
The Ehrenfeucht Game and First Order Logic

Asa Levi

August 13, 2006

1 Introduction

This paper is written at an introductory level. The reader should be familiar
with some graph theory, but does not need to know anything about first order
logic. The goal of the paper is to prove that graphs with the same k-Ehrenfeucht
value also satisfy exactly the same first order sentences with quantifier depth k.
This paper was written with two major references, David Marker’s introduction
to model theory[1] and Joel Spencer’s book on random graphs[2]. If the reader
is unfamilar with first order logic an introduction is provided, but it is hardly
exhaustive, especially when discussing semantic implication.

1.1 Languages

First order logic is certainly similar to most readers. The three main types of
logic are propositional logic, first order logic and second order logic. All of them
share some common elements.

The definition of a language exists in all three forms.

Definition 1. A language L is a family of sets of symbols. These symbols fall
into three categories:

1. Function Symbols, F : A function f with an associated nf ∈ N, where f is
a function with arity nf , for each function in the language.

2. Relation Symbols, R: A relation R with an associated nR ∈ N, where R is
a relation with arity nR, for each relation in the language.

3. Constant Symbols, C: A symbol, ci, for each constant in the language.

A language can be abbreviated as L = (F ,R, C) = ({(f1, n1), ...}, {(R1, n1), ...}, {c1, c2, ...}).
This is also sometimes written L = (f,R, c) when the arities are clear.

Whenever you want to talk about something in mathematical logic you have
to begin by defining the language that you are working in.

Example 1 (Group Theory). In group theory you have the identity element, 0,
and a binary operation, +. These are the only two symbols necessary in group
theory, so the language of group theory is LGroup = (+,=,0).

1

Example 2 (Ring Theory). In ring theory we need the same symbols as group
theory, but also two additional ones for the second binary operation, ·, and the
identity for that operation, 1. So the language of ring theory is LRing({+, ·},=, {0, 1}).

One last example which will be important in this paper is the case of graph
theory.

Example 3 (Graph Theory). The two things that are universally required in
graph theory are the ability to tell whether two verticies are neighbors or not
and the ability to tell whether two verticies are the same or not. Thus the
language of graph theory is LGraph = (∅, {R,=}, ∅).

An important thing to realize about all of these languages is that at this
point they have no meaning. The meaning that we are associating with these
language is only one of many possible meanings. For instance, in LGroup we
simply have a binary operation symbol, binary relation symbol and a constant
symbol, there is nothing forcing this constant symbol to be the identity for
the binary operation. To do this you have to interpret the language in an
L-structure:

Definition 2. An L-structure, M, is an interpretation of the language given
by the following properties:

1. A universe, which is a set M .

2. A function fM : Mnf −→M ∀f ∈ F

3. A set RM ⊆MnR ∀R ∈ R

4. An element cM ∀c ∈ C

The L-structure is usually written M = (M,fM, RM, cM). Also from now on
I will leave out the empty sets in my notation unless they provide clarity.

We can give the meanings that we intended for the languages to have by
simply interpreting the symbols as what we would expect them to mean. For
instance you could define an LGroup-structure by (Z,+, 0) where + is the con-
ventional addition. Note also though that (N,+, 0) is an LGroup-structure, but
is not a group.

Next we can start saying things with our language. First it is necessary to
introduce two more things; the logical connectives are ∧ (and), ∨ (or) and ¬
(not), each has its regular logical meaning. These are all of the logical operators
in propositional logic, but in first order logic there are also ∃ and ∀. The rela-
tional symbol = is always included in our language and has its regular meaning.
In addition to constants, there is also an infinite set of variables v1, v2, . . . (or
any letter other than c.) These variables have no fixed value, unlike the con-
stants, and represent any member of the universe in an L-structure. The first
class of things that we can say are the terms.

Definition 3. The L-terms are the smallest set, T , satisfying these properties:

2

1. c ∈ T ∀c ∈ C

2. vi ∈ T ∀i ∈ N

3. f(t1, t2, . . . , tnf
) ∈ T ∀f ∈ F

So for example, v1 = v2 is a term in propositional and first order logic, while
∀v1(∃v2(v1 = v2)) is a term in first order logic, but not propositional. Note also
the parenthesis enclosing what the quantifier, in this case ∀, is quantifying over.
Now we move on to the next most elementary thing that we can say:

Definition 4. The atomic formulas, Atom(L) are the smallest set satisfying
the following properties:

1. t ∈ Atom(L)∀t ∈ L-terms

2. t1 = t2 ∈ Atom(L) ∀t1, t2 ∈ T

3. R(t1, t2, . . . , tnR
) ∈ Atom(L) ∀t1, . . . , tnR

∈ T ∀R ∈ R

Finally we get to the most complex things that can be said in first order
logic, the formulas. These will include all of the connectives and symbols that
have been introduced so far.

Definition 5. The formulas, Form(L) are the smallest set satisfying the fol-
lowing conditions:

1. ϕ ∈ Form(L) ∀ϕ ∈ Atom(L)

2. φ1 ∧ φ2 ∈ Form(L) ∀φ1, φ2 ∈ Form(L)

3. φ1 ∨ φ2 ∈ Form(L) ∀φ1, φ2 ∈ Form(L)

4. ¬φ ∈ Form(L) ∀φ ∈ Form(L)

5. ∀vi(φ) ∈ Form(L) ∀φ ∈ Form(L)

6. ∃vi(φ) ∈ Form(L) ∀φ ∈ Form(L)

An important thing to note about all of these definitions is that the sets
defined are inductive sets. Because of this the most common method of proof
on these sets is induction. And although I won’t be doing any inductive proofs
on the formulas here, they are an extremely important part of logic. Also it an
extremely important fact that all formulas are of finite length (where the length
is the number of symbols in the formula.)

Now we have one further distinction to make in the formulas that we have.
Here are two examples of formulas in Form(LGroup): φ1 : ∀v1(∃v2(v1 + v2 = 0))
φ2 : v1 + v2 = 0 Now, these might appear to be the same, but they might have
different truth values in an LGroup-structure. This is because in φ1 we know
what the possible values for v1 and v2 are, they are defined by the quantifiers,
while in φ2 nothing is known about them. When nothing is known about them

3

any values are possible. So if we look at a particular LGroup-structure like
(Z,+, 0) φ1 is always true, while φ2 depends on how v1 and v2 are treated. In
φ1 v1 and v2 are called bound variables, while in φ2 they are free. I will write
formulas with free variables as φ2(v1, v2) indicating that the two free variables
in the formula are v1 and v2.

Definition 6. Formulas that have no free variables are called sentences. I will
use σ to represent a sentence.

Definition 7. A theory is a set of sentences.

Now we can make some progress. Firstly we say M � φ if φ is always true
in M. In the previous example if we take φ2(1,2) then 1 + 2 6= 0 so M 2 φ2.
Also if Σ = {σ1, . . . , σn | σi ∈ Sent(L)} we say M � Σ if M � σi ∀σi ∈ Σ.

Finally we can define the LGroup-structures that are actually groups. First
we definte a theory ΣGroup, let:

σ1 = ∀vi(vi + 0 = vi)

σ2 = ∀vi(∃vj(vi + vj = 0))

σ3 = ∀vi(∀vj(∀vk((vi + vj) + vk = vi + (vj + vk))))

Now let ΣGroup = {σ1, σ2, σ3}. We have finally that for any LGroup-structure,
M, M � ΣGroup only when M is a group. The previous example of N =
(N,+, 0) fails here because N 2 σ2.

Note also that the theory is much less confining for graphs, as they have much
less structure. We only need M � ∀vi(¬(R(vi, vi))) for some LGraph-structure,
M.

One final definition is necessary for our main theorem:

Definition 8. We define the quantifier depth of a formula, depth(φ), recur-
sively:

1. depth(φ) = 0 if φ ∈ Atom(L)

2. depth(φ) = max(depth(ξ),depth(ψ)) if φ = ξ ∧ ψ

3. depth(φ) = max(depth(ξ),depth(ψ)) if φ = ξ ∨ ψ

4. depth(φ) = depth(ψ) if φ = ¬ψ

5. depth(φ) = 1 + depth(ψ) if φ = ∀ψ

6. depth(φ) = 1 + depth(ψ) if φ = ∃ψ

4

Example 4. We will calculate depth(φ) where φ = ∀x1(∃x2(¬(x1 = x2) ∧
∀x3((x1 = x3) ∨ (x2 = x3))))

depth(φ) = depth(∀x1(∃x2(¬(x1 = x2) ∧ ∀x3((x1 = x3) ∨ (x2 = x3)))))
= 1 + depth(∃x2(¬(x1 = x2) ∧ ∀x3((x1 = x3) ∨ (x2 = x3))))
= 1 + 1 + depth(¬(x1 = x2) ∧ ∀x3((x1 = x3) ∨ (x2 = x3)))
= 2 + max(depth(¬(x1 = x2)),depth(∀x3((x1 = x3) ∨ (x2 = x3))))
= 2 + max(depth(x1 = x2), 1 + depth((x1 = x3) ∨ (x2 = x3)))
= 2 + max(0, 1 + max(depth(x1 = x3),depth(x2 = x3)))
= 2 + max(0, 1 + max(0, 0))
= 2 + max(0, 1 + 0)
= 2 + 1
= 3

Exercise 1. Prove that any formula, φ, with quantifier depth k ≥ 1, ∃ψ ∈
Form(L) with quantifier depth k − 1 and one free variable, x, such that ∅ |=
(φ⇔ (∃xψ)).

2 The Ehrenfeucht Game

At first I will be considering a special case of the Ehrenfeucht Game, when it is
played on graphs. It can also be defined in a more general sense on models, and
later, in my main proofs I will be dealing with this. Throughout the section I
will be using the symbol ∼ as the adjacency relation in a graph.

2.1 Definition and Preliminaries

First we have to define what the Ehrenfeucht Game is. There are two players,
one is called the Spoiler and the other is called the Duplicator. To make things
clearer we will let the Spoiler be male and the Duplicator be female. There
are also two graphs, for now we will call them G1 and G2. These graphs have
disjoint verticies. Before the game is played it is known how many turns the
game will last, let us say k. This game is then called Ehr(G1, G2, k).

Now the game is ready to be played. On the first move the Spoiler chooses
a vertex from either graph and marks it with a 1. The Duplicator then chooses
a vertex in the other graph and also marks it with a 1. On the ith move the
Spoiler chooses either graph and marks a vertex i, and the Duplicator responds
by marking a vertex on the other graph i. For our purposes we will suppose
that the same vertex is not marked by the Spoiler twice because this is a waste
of a turn for him. After k turns the game stops. Now, who wins this game?
Let us call all of the marked verticies on G1 x1, x2, . . . , xk and all of the marked
verticies on G2 y1, y2, . . . , yk. Duplicator wins if xi ∼ xj ⇔ yi ∼ yj . Also the
equality relation must be preserved: xi = xj ⇔ yi = yj . We will say that the
Duplicator wins the game Ehr(G1, G2, k) if there is a strategy for her that wins.

5

This means that there for any sequence of moves of the Spoiler the Duplicator
has a response that leads to a win. Similarly we will say that the Spoiler wins
if there is no such sequence of moves.
Exercise 2. Suppose the Duplicator is winning the game Ehr(G1, G2, k) after
the ith turn. Show that if the Spoiler chooses a vertex that was previously
chosen the Duplicator has a response where she will still be winning.
Example 5 (Complete Graphs). Let Ki,Kj be the complete graphs on i and j
verticies respectively. Under which conditions will the Duplicator win Ehr(Ki,Kj , k)?
First suppose i 6= j and k > min(i, j). Without loss of generality suppose i > j.
Now all the spoiler has to do is mark a vertex on the first turn and then continue
marking verticies until the j + 1st turn. The Duplicator will have to respond
with some new vertex, but she has none left, since she has already chosen j
distinct verticies. Now she will have to choose some new vertex, but she has
none remaining. So her choice will overlap with some vertex, lets say yi = yj+1.
Now we have xi 6= xj+1 but yi = yj+1. So the Spoiler wins.

Now suppose k ≤ min(i, j). Here it is easy to see that the Duplicator will
win. The Spoiler must choose a new vertex every turn, and the Duplicator
simply does the same thing. It does not matter if the Spoiler switches graphs,
the Duplicator will still just choose an unmarked vertex on the other graph.
Since both graphs have more verticies than the number of turns, the Duplicator
will win. It is clear that this is a win for the Duplicator, because every xi will
be adjacent to every xj as long as i 6= j (since they are playing on complete
graphs) and the same thing holds on G2.

In the above example we used the inability of the Duplicator to maintain
equality, but we also could have used the fact that xi ∼ xj+1 but yi � yj+1.
Exercise 3. Find an example where the Spoiler must use the inability of the
Duplicator to maintain equality to win.

Also in the above example the Spoiler can win in another way, he could have
started on the smaller graph and then switched after running out of vertices.
This would have produced the same result here, but there are many cases when
switching graphs is the easiest way to produce a victory for the Spoiler.
Example 6. Suppose we have two graphs, G1 and G2. Let G1 have at least
one isolated point and G2 have none. Then the Spoiler wins Ehr(G1, G2, k)
∀k ≥ 2. The Spoiler chooses the isolated point in G1 on his first turn, the
Duplicator responds with any vertex in G2. Since G2 has no isolated points y1
must have a neighbor, the Spoiler chooses that neighbor. Now the Duplicator
cannot respond with a neighbor of x1 since it is an isolated point. Thus the
Spoiler wins.

One other important point is that if G1 and G2 are isomorphic then the
Duplicator will always win Ehr(G1, G2, k) simply by following the action of the
isomorphism on the point that the Spoiler marks.

One more thing to consider is the subgraphs of a given graph:
Exercise 4. Consider Ehr(G1, G2, k) where H is a subgraph of G1 on less than
k verticies that does not appear in G2. Show that the Spoiler wins this game.

6

Finally we will consider the seemingly simple case of paths. We consider the
game Ehr(Pn, Pm, k), where Pr is the path of length r. First, it is clear that
if m = n the duplicator will win this game for all k, since the graphs will be
isomorphic.

Theorem 1. If n ≤ 2k + 1 and n < m then Spoiler wins Ehr(Pn, Pm, k + 2).

Proof. We will document a winning strategy for the Spoiler. He will make all
of his moves in Pn. The first thing to note is that if the Spoiler marks an
endpoint the Duplicator must also mark an endpoint. This is clear, because
the endpoints are the only verticies with only one neighbor. Thus if the Spoiler
marks an endpoint and the Duplicator responds with a non-endpoint then the
Spoiler just needs to mark both of the neighbors of the point that the Duplicator
marked and he will win.

On his first two moves the Spoiler chooses the two endpoints of Pn. The
Duplicator must respond with the endpoints of Pm by our previous observation.
Now the Spoiler chooses the midpoint of Pn. Note the distances between the
points on Pn: |x1 − x3| ≤ 2k, |x3 − x2| ≤ 2k. For any point that the Duplicator
marks either |y1 − y3| > 2k or |y3 − y2| > 2k.

Now we begin our induction step: Suppose that after the sth move ∃i such
that |xi − xk+2−s| ≤ 2s and |yi − ys| > 2s. We want to show that Spoiler can
mark a point on the s− 1st turn such that the induction hypothesis also holds
substuting in s− 1 for s.

This follows the same logic as before. Just choose xk+2−(s−1) as the mid-
point between xi and xk+2−s. Note that since |xi − xk+2−s| ≤ 2s and we chose
a point half way between these two points we now have |xi − xk+2−(s−1)| ≤
2s−1 and |xk+2−(s−1) − xk+2−s| ≤ 2s−1. Now we have what we wanted on the
Spoiler’s side, but we need to show that the Duplicator cannot mess things up.

First suppose the Duplicator chooses a point outside of the interval (yi, ys).
Then either |ys−1 − ys| > |yi − ys| > 2s > 2s−1 or |ys−1 − ys| > |yi − ys| > 2s >
2s−1, which is exactly what we wanted.

Now suppose the Duplicator marks a point inside the interval. Then, as in
the case where there were k turns remaining, we know that

2s < |xi − xk+2−s|
= |xi − xk+2−(s−1) + xk+2−(s−1) − xk+2−s|
≤ |xi − xk+2−(s−1)|+ |xk+2−(s−1) − xk+2−s| (by the Triangle Inequality)

Thus either |xi − xk+2−(s−1)| > 2s−1 or |xk+2−(s−1) − xk+2−s| > 2s−1, which
again is what we wanted.

So the induction hypothesis holds for all s. When s = 0 we have ∃i such
that |xi − xk+2| ≤ 20 = 1 and |yi − yk+2| > 1. Thus the Spoiler wins, because
xi ∼ xk+2 and yi � yk+2.

Now we show that the Duplicator wins in another case:

Theorem 2. If m,n > 2k+1 + 1 then the Duplicator wins Ehr(Pm, Pn, k + 2).

7

Proof. In this proof the Duplicator will be using an Inside-Outside strategy.
Basically the Duplicator is only concerned about moves that the Spoiler makes
that are close enough for the Spoiler to exploit. If they are not close enough the
Duplicator just also makes a move that is not close enough on the other graph.
The complicated part of this proof is figuring out exactly what close enough
means in this case. The proof proceeds as follows.

Call a position equivalent if there are i turns remaining and ∀j, k ≤ i either |xj−
xk| = |yj −yk| or |xj −xk|, |yj −yk| > 2i. Here the two cases are the inside case
and the outside case respectively. The notion of closeness that we are using is
that two points are close with s moves remaining if they are 2k+2−s or less apart.
This distance is chosen because it is the largest distance that the Spoiler can
exploit with his strategy in the last turn. Thus if they are inside this distance
the Duplicator must match the distance between the points exactly.

On the first two moves we will assume that the Spoiler marks the endpoints,
because these two moves are necessarily responded to by the endpoints of the
Duplicator’s graph, and if he never marks them then it will not change the rest
of the strategy, you can just consider the game without the endpoints marked
starting after the second move.

Suppose that with s + 1 moves remaining the Duplicator has maintained
equivalent positions. Now consider the k + 2 − sth move of the Spoiler. There
are only two possibilities, that the move is Inside or Outside.

First suppose that the Spoiler moves inside. That means that ∃i such that
|xi − xk+2−s| ≤ 2s−1. So now the Duplicator moves in the same way and
marks yk+2−s such that it is on the same side of the closest endpoint relative
to yi and also |yi − yk+2−s| = |xi − xk+2−s|. Now suppose ∃j 6= i such that
xj and xk+2−s are close (i.e. |xj − xk+2−s| ≤ 2s−1|.) Then we have that
|xj − xk+2−s| ≤ 2s−1| and |xi − xk+2−s| ≤ 2s−1 so

2s = 2(2s−1)
= 2s−1 + 2s−1

≥ |xi − xk+2−s|+ |xk+2−s − xj |
≥ |xi − xk+2−s + xk+2−s − xj |
= |xi − xj |

So we know that xi and xj were close in the last stage. Thus |xi−xj | = |yi−yj |
and we marked yk+2−s so that |yi − yk+2−s| = |xi − xk+2−s|. Now putting
these together we have |yj − yk+2−s| = |xj − xk+2−s| and thus the positions
are still equivalent. Note also here that the imporance of maintaining distance
like this is that at the last step where we will have that two points are close
if they are 20 apart, i.e. if they are neighbors. Thus if we are also able to
maintain equivalence on points that the Spoiler marks that are Outside we will
have shown that two points if two points are neighbors on one graph then they
are neighbors on the other graph. Also note that the strategy does not assume
that the Spoiler always marks his point in G1, he can switch the graph he is

8

marking in and the proof still holds so far.
Now we need to consider the strategy for responding to a point that the

Spoiler marks Outside. But this is easy, the Duplicator just also needs to choose
a point that is Outside. The only thing that we have to do is show that it is
always possible for the Duplicator to choose an outside point. Suppose that the
positions are equivalent with k turns remaining. So far the only points to be
marked will be the endpoints, and our notion of closeness is if the marked point
is within 2k−1 of a marked point. Thus there are 2(2k−1 + 1) = 2k + 2 < m,n
possible Inside points. Since this is less than m and n we know that there will be
an Outside point for the Duplicator to mark. Now consider the next move. We
will have to worry about more than just the endpoints, there will be one point
somewhere on the path, but also our notion of closeness will have changed. So
now we have that there are less than 2(2k−2 + 1) + 2k−1 = 2k + 2 inside points
again. In general we have to count the two endpoints (which exclude an area of
possible outside points only half of a different point) and all of the other points.
So in general with s turns remaining there are 2(2s−1 + 1) + (k − s)(2s + 1)
inside points. Now we only need to show that this is always less than 2k+1 + 1
and then we will know that there are always points to choose on the outside.
Below in the first line we make use of the fact that ∀n ∈ N n < 2n.

2(2s−1 + 1) + (k − s)(2s + 1) ≤ 2s + 2 + 2k−s(2s + 1)
= 2s + 2 + 2k + 2k−s

< 2k + 2k + 2 ∀x, y > 0 2x + 2y < 2x+y

= 2k+1 + 2

Thus since m,n > 2k+1 + 1 we know that there is at least one point that can
be chosen that is outside at any point (and probably many more, as a generous
approximation was made.)

Now we are done, since we have shown that if equivalence can be maintained
until the sth turn it can also be maintained on the s+ 1st turn.

Exercise 5. Prove that if m,n > 2k+1 + 1 the Duplicator wins Ehr(Cm, Cn, k).
(Where Ci is the cycle of length i.)

2.2 The Eherenfeucht Game On Models

Now we move to a more generalized version of the Eherenfeucht game. So
far we have been only playing the game on two graphs, but the game can be
generalized if we consider two models of the same language. The game is still
the same as before, just with changes that force the duplicator to maintain all
of the structure that can be expressed in a given language.

So when dealing with models at the end of the game the Duplicator wins if
these conditions are met:

Let M,N be L-structures. Let x1, . . . , xk and y1, . . . , yk be the elements of
the universe selected in M and N respectively.

1. R(xi1 , . . . , xinR
) ⇔ R(yi1 , . . . , yinR

) ∀R ∈ R, 1 ≤ i1, . . . , inR
≤ k

9

2. f(xi1 , . . . , xinf
) = xinf +1 ⇔ f(yi1 , . . . , yinf

) = yinf +1 ∀f ∈ F , 1 ≤ i1, . . . , inf
, inf +1 ≤

k

3. xi = c⇔ yi = c ∀c ∈ C, 1 ≤ i ≤ k

2.2.1 The k-Ehrenfeucht Value

We have looked at a few specific cases of the Ehrenfeucht game, but it can also
be thought of in much more general terms. The first thing to do is to create
classes of L-structures, where playing the Ehrenfeucht game with k turns on any
two L-structures from the same class will be a win for the Duplicator. You may
wonder why we are looking for wins for the Duplicator and not for the Spoiler.
It is because when the Duplicator wins there is some relationship between the
two structures, and it is exploring this relationship with first order logic that
will be our main theorem.

The first thing that we need to do is to define an equivalence relation that
will break the L-structures into disjoint classes. We do this as follows:

Definition 9. For two L-structures, M, N we say that M≡k N if the Dupli-
cator wins Ehr(M,N , k). We say that (M, x1, . . . , xs) ≡k (N , y1, . . . , ys) if the
Duplicator wins Ehr(M,N , k), with x1, . . . , xs, y1, . . . , ys already marked.

Note that this definition specifies the amount of turns that the game will be
played. Also it is not completely obvious that this is an equivalence relation. Of
course we know the relation is reflexive, since any graph is isomorphic to itself.
Also it is clear that the relation is symmetric, since the order that the graphs
are listed in has no effect on the game.

Exercise 6. Prove that ≡k is transitive.

We must also have some way to refer to the equivalence classes, here this is
done by defining the notion of k-Ehrenfeucht values.

Definition 10. The set of different equivalence values on graphs with no marked
verticies for any k is called Ehrv[k]. The set of different equivalence values on
graphs with s marked verticies for any k is called Ehrv[k, s].

This equivalence relation completely partitions the set of L-structures. This
is because for every L-structure, M, M ≡k M, so every L-structure has a
k-Ehrenfeucht value.

Example 7. We will examine the case of LGraph. Let σ1 = ∀x(¬(x ∼ x)). We
will look at k = 2 and all LGraph-structures, M, where M |= σ1. We impose
this limitation on the models because the adjacency relation in graph theory
can not be reflexive. What are the 2-Ehrenfeucht values in this case?

1. The graph on 0 verticies.

2. The graph on 1 vertex.

3. A complete graph with 2 or more verticies.

10

4. An empty graph with 2 or more verticies.

5. All verticies focal or mixed, at least one of each.

6. All verticies isolated or mixed, at least one of each.

7. All verticies mixed.

It is easy to see that the Spoiler can win in a graph from one class is paired
with a graph from another class. For example, if a complete graph and an empty
graph are paired the Spoiler can either choose two neighbors in the complete
graph or choose any vertex in the empty graph and then choose a neighbor of
the point that the Duplicator chose in the complete graph.

Also all graphs must fall into one of these categories, so this is a complete
characterization of the 2-Ehrenfeucht values in this case.

In this case there are only 7 Ehrenfeucht values, but will there always even
be finitely many? In most cases there will be infinitely many L-structures, so it
is not clear that for any k there are finitely many k-Ehrenfeucht values.

Theorem 3. For any finite language L and any finite k, Ehrv[k] and Ehrv[k, s]
are finite.

Proof. We will prove this by induction. First note that Ehrv[k] is the same
as Ehrv[k, 0]. We will do induction on s, starting from the value of s = k.
When s = k all of the points are already marked. So in graph theory this
simply becomes the question of how many graphs there are on k verticies. This
number would not necessarily be the amount of distinct k-Ehrenfeucht values,
but it would have to be an upper bound, as any k points that are chosen from
a graph form a subgraph on k points.

Translating this notion to the more general setting of L-structures we must
simply count all of the possible L-structures on k points. Then if any k points
are chosen from any L-structure it will be guaranteed to be one of the structures
we are counting. We can break this up by the different kinds of structure that
are possible:

1. First look at the possible structure imposed by the relations:
We know our language is finite, so we have R = R1, . . . , Rn. Now how
many different relations are possible on k points? Well, for a relation R of
arity nR there are knR points in its domain. In a relation each point must
either hold or not hold, so there are 2knR different values of that relation
on k points. So we have a total of µR =

∏
R∈R 2knR possible relations.

2. Now we have to do the same thing for functions: The structure imposed by
our function is if f(x1, . . . , xnf

) = xi. Now for any f we have k possibilities
for each coordinate of the input and k possibilites for the output. So for
any function we have an upper bound of knf +1 possible implementations.
Then for all functions we have an upper bound of µF =

∏
f∈F k

nf +1.

11

3. Finally we have to find an upper bound for the constants: We know how
many total constants there are, so we just need to count the different
ways that they could appear in our k chosen points. Let n = |C|. For all
0 ≤ i ≤ k we have k!

(
n
i

)
ways that the constants can appear. This is a

total of µC =
∏k

i=0 k!
(
n
i

)
.

Now since all of these events are independent of one another we have an upper
bound of µRµFµC possible L-structures on k points. This is an upper bound for
the amount of k-Ehrenfeucht values with k marked points because we know that
each L-structure will for the Duplicator when paired with itself, so maximally
there are µRµFµC k-Ehrenfeucht values of size one.

Suppose that Ehrv[k, s + 1] is finite. We need to show that Ehrv[k, s] is
finite. Well, now we can take some α ∈ Ehrv[k, s]. We will relate α to a subset
of Ehrv[k, s+ 1]. Let (x1, . . . , xs) ∈ α. Now let χx1,...,xs = {β | (x1, . . . , xs, x) ∈
β where x ranges over all possible values}. Suppose that for some y1, . . . , ys,
χx1,...,xs

= χy1,...,ys
. Then ∀x∃y((x1, . . . , xs, x) ≡k (y1, . . . , ys, y)) and similarly

∀y∃x((x1, . . . , xs, x) ≡k (y1, . . . , ys, y)). Why? This is because they have exactly
the same value for χ, so the choice of any x value puts (x1, . . . , xs, x) in some
equivalence class for Ehrv[k, s+1], but we know that there is a choice for y which
will put (y1, . . . , ys, y) into that same class, because they have the same value
for χ. Thus we have that (x1, . . . , xs) ≡k (y1, . . . , ys) and that (y1, . . . , ys) ∈ α.
It is easy to see that if (x1, . . . , xk) ≡k (y1, . . . , yk) then χx1,...,xk

= χy1,...,yk
.

We have shown that if two s-tuples have the same value for χ then they are
in the same equivalence class in Ehrv[k, s]. This means that there is an upper-
bound of |Ehrv[k, s]| given by all subsets of Ehrv[k, s+ 1]. Thus |Ehrv[k, s]| <
2|Ehrv[k,s+1]|. Now our induction step is complete, because we know that |Ehrv[k, s]|
is finite.

Finally, by induction we have our result. Our upper bound is very large, but
it is finite which is what we require.

3 The Connection Between the Ehrenfeucht Game
and First Order Logic

Now we can prove the main theorem of this paper. The connection between first
order logic and the Ehrenfeucht game has already appeared partially. The Du-
plicator only wins the Ehrenfeucht game if the structure of the L-structures on
the marked points is the same. This structure can be expressed using first order
logic in the language, and thus you would expect some relationship between the
sentences that are true on the L-structures of a particular Ehrenfeucht value.

Theorem 4. Let L be a finite language and M,N be L-structures.

1. (M, x1, . . . , xs) ≡k (N , y1, . . . , ys) if an only if all first order formulas
of quantifer depth k − s with s free variables have the same truth value
on M and N when the free varibles are given the values x1, . . . , xs and
y1, . . . , ys respectively.

12

2. ∀α ∈ Ehrv[k, s] there is a formula of quantifier depth k − s with s free
variables, A(v1, . . . , vs) such that for any L-structure, M, with marked
verticies x1, . . . , xs M has the k-Ehrenfeucht value α if and only if M |=
A(x1, . . . , xs).

Proof. We will begin by proving the second statement by induction. First note
that if k = s the expressible structure of the L-structure is completely deter-
mined. This is because we have k marked points in a L-structure, M, so we
can actually just list the conditions that are required of a different L-structure,
N , with k marked points so that they have the same k-Ehrenfeucht value. To
do this we just form a first order sentence with k free variables that lists all
of the structure in M. This will be exactly the right sentence since two L-
structures must have exactly the same structure on their k marked points for
the Duplicator to win.

1. The structure that we need to preserve for relations is just whether they
hold or not on a given tuple of our k points. Define the following two
sentences:

σR =
∧

1≤i1,...,inR
≤k,R∈R,M|=R(xi1 ,...,xinR

)

R(vi1 , . . . , vinR
)

σ¬R =
∧

1≤i1,...,inR
≤k,R∈R,M|=¬R(xi1 ,...,xinR

)

¬R(vi1 , . . . , vinR
)

Then if we let τR = σR ∧ σ¬R we have captured the structure of the
relations on the k marked points of M.

2. For functions we need to make sure that they are the same when the
range and domain are restricted to our k points. We must again define a
sentence:

τF =
∧

1≤i1,...,inf
,inf +1≤k,f∈F,M|=f(xi1 ,...,xinf

)=xinf +1

f(vi1 , . . . , vinf
) = vinf +1

3. Finally we have to deal with constants. The only structure imposed by
constants is if xi = cj for some i and j. We have to note all of these
occurances. Let τC =

∧
1≤i≤k,1≤j≤|C|,M|=xi=cj

vi = cj .

Let τ = τR ∧ τF ∧ τC . Now we have accounted for all of the possible types
of structure on the k marked points. It is important to note that since our
language is finite τ must be of finite length. So we have a formula of quantifer
depth k− k = 0 with k free variables where for any L-structures with k marked
points, (N , y1, . . . , yk) N |= σ(y1, . . . , yk) exactly when (M, x1, . . . , xk) ≡k

(N , y1, . . . , yk).
Now we have proven the base case of our induction. So assume that for every

β ∈ Ehrv[k, s+1] there is a first order sentence of quantifier depth k−s−1 with

13

s+1 free variables such that (M, x1, . . . , xs) ∈ β exactly when (M, x1, . . . , xs) ∈
β.

We use a similar method to the one used in proving that Ehrv[k] is finite.
Again the key fact is that the subsets of Ehrv[k, s + 1] correspond to values of
Ehrv[k, s]. We begin by taking any α ∈ Ehrv[k, s]. Now take some (x1, . . . , xs) ∈
α. Now for every β ∈ Ehrv[k, s + 1] we know by induction that there is a first
order formula with quantifier depth k − s − 1 and s + 1 free variables that is
true only for its elements, call this formula Aβ . Now we can write a formula
∃x(Aβ(x1, . . . , xs, x)). The truth value of this formula is determined by the
choice of β. Let Yes[α] be the set of β on which this sentence is true, and No[α]
be the set of β on which it is false. Then we simply say that Aα(x1, . . . , xs) =∧

β∈Yes[α] ∃x(Aβ(x1, . . . , xs, x)) ∧
∧

β∈No[α] ¬∃x(Aβ(x1, . . . , xs, x)).
This sentence determines the Ehrenfeucht value of any L-structure with s

marked points that satisfies it, because it associates it with other L-structures
with exactly the same set of Yes[α] and No[α]. Thus if any new point is marked
by the Spoiler for any two structures satisfying this sentence there must be a
response for the Duplicator by the same logic as in the proof for finiteness of
Ehr[k, s]. So the second part is proven.

Now to prove the first part. Assume that we have two L-structures, (M, x1, . . . , xs), (N , y1, . . . , ys)
such that for all first order sentences, φ with s free variables and quantifier depth
k − s we have (M |= φ(x1, . . . , xs)) ⇔ (N |= φ(y1, . . . , ys)). They must satisfy
some Aα because the Ehrenfeucht values form a partition of the L-structures
with s marked verticies. Thus since they satisfy the same sentences, they must
satisfy the same Aα and have the same Ehrenfeucht value.

Finally suppose that (M, x1, . . . , xs) ≡k (N , y1, . . . , ys). We will prove by
induction that all first order sentences with quantifier depth k − s and s free
variables have the same truth value. First we do the case where s = k. In this
case we just have boolean combinations of the atomic formulas. But we know
that the atomic formulas with k free variables all have the same truth value
on M and N when x1, . . . , xk, y1, . . . , yk are used as the free variables, because
this is precisely the condition required for them to have the same k-Ehrenfeucht
value. Thus they have the same truth value on any formula with quantifier
depth 0 and k free variables.

Now suppose that the statement is true for s + 1. Let φ be any formula
with quantifier depth k − s and s free variables. Then by Exercise 1 there
is a formula ψ with quantifier depth k − s − 1 and s + 1 free variables such
that ∅ |= (φ ⇔ (∃x(ψ))). By the induction assumption we know that the
truth value of ψ is determined by the Ehrenfeucht value of (M, x1, . . . , xs) and
(N , x1, . . . , xs). Thus the truth value of ∃x(ψ) is determined, and they must be
the same on both structures.

Corollary 1. Let L be a finite language and M,N be L-structures.

1. M ≡k N if an only if all first order sentences have the same truth value
on M and N .

14

2. ∀α ∈ Ehrv[k] there is a first order sentence, σ, such that for any L-
structure, M, M has the k-Ehrenfeucht value α if and only if M |= σ.

4 Applications

Now we can look at some applications of the last theorem. The first thing
to note is that this provides a way for us to prove that some property of a
model is not expressable in first order logic. We will move back to graph theory
for some examples. Recall the result that for any fixed k ∈ N ∃n such that
∀i, j ≥ n,Ci ≡k Cj

Example 8 (Conectedness). A slight modification of the proof for cycles can
be made to prove that for any fixed k ∈ N ∃n such that ∀i, j,m ≥ n,Ci ≡k

(Cj ∪ Cm). Now we have two graphs in the same equivalence class, so all first
order sentences must have the same truth value on them. But Ci is connected
while Cj ∪ Cm (the graph with two disjoint cycles of length j and m) is not.
Thus connectedness cannot be expressible as a first order sentence.

Exercise 7 (2-Colorability). Show that 2-Colorability is also not a first order
property.

References

[1] David Marker Model Theory: An Introduction, chapters 1–2, pp. 1–69, Springer,
New York, New York, 2002.

[2] Joel Spencer The Strange Logic of Random Graphs, chapters 0–3, pp. 1–65,
Springer, Berlin, Germany, 2001.

15

