a set of verticies and E is a set of edges. Edges are defined by pairs of
verticies, and visualized by a line segment connecting them. Two verticies in
a graph are said to be adjacent if the edge that they form is contained in F,
and adjacent verticies are called neighbors. In a graph, a walk is a sequence of
verticies vg, v1, ..., vy such that v; and v; 41 are adjacent for all i € {0,...,k —1}.
A cycle is a walk in which vy = vy and there are no repeated verticies in the
sequence beside vg = vg. A graph is connected if there is a path between any
two verticies in V. The following definition is necessary for our study of the
Grigorchuk group.

Definition 2.1: A tree is a connected graph with no cycles.

2.1 d-ary Rooted Trees

A type of tree that will be of special interest to us will be the d-ary rooted
tree T(9), (d > 1). These trees can be defined as follows: The set of verticies
of T consists of finite sequences of the integers {0,...,d — 1}. The edges
of T9 connect pairs of verticies whose sequences differ in length by exactly
one, and the shorter sequence can be obtained from the longer by deleting the
last term. For example, v; = (1,0,0,3,) and v; = (1,0,0,3,2) would form
an edge, whereas v; = (1,0,0,2,2) and v; would not. The root of the tree is
defined to be the empty sequence, and we shall denote it by (&). Every vertex
(21,...,x) # (@) has exactly one parent, which is defined to be (21, ...,25_1)
(Note that the root of T(?) has no parent). In the d-ary tree T(?, every vertex
(21, ..., zx) has d children, which are the verticies of the form (x1, ..., zg, xt1)
where z;11 € {0,...,d — 1}. In the d-ary tree, we have a notion of levels, where
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Figure 1: A binary rooted tree

the k" level of T4 is defined to be the subset of the vertex set V consisting
of all the sequences with length &, denoted by L(d)(k). Thus, we can visualize
the tree as having the root at the top and LY (k — 1) as being above L(® (k).
The Gigorchuk group is defined using binary rooted trees (trees in which every
vertex has exactly two children, as in Figure 1), so as results are presented in
the general setting of d-ary rooted trees, keep in mind that the binary case will
be most important to us.

2.2  Automorphisms of 7@

Now that we have established the basic structure of 79, we can consider func-
tions acting on these trees. The first concept will be that of graph isomorphism.

Definition 2.2: Let G; = (V4, E1) and G = (Va, E3). A bijective function
f V1 — V5 is an isomorphism of graphs G; and G if the function f preserves
the structure of adjacency, ie. for any two adjacent verticies v;,v; € G1, f(v;)
and f(v;) are adjacent in Gy. In the case that Gi = G2, we say that f is an
automorphism.

Note that an isomorphism of a graph maps verticies to verticies and edges
to edges due to the preservation of adjacency. For any vertex z € T4, there

exists a subtree Téf” of T which contains all the verticies whose sequences
begin with z. By concatenation of z with a vertex v € T(9), we obtain a new
vertex zv in ngd). This defines an isomorphism:

5, TW — ngd) where v — zv

The automorphism group of all automorphisms on T? is denoted by G(%),
Given any ¢ € G(? | g must fix the root. This is because the root has d neigh-
bors, whereas every other vertex of T(® has d+ 1 neighbors. So automorphisms
of T4 only permute the subtrees To(d), sy Tédjl and fix (2).



Definition 2.3: Stgw (k) = {g € G | Vo € LW (k),g(x) = z} is the
stabilizer subgroup of G4 fixing L(%) (k).

Suppose we are given d automorphisms go, g1, ..., ga—1 € G¥. We can then
define a new automorphism g € G(9) that is in St (1) (i.e. g fixes the first level

of the tree), such that each subtree Tj(d)

We may formalize this notion by noticing that the action of g; on the j*" subtree
is precisely the automorphism §; gjdj_l, where §; is as defined above.

We can reverse this procedure to show that every element in the stabilizer
of the first level, Stpw (1), is of this form. Consider an automorphism g €
St (1). Then, by definition, g fixes the first level of T(9). Furthermore, g

acts on each of the subtrees To(d), ...,Td(i)l as a collection of d automorphisms

is acted upon by g;, j € {0,...,d — 1}.

G0, -, gi—1 € G@ where each (5jgj6]71 is the restriction of g to the subtree

Tj(d). Now we can define the following function, which is an isomorphism by the
preceding discussion.

Y = (¢oy ..., Pa—1) : Stgw (1) — G@D x ... x G
where g — (g0, ..., gi—1)

Although it is correct to write ¥ (g) = (go, ..., 9ga—1), for g € Sta@ (1) we will
agree to write g = (go,...,gq—1) instead. Now that a general theory of rooted
d-ary trees has been established, we can focus our attention on the binary case
and on the Burnside problem.

3 The First Grigorchuk Group

It took over fifty years for a conclusive answer to Burnside’s question to be
discovered. This was first shown in 1964 by Golod and Shafarevich who found
a finitely generated infinite p-group. Years later in 1980, Rostislav Grigorchuk
published a paper containing the construction of the first Grigorchuk group.
This group is of special interest to mathematicians for a number of reasons
including growth rates of words, the various interesting properties exhibited by
its subgroups, and the close relationship it shares with the Burnside problem.
This final aspect of the Grigorchuk group is what leads us to investigate its
properties.

The first Grigorchuk group is constructed out of elements in G(?), which are
automorphisms of the binary rooted tree, T?). For j € {0,1}, let j be defined
by 0 =1 and 1 = 0. Our first automorphism on the binary rooted tree will be
denoted by a and is the automorphism that simply flips the first two subtrees
of T®) by interchanging the verticies (0) and (1). This function can be written
more precisely using the sequence notation: for some vertex (iy, ..., i) in T,
1 € {0,1}, -

ait, ..y i) = (41,42, ., ik)
Note that a® = 1 since a(a(i,...,ix)) = a(i1, iz, ...,ix) = (i1,i2,...,7x) and
11 = i1. Also note that 1 is being used in this context to represent the identity



Figure 2: The automorphisms b, ¢, and d.

automorphism of T(). Three automorphisms in St (1) can now befined re-
cursively from the definition of a in the following way. Let b = (a, ¢), ¢ = (a, d),
and d = (1,b). This manner of expressing b, ¢, and d is implicitly using the
function 1 as we defined earlier. These definitions are actually formulated as
¥(b) = (a,c), ¥(c) = (a,d), and ¥ (d) = (1,b), but we will usually refer to them
without reference to . One can think of these automorphisms which are of
the form (79,71) as o acting on Téz) and ~; acting on Tl(Q). For example, the
function b applies a to the left subtree TO(Q) of T and ¢ to the right subtree
Tl(g). The following examples will illustrate the actions of these automorphisms
on verticies of the tree.

Example: Consider the vertex v = (1,0,0,1,1).

(i) a(v) =a(1,0,0,1,1) = (0,0,0,1,1).

(ii.) b(v) =b(1,0,0,1,1) = (1,¢(0,0,1,1)) = (1,0,a(0,1,1)) = (1,0,1,1,1)
(iii.) c¢(v) = ¢(1,0,0,1,1) = (1,d(0,0,1,1)) = (1,0,1(0,1,1)) = (1,0,0,1,1)
(w.) d(v) =d(1,0,0,1,1) = (1,5(0,0,1,1)) = (1,0,a(0,1,1)) = (1,0,1,1,1)

Definition 3.1: The first Grigorchuk group I is defined to be the group
generated by {a,b,c,d}, ie., I' = {a,b, ¢, d).

Clearly, the group I is finitely generated, for it has only four generators.
These four automorphisms of I' are shown in Figure 2. We can see that they
only permute the subtrees directly next to the rightmost subtree on each level,
and they act in a pattern of two nontrivial permutations followed by the identity.
Notice that b, ¢, and d only differ in where they begin this pattern. The following
section will provide an interesting perspective on a, b, ¢ and d that connects the
Grigorchuk group to finite state automata and may provide some insight into
the nature of these recursively defined automorphisms.
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Figure 3: The adding machine automaton.

3.1 Finite State Automata

The notion of an automaton comes from computer science, and roughly, it is just
a type of computing machine. I will not present a detailed introduction to finite
state automata, but instead this section is only designed to acquaint the reader
with the main ideas that will be relevant to our discussion of the Grigorchuk
group. A finite state automaton is a device that takes a string from a finite
alphabet as an input into one of its finitely many states, called an initial state.
Each of the states in the automaton may perform some predefined operation
on the string. The operations that will be of interest to us are permutations
on a term in the string that permute it with the other letters in the alphabet.
The automaton accepts the input string in the initial state and looks to the
next letter in the sequence. It then matches this letter to a transition defined
by the same letter, which sends the string to another state. In each state, the
automaton acts in the same manner, performing a permutation on the term of
the string and then matching the next letter in the string to the appropriate
transition until the string enters one of the final states. We picture a finite state
automaton as a directed graph where each of the states is a vertex, and the
transitions between states are the edges. Take, for example, the simple adding
machine that can be defined using a finite state automaton. In this example, we
wish to add 1 to a given number. Our alphabet will be {0, 1} and we will express
the given number in binary form. The string will be the binary representation
in reverse order (eg. 6 is 110 in binary so the string will be (0,1,1)). Figure 3
shows the desired “adding machine” automaton. The permutation e is defined
by €(0) = 1,€e(1) = 0. Say we input the string (0, 1,1) for the number 6. Then
the automaton changes the 0 to 1 and sends the string (1,1, 1) to the final state,
which represents the number 7 = 6 + 1. Further inspection of this automaton
reveals that it does indeed add one to any input value.

We can also use an automaton to model the action of the automorphisms
a,b,c,d on verticies of T(®). This will provide another perspective from which
one can understand these recursively defined functions. Again, we let € flip a
0 to a 1 and vice versa. This will serve the same purpose as the flips that
a performs that were described above by a(iy,...,ix) = (i1,42,...,7x). Figure
4 shows the corresponding automaton that emulates the actions of these four
automorphisms on the vertex sequences. If we would like to apply v € {a, b, ¢, d}
to a given vertex v, we simply input v into the initial state labelled by + and the
output string will be the vertex «(v). In the given automaton, the permutations
to be performed in each state are shown in the circles depicting each state. The
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Figure 4: A finite state automaton for b, ¢, and d.

permutation 1 is just the indentity permutation, and e is as defined above.

3.2 Properties of the Grigorchuk Group

So far we have seen a great deal about how the generators of the Grigorchuk
group act on the tree T(?), but the group structure of I has not been mentioned.
How do the elements in the Grigorchuk group interact under the group opera-
tion? What are some of the relations between elements in the group? We have
seen one such relation so far, namely a? = 1, but this is by no means the only
relation. There exist similar identities for each of the generators as we will soon
see in Theorem 3.1. But before this proof, a few notational customs must be
stated. Recall that there exists an isomorphism 1 : Sty (1) — G x G and
that we have agreed to write, for example, b = (a,c) instead of ¢(b) = (a,c).
The restriction of ¥ to Str(1) is still a homomorphism (further properties of this
restricted function will be given in Theorem 3.2). Although they are different
functions, we will continue to write ¢ for the restriction v |g;.(1). Now how
could we write 1 (b%)? Well, 1(b?) = ¢(b)? = (a,c)?. Which shows that apply-
ing b twice applies (a,c) twice, and a acts on the left subtree while ¢ acts on
the right subtree. So overall, this is the same as applying a? to the left subtree
and ¢? to the right subtree. This shows that we should define multiplication of

elements in I' x T' coordinatewise. Thus 1(b%) = (a?, ¢?), or with our notational

convention, b* = (a?, c?).

Theorem 3.1: v? =c?> =d? = 1.

Proof: We know that the root of the tree is fixed under any automorphism,
so it will be fixed by b2, ¢, and d?. Since b, c,d € Str(1), b2, ¢?, and d? will leave



the first level fixed as well. Now we will proceed by induction on the level of
T, Suppose b?, ¢, and d? all fix the first k—1 levels of T(?). We have the iden-
tities: b2 = (a,¢)(a,c) = (a?,c?) = (1,¢2), ¢ = (a,d)(a,d) = (a?,d?) = (1,d?),
and d? = (1,b)(1,b) = (1,b%). Now, any vertex on the k' level containing a
0 in its sequence will be fixed since in the recursive definitions of b2, ¢2, and
d?, the left subtree is always acted upon by the identity automorphism, thus
fixing all the descendants thereafter, and any vertex in a left subtree must have
a zero somewhere in its representative sequence. Now consider a vertex z on
the k" level which contains no zeros in its sequence. Since b?, ¢,and d? all fix
the first k — 1 levels by the induction hypothesis, the only way for a vertex in
L) (k) to be moved is to switch with its sibling (where siblings are two verticies
that are children of the same vertex). But since the sibling of x must contain a
zero in its sequence it will remain fixed. Thus, z must also remain fixed under
b2, ¢?, and d? because it has nowhere to move. Therefore, the verticies on ev-
ery level will remain fixed, and the theorem follows. |

In addition to the results of Theorem 3.1, one can also establish the following
relations between the different generators of I', which will be stated without
proof:

bc=cb=d,bd=db=c,cd=dc=0b

These relations show that we could have generated I" with only three of a, b, c,
and d. In fact, a and any two of b, ¢, and d would suffice.

Due to the relations provided by Theorem 3.1, we can see that the conjugate
of v € {b,c,d} by a is a~'va, and a®> = 1 implies that a=! = a. Thus the
conjugate of v by a is aya. Also, if we had v = (v0,71), and we applied aya
to the tree T(?), this would be the same as interchanging the two subtrees TO(Q)

and T1(2)7 then applying the automorphism ~, and then switching the subtrees
back to their initial position. Thus, g acted on the right subtree, and ~; acted
on the left subtree. So the conjugate avya = (v1,70)-

We will now return to the subgroup Str(1) < I' and characterize all of its ele-
ments. Consider some g € Str(1). We have already stated that b, ¢,d € Str(1),
so we must have (b, c,d) < Str(1). Now we must ask if there may be any
words in Str(1) containing an a, since those are the only words not contained
in (b, c,d). Consider a word containing exactly one a. Then every term in the
word will fix the first level except the a, in which case it would permute the
verticies (0) and (1). So any word containing one a will not be in Stp(1). What
if we had two a’s in the word? Then one a would switch (0) and (1) while the
other a would switch them back to the original position. All of the other terms
in the word would fix the first level, so the word would appear in Str(1). We
can generalize this idea to classify all the elements in the stabilizer of the first
level. Any word containing an odd number of a’s will permute the two verticies
on the first level, and therefore not be in Str(1), whereas a word containing an
even number of a’s will switch the verticies on the first level an even number
of times and ultimately place (0) and (1) back into their initial positions, thus
fixing the first level and placing the word in Str(1). This shows that for a word



g €T, g € Str(1) if and only if the word g contains an even number of a’s. It
is now clear that we can generate Str(1) by b = (a,c), ¢ = (a,d), d = (1,b),
aba = (¢, a), aca = (d,a), and ada = (b, 1).

Theorem 3.2: The restricted homomorphism ¢ = (¢g, ¢1) : Str(1) — I'xT
is injective and both of ¢g, ¢1 : Str(1) — I are surjective.

Proof: The injectivitiy of the restricted v follows from the fact that the un-
restricted ¢ is injective. From the paragraph above, we see that 1(b) = (a,c),
¥(c) = (a,d), ¥(d) = (1,b), P(aba) = (c,a), P(aca) = (d,a), and Y (ada) = (b, 1)
so that:

a c do(aba) =c¢  ¢1(aba) =a
do(c)=a  dn(c)=d dolaca) =d  é1(aca) = a
1 b do(ada) =b  ¢1(ada) =1

Notice that a, b, ¢, and d are in the image of both ¢y and ¢1, so that, for any
word g € T', we can find words gj,g] € Str(1) such that ¢o(g)) = g = ¢1(9})
since ¢ and ¢ are homomorphisms. So we see that ¢y and ¢, surject onto I'. l

A direct consequence of Theorem 3.2 is that the first Grigorchuk group,
I', must be infinite. This is because we have found homomorphisms ¢g, ¢1
that map the proper subgroup Str(l) C I' onto I itself, and the only way
for this to happen is for I' to be infinite. Now we have shown that the first
Grigorchuk group posesses two of the three properties it must have to serve as
a counterexample to the Burnside problem (it is finitely generated and infinite).
We will now enter into the investigation of the third and final property: that I’
is periodic.

3.3 Subgroups of I' and the Dihedral Groups

As was mentioned earlier, the Grigorchuk group is an interesting mathematical
object for a number of reasons other than its relationship to the Burnside prob-
lem. One of these reasons concerns the various subgroups of the Grigorchuk
group - many of which have been studied in great detail. This section will be
devoted to showing the structure of a few of the finite subgroups of I for later
use in proving the periodicity of I'. We will show that there are three subgroups
of T isomorphic to certain dihedral groups. To review, the dihedral group of
order 2n, denoted hereafter by D,, is informally recognized as the group of
symmetries of a regular n sided polygon. For our purposes, it will be useful to
be familiar with some presentations of D,,.

Dn:<7‘,f|7“n:f2:1,f’/‘f:7‘71>:<$,y|l‘2:y2:(1‘y)n:1>

The first presentation may seem more intuitive geometrically if r is taken to be
a symmetry by rotation and f is taken to be a symmetry by reflection, or a flip.
Applying the rotation r n times rotates the figure completely and restores it



to its initial position, just as performing the flip twice would yield the identity.
The second presentation, although not being as intuitive as the first, will prove
itself to be quite useful in the following theorem.

Theorem 3.3: (i.) (a,d) = Dy. (ii.) (a,c) = Ds. (iii.) {a,b) = D1g.

Proof: We already know that a? = b? = ¢? = d? = 1, so all that remains to
be proven in each case is the relation (ay)™ =1 for each v € {b, ¢,d} with the
corresponding n. (i.) (ad)? = (ad)(ad) = (ada)d = (b 1)(1,b) = (b, b), and since
bQ:a(ad)‘l:l-SiHCC(ad)Q:()() (ada)d = (b,1)(1,b) = (b,b) =
(1,b)(b,1) = d(ada) = (da)?, (ad)* (da) = 1. (ii) (ac)® = (ac)(ac) =
(aca)c = (d,a)(a,d) = (da, ad). Also,( a)? = (c )( a) = c(aca) = (a,d)(d, )
(ad,da). With the result from (i.), we have (ac)® = (ca)® = 1. (z ) (ab)? =
(ab)(ab) = (aba)b = (¢, a)(a,c) = (ca,ac), so by (ii.), (ab)1® = 1. |

3.4 T as a 2-Group

The previous two properties that we have shown (that T' is finitely generated
and has infinite order) were relatively easy to prove. In order to complete the
verification that it is in fact a counterexample to Burnside’s problem, we must
now show that I' is periodic. In fact, we will see that a stronger statement holds,
that is, I' is a 2-group. The proof of this fact is not as simple as was the proof
of the infinitude of I'. These two properties did not rely too heavily upon our
particular choice of I and are rather common properties of groups. But the real
reason why the Grigorchuk group is so special is that it is periodic while also
being infinite and finitely generated. Thus, it may not come as a surprise that
this will be our most technical proof yet. Without further ado, here is our final
observation about the Grigorchuk group, thus completing the proof that it is
finitely generated, periodic, and infinite, and that it is a counterexample to the
Burside problem.

Theorem 3.4: I' is a 2-group. That is, Vg € I', I3n € Z, n > 0 such that
¢* =1

Proof: Given some g € I', we will let k be the length of the reduced word
representing g. If the length of g is £ = 0, then g is the empty word, so g = 1
is the identity automorphism. So, in this case, g20 = g = 1. If the length of
g is k =1, then g € {a,b,c,d}, so ¢2" = g2 = 1 by Theorem 3.1. In the case
that k = 2, there exist some g1,g2 € {a,b,c,d} such that g = g192. We may
assume that g, # go, for if they were then g = g7 = 1, and g would then be
a word of length 0. We may also assume that one of g; and ¢o is a, then by
Theorem 3.2, g'¢ = g24 =1 and the order of g must divide 16 = 2%, ie., ord(g)
must be a power of 2. This assumption is justified because if both g; # a and
g2 # a, then using the reductions bc = ¢b = d, ¢d = dc = b, and bd = db = ¢
from Theorem 3.3, we see that the word representing g would be of length 1
and g = g1g» would not have been reduced, contrary to our initial assumption.
So all words of length & < 2 have order a power of two. Now we will proceed by
induction on k, the length of g. Assume that & > 3 and that the theorem holds
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for all elements of I" represented by reduced words of length £ — 1 and shorter.
The proof now breaks into a number of cases. First, suppose that &k is odd. We
know that g can contain no two consecutive terms both of which are not equal
to a since we have the relations bc = ¢b = d, ¢d = dc = b, and bd = db = c.
Thus g must consist of an alternating sequence of a’s and elements from {b, ¢, d}.
Since k is odd, g must either begin and end with a or both the first and last
terms in the word are not a. In the first case, g = aujausa- - - auna, where the
u; € {b,c,d}. Then g is conjugate to aga which is a word of length k — 2. In the
second case, g = v1av2a - - - AUy, where the v; € {b,¢,d}. Then g is conjugate to
v1gv1, and this is a word of length £ — 1 or k — 2. Since any element in a group
has the same order as its conjugate, it follows that if k is odd, g has the same
order as a reduced word in I' of length k£ — 1 or smaller, and by the induction
hypothesis we are done.

Now, suppose that k is even, so that 3] € Z such that & = 2[. I claim
that g has the same order as a word of the form au; - - - au; with u; € {b, ¢, d}.
This is because we have two possibilities: 1. g = auy---aw; in which case
the claim follows automatically, and 2. ¢ = wia---ua in which case we may
obtain the desired word by replacing g by its conjugate u;gu;. Suppose first
that [ is even and set w = auy ---aw;. Then by the claim we see that w has
the same order as g. Then we can reassociate the terms of w as follows w =
auy - - au; = (aua)us - - - (auj—1a)u;. We see that we must have an even number
of a’s appearing in w, and from our classification of the elements of Str(1), we
see that w € Str(1). Then if we apply the isomorphism 1 to w we obtain:

Y(w) = P(aura)y(uz) - - - Pp(aw—1a)Y(uy) = (wo,wr)

for some wy,w; € I'. Notice that wy and w; can be represented by reduced
k

words of at most [ = 5 since in the above form they are of length I and we
may be able to make further reductions. So by the induction hypothesis, there
exist integers m,n > 0 such that the ord(wg) = 2™ and ord(w;) = 2". I claim
that the order of w must be the least common multiple of the orders of wy
and wy. Let lem(ord(wp), ord(wy)) = . Then ¢(w®) = Y(w)® = (wp,w1)” =
(w§,w?) = (1,1), and since ¢ is injective, w® = 1. Conversely, suppose that
ord(w) = y. Then w¥ =1 and (1,1) = (1) = Y(w¥) = Y(w)¥ = (wp,w1)¥ =
(wy,w!). Then wf =1 and w{ = 1. So, ord(wp) | y and ord(w;) | y. Since
x is the smallest number that both ord(wg) and ord(w;) divide, it must be
the case that < y. From the argument above, w® = 1, so we must have
y = x = lem(ord(wp), ord(w;)) since y = ord(w) is the smallest number such
that w¥ = 1. Thus, ord(g) = ord(w) = lem(ord(wp), ord(wy)) = lem(2™,2")
which is a power of 2.

Now, suppose | = % is odd. Again, we may assume that g has the same order
as the word w = auy - - - auy, but w € Str(1) because there are a total of I a’s
appearing in w, which is an odd number. Although we do not have w € Str(1),
we do have w? = (auy ---awy)(auy - --aw;) € Str(1). Now, after reassociation,
we obtain w? = (auia)us - - - u;_1 (aua)uy (ausa) - - - (au;_1a)u; and so,

P(w?) = Pplavia)ip(us) - - ¢(w-1)¥(awma)
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Y(u)Y(auga) - - P(aw—1a)p(u)
= (a’ ﬁ)

where «, 8 € T' and both are words of length at most k. There are now three
possible subcases:

(¢.) There is some j € {1,...,{} such that u; = d. Since both u; = d and its
conjugate au;a = ada appear in w?, we know that both ¥ (u;) = ¢(d) = (1,b)
and ¢ (auja) = ¥ (ada) = (b, 1) appear in ¢(w?) so that the reduced words o and
B will have length at most £ — 1. Then, by the induction hypothesis, 3m,n € Z
such that ord(«) = 2™ and ord(3) = 2™. Thus, by the argument given above,
ord(w?) is the least common multiple of 2" and 2", and so it is a power of two.
This shows that (w?)!em(™:2") = ¢21em(2™:2") and so ord(w) | 2 - lem(2™,2")
and is a power of two as well.

(i1.) There is some j € {1,...,l} such that u; = ¢. Since both u; and
its conjugate auja appear in w?, we have both ¥(u;) = ¥(c) = (a,d) and
Y(auja) = YPlaca) = (d,a) in P(w?). Then, either both a and 3 are words
containing d of length k£ and we may apply the result from (i.), or « and 3 have
reduced in length and we may apply the induction hypothesis directly to them
and repeat the least common multiple argument to show that ord(w) is a power
of two.

(#4i.) There is some j € {1, ...,1} such that u; = b. In this case, we have both
u; = b and auja = aba so that ¥(u;) = ¥(b) = (a,c) and Y(auja) = Y(aba) =
(¢,a) both appear in 1)(w?). Then, we either 1. apply the result from (ii.) if «
or f still have length k (since now they will both have ¢’s) or 2. « and /3 have
reduced in length and we may apply the induction hypothesis.

Thus, it has been shown in every case that the order of w is power of two, and
since ord(w) = ord(g), the theorem follows. [ |

4 A Brief History of the Burnside Problem

In the time that it took to find a counterexample to Burnside’s question,
which asks if all finitely generated, periodic groups are finite, a great interest in
a number of related problems arose. Upon failing to answer his own question,
Burnside turned to the simpler one: Is it the case that all finitely generated
groups of bounded exponent are finite? Here, a group G has finite exponent
if In € Z such that Vg € G, ¢" = 1. Having bounded exponent differs from
being periodic in that periodic means each element in the group has its own
integer power equal to the identity element, whereas bounded exponent means
that there exists a single integer such that every element raised to its power
is the identity element. This second question raised a great interest among
mathematicians, but the world had to wait until 1968 for Adian and Novikov
to provide the first major result, which was only partial. They showed that for
a bounded exponent of n > 4381 there always exist counterexamples. Later, in
1975, Adian proved a tighter bound, showing that there existed counterexamples
for all n > 665. The final restriction of this bound was recently proven by Sergei
V. Ivanov in 1992, which showed that the conjecture was false for n > 13.
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Meanwhile, there was another related problem being investigated by Burn-
side that evaded a definitive answer for more than 90 years. This problem
asks if you fix m,n € N are there are only finitely many groups generated by
m elements of bounded exponent n? Many of the results that were found re-
garding the previous question on finitely generated groups of bounded exponent
came from the investigation of this new problem, which is referred to as the Re-
stricted Burnside Problem. A number of small results concerning the Restricted
Burnside Problem surfaced throughout the twentieth century, but it wasn’t un-
til 1994 that a definitive answer was found. Efim Zelmanov was awarded the
Fields medal for his affirmative answer to the Restricted Burnside Problem,
showing that there are only finitely many groups generated by m elements and
of bounded exponent n. It may seem that all of Burnside’s questions have now
been resolved, thanks to counterexamples like the first Grigorchuk group and
Zelmanov’s solution of the restricted problem, but these few results are by no
means exhaustive. There are a number of other problems that have since been
investigated, most of which apply various finiteness restrictions to the Burnside
problems. In fact, there are still some related problems that remain unsolved
- for example: Do there exist infinite groups on 2 generators of bounded expo-
nent 52 - but we will again have to wait for future researchers of the Burnside
problem to provide the answers.
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