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Physics has always served as an inspiration for mathematical growth, while mathematics

has always allowed for a simpler and deeper understanding of physics. Today is no different.

Two fundimental branches of physics: field theory and classical mechanics have been rigorously

formalized in the mathematical branches of fiber bundle theory and symplectic topology. This

paper aims to desrcibe these physical processes within the framework of these mathematical

disciplines.

1. Field Theory and Bundle Theory

The behavior of a physical field is completely determined by two criteria:

(1) The geometry of the space in which the field exists

(2) The action of the field, which it minimizes.

By knowing both the geometry and the action of a field, one may find the equations of motion

of the field, and hence know all there is to know about this field. [Note: In this paper, we only

discuss non-interacting fields. We assume space is filled with our field and void of all else.] In

the following, we will describe the geometry of vector bundles and how this determines physical

properties of a field. We shall not discuss action here, however this notion is of great significance,

and leads into Gauge Theory [for more on Gauge Theory, see [2]].

Let M be a smooth manifold. A scalar field φ on M is a physically measurable property. Our

measurements take values in a field k, (R or C). Hence a scalar field is a map φ : M → k. For

example, the surface tempurature of the earth is a scalar field T : S2 → R. Another example is

that of a quantum mechanical state function ψ that satisfies Schroedinger’s equation, in which

case ψ : M → C. If φ1, φ2, · · · , φn are n noninteracting scalar fields on M with values in F ,

then an n-scalar field Φ = (φ1, φ2, · · · , φn) is a map

Φ : M → kn
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We shall call the pair (M,Φ) a physical system. Associated to any physical system is a potential

field A, (also known as a gauge field) which in some sense measures what it means for Φ to

change from point to point in M . In so doing, A is realized as a map

A : TM → gln(k)

Two example of gauge fields are the electric and gravitational potentials. Now the difference in

potential between two points gives rise to a force. Thus, if D is the apporopriate differential

operator, the field strength F associated to Φ is given by DA = F . It should be noted that the

gauge potential A is additional information one must specify, it does not follow from (M,Φ).

However, upon choosing a specific (M,Φ, A) the geometry of system determines the field strength

F .

Definition 1.1. Let E, M, and F be smooth manifolds, and G a Lie group acting continuously

and faithfully on F. A smooth fiber bundle ξ over the base space M with total space E, fiber

F, and structure group G is a surjective smooth map π : M → B called the bundle projection,

together with a maximal bundle atlas A = {(π−1(Uα),Φα}α∈A satisfying

(1) {Uα}α∈A is an open cover of M .

(2) Φα = (π, φα) where the map φα : π−1(Uα) → F is smooth and

(π, φα) : π−1(Uα) → Uα × F ; (π, φα)(p) = (π(p), φα(p))

is a diffeomorphism

(3) Given α, β ∈ A, there is a smooth map fαβ : Uα ∩Uβ → G such that, given p ∈ Uα ∩Uβ,

fαβ(p) : F → F ; fαβ(p) = φβ ◦ (φα|π−1(p))
−1

or equivalenty

φβ |π−1(Uα∩Uβ) = (fαβ ◦ π) · φα|π−1(Uα∩Uβ).

Definition 1.2. A vector bundle of dimension n is a fiber bundle ξ = (E,M, V, π) with fiber an

n-dimensional vector space V and structure group a subgroup of GL(V ). A principle G-bundle

is a fiber bundle ξ = (E,M,G, π) whose fiber and structure group is G which acts freely and

G-equivariently on E.
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Given the above motivation, we can see that if M is spacetime, and Φ is an n-scalar field on

M with values in V , then this physical system is realized by an n-dimensional vector bundle

ξ = (E,M, V, π).

Definition 1.3. A smooth section of a fiber bundle is a smooth map s : M → E such that

π ◦ s = idM . We denote the space of smooth sections as Ω0(ξ). A vector field on M is a smooth

section of the tangent bundle τM .

A specific configuration of Φ on M is simply a section into E. Given two vector bundles

ξ1 ≡ π1 : E1 →M and ξ2 ≡ π2 : E2 →M , we may define new vector bundles over M fiberwise:

(1) ξ1 ⊕ ξ2

(2) ξ1 ⊗ ξ2

(3) ξ∗1
(4) Homk(ξ1, ξ2)

One can check that the total spaces are topologized in the obvious way.

Definition 1.4. Let ξ = (E,M, V, π) be a vector bundle. A Euclidian metric on ξ is a smooth

section s into the bundle (ξ⊗ξ)∗. If ξ is the tangent bundle τ , then this is a Riemannian metric.

Theorem 1.5. ξ ≡ π : E →M a vector bundle. Then ξ admits a Euclidian metric.

Proof: By assumption, M is a smooth manifold, so we may pick a locally finite atlas

A ≡ {Uα, φα}α∈A which is also a local trivialization of ξ. Let {pα}α∈A be a partition of unity

subordinate to {Uα}α∈A. Let gα be the euclidean metric on φα(Uα) ⊂ Rn. Then we pull back

along φα ◦ π to get a (0, 2)-tensor field (φα ◦ π)∗gα on π−1(Uα). Define the map

s : M → (E ⊗ E)∗ s(x) =
∑
α∈A

pα(x)(φα ◦ π)∗gα

It immediately follows that s is our desired section.

Corollary 1.6. Every smooth manifold admits a Riemannian metric.

Definition 1.7. A Riemannian manifold is a pair (M, g) where M is a smooth manifold and g

is a Riemannian metric on M .
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A given manifold M may admit multiple Riemannian metrics, and each would correspond to

a different Riemannian manifold. While the standard metric g0 on R4 is given by

g0(v,w) = v1w1 + v2w2 + v3w3 + v4w4

physicists usually work with the Minkowski metric η on R4, which is given by

η(v,w) = −v1w1 + v2w2 + v3w3 + v4w4

Although this topic will not be pursued in this paper, there is much to be said about Riemannian

manifolds and their relationships with physics.

Let (M,Φ) be a physical system. Given p, q ∈M,p 6= q, it is natural to ask how one compares

Φ(p) and Φ(q)? To say that two fibers are isomorphic is certainly not the same as saying that

two fibers are equal. So physically and mathematically, we just do not have any reasonable way

to resolve this issue as is. This motivates the notion of a connection. There are three equivalent

ways to define a connection on vector bundles, and in this treatment, we begin with the most

geometric and derive the others.

Consider the vector bundle ξ = (E,M, V, π). Pick some point v ∈ E. Now, sitting at v there

are just two directions to go: either along the fiber, or across into a different fiber. Moving

within the fiber changes the vector, so by only moving across fibers, the value of the original

vector is retained. To be a bit more precise, π induces the map π∗ : TE → TM of tangent

bundles, so π∗v : TvE → Tπ(v)M is linear. A vector whose image is zero corresponds to motion

vertically along the fiber. Let Vv = ker(π∗v) and Hv =Im(π∗v). Then TvE ∼= Hv ⊕ Vv, where

Hv represents horizontal movement across fibers.

Definition 1.8. A k-dimensional distribution ∆ on M is a smooth field of k-dimensional sub-

spaces of TM .

Definition 1.9. A connection on ξ is a distribution H satisfying

(1) For each v ∈ E, π∗ : Hv → Tπ(v)M is an isomorphism

(2) For a ∈ R, let µa be multiplication by a. Then µa∗Hv = Hav.

Based on the above observations and this definition, we see that TE ∼= H ⊕ V. Hence any

vector field X on TE can be decomposed as X = Xh +Xv where Xh ∈ H and Xv ∈ V. A path



MATHEMATICAL PHYSICS A SURVEY OF GAUGE THEORIES AND SYMPLECTIC TOPOLOGY5

γ : I → E is horizontal if γ̇(t) is a horzontal vector field along γ. Ideally, if one were to parallel

transport a vector along a horizontal loop, one would end up with the same vector you started

with. In this way, the level sets of parallel translation along horizontal paths would sweep out a

smooth submanifold of E. When we view our connection as being the potential of some force,

it follows that if all vectors are always parallel translated back to themselves, then the potential

is constant. Unfortunantely, this is not always the case.

Definition 1.10. A distribution is integrable if X,Y ∈ ∆ implies [X,Y ] ∈ ∆. A submanifold

i : N ↪→M is integrable if i∗ : TN ↪→ TM is an integrable distribution.

Definition 1.11. A k-dimensional foliation of M is a partitioning of M into k-dimensional

submanifolds called leaves satisfying:

(1) The collection of tangent spaces to the leaves form a distribution ∆ on M

(2) If N ⊂M is an integral submanifold with distribution ∆, then N is contained in one of

the leaves.

Theorem 1.12. (Frobenius) A distribution is integrable iff it is induced by a folliation.

The proof of this theorem is rather technical, and does not contribute to the content of this

paper, so the reader is referred to either [5] or [6]. Now we can say that ideally, a connection

defines a folliation of the total space E, or equivalently by the Frobenius theorem, H is an

integrable distribution. Since H is not always integrable, we can at least measure how far away

it is from being integrable. To this end we construct a sort of directional derivative for sections.

Let p2 : TE = H ⊕ V → V be the canonical projection. The pullback of E along π yields

π∗E = {(v1, v2) ∈ E × E|π(v1) = π(v2)}. Let

π2 : π∗E → E; π2(v1, v2) = v2.

We may consider a pair (v1, v2) ∈ π∗E as a fixed point in the fiber v1, and a direction in the

fiber v2 − v1. In this way we see that this pullback bundle is precisely the verticle bundle. To

be precise, consider the map

η : π∗E → V; η(v1,v2) =
d

dt
(v1 + tv2)|t=0
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For a given v ∈ E, we see that ηv : π∗Ev → Vv is linear, and furthermore, it follows that

ker ηv = 0. By dimensionality considerations it follows that ηv is an isomorphism, and hence η

is an equivalence of bundles. Now we define the connection map

κ : TE → E; κ(X) = π2 ◦ η−1 ◦ p2(X).

Given a vector v ∈ E, and a vector Xv ∈ TvE, we constucted κ to give the amount v changes

in the direction of Xv. With this we define a notion of a directional derivative on a vector

bundle, which we call the covarient derivitive.

∇ : Ω0(ξ) → Hom(Ω0(τM ),Ω0(ξ)) ∇(s) = κ ◦ s∗

Fixing a vector field X on M, and evalutaing at it gives

∇X : Ω0(ξ) → Ω0(ξ) ∇X(s) = κ ◦ s∗(X)

Which measures how much a section changes in the direction of X. In this way, ∇ measures

how far a section is from being horizontally transported, if X is horizontal ∇X = 0. Thus ∇ is

precisely the tool by which we can measure how far H is from being integral. The existance of

the covarient derivative ∇ on ξ is equivalent to the existance of a specific connection H and for

this reason ∇ is sometimes called the connection on ξ.

As s ∈ Ω0(ξ) is a Ω0(M)-module, it immediately follows that

Ω0(ξ) = Ω0(M)⊗Ω0(M) Ω0(ξ)

We can then generalize concept and make the following definition:

Ωk(ξ) ≡ Ωk(M)⊗Ω0(M) Ω0(ξ)

It follows that ∇ ∈ Ω1(ξ). So, if U ⊂M is a trivializing neighborhood, we may pick n sections

s1, , sn such that s1(p), , sn(p) are a basis for Vp for each p ∈ M . We call this a frame on U .

[In fact this is just a section into the frame bundle of M which is the principle GLn(V )-bundle

associated to ξ.] Hence on U

∇(si) =
n∑

j=1

Aij ⊗ sj

where Aij ∈ Ω1(M) for each i and j, or in other words, A is a gln-valued one-form on U . Hence

the connection ∇ on U is given by A. [Of course, if we were to say, pick a different section into
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the frame bundle, the resulting A′ would be different than A. However, A and A′ would be

related by some action of GLn(V ). This is one of the key ideas of Gauge theory, which will not

be discussed in this paper.]

Define the map

F∇ : Ω0(ξ) → Ω2(ξ)

where, upon picking X,Y ∈ Ω0(TM),

F∇XY (s) ≡ F∇(X,Y, s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

Theorem 1.13. F∇ = 0 iff H is integrable

Once again, proof of this theorem is rather technical, and does not contribute to the content

of this paper, so the reader is referred to [5]. F∇ measures the amount by which H fails to be

integrable. If we choose a frame on U ⊂M , then

F∇(si) =
n∑

j=1

Fij ⊗ sj

where Fij ∈ Ω2(M) for each i and j, or in other words, F is a gln-valued two-form on U . F is

the curvature of U associated with the connection A. [A different choice of frame will change F

to F ′, but these two are related by an action of GLn(V ). This is key in Gauge theory, but will

not be discussed further here.]

Define the differential operator

D : Ωk(M)⊗ gln(V ) → Ωk+1(M)⊗ gln(V ) Dω = dω +A ∧ ω

where d is the standard differential from deRham cohomology.

Theorem 1.14. F = DA

The reader is referred to [2] or [5] for more discussion of the differential operator D and for

the proof of the above relation. To conclude, if we are given a physical system (M,Φ), then we

may choose a connection H on the vector bundle ξ = (E,M, V, π) which give the connection

1-form A. This 1-form is the potential corresponding to Φ, and the derivative F = DA, which

is the curvature of the vector bundle, gives the field strength corresponding to Φ.
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2. Classical Mechanics and Symplectic Geometry

Classical mechanics is concerned with the non-relativistic dynamical behavior of a system. So

first we must understand how to describe a system. Let M be a smooth manifold and consider

some physical system occuring in M .

Definition 2.1. A system has n degrees of freedom if the position of the system is completely

described by n numbers and n is minimal.

While a system’s position at a fixed time is given by a point q = (q1, q2, · · · qn) ∈ Rn, this does

not give all the information needed to describe the state of the system. A sufficient collection of

further data is the generalized momenta p = (p1, p2, · · · pn) ∈ Rn associated to the generalized

coordinates. It follows that the states of a mechanical system is completely specified by a point

z = (q1, q2, · · · qn, p1, p2, · · · pn) ∈ R2n, which is called phase space T ∗M . While the state of

the system in now entirely specified, there is still not enough information to understand how it

will evolve with time. Physically, a system will evolve in time in a way that minimizes energy.

Energy is simply a smooth scalar field on M , which we call the Hamiltonian H. Since H is

minimized, variational calculations yields the solutions:

dpi

dt
=
dH

dqi

dqi
dt

= −dH
dpi

These equations define a flow on T ∗M that specify how the state of a system evolves over time.

With this as motivation, physics [not to mention mathematics] is very interested in under-

standing possible phase spaces and possible Hamiltonian flows on them with the greatest amount

of rigor and generality. This is just the beginning of symplectic topology.

Definition 2.2. A symplectic structure on M is given by a closed and non-degenerate 2-form

ω. A symplectic manifold is a pair (M, ω).

Just from these properties we see a very striking fact about symplectic manifolds, that being:

Proposition 2.3. M a smooth manifold. If M admits a symplectic structure, then M is an

even dimensional manifold.
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Proof: For each point p ∈ Mm, ωp is a nondegenerate, 2-form on TpM . For the sake of this

proof, we shall call the tangemt space at p V1. Pick some x1 ∈ V1, x1 6= 0. Nondegeneracy implies

that the map ix1ωp : V1 → R is onto and hence dimRker(ix1ωp) = m−1. The subspace of vectors

with nonzero image is one dimensional, and hence there exists a y1 ∈ V1 such that ωp(x1, y1) = 1

and V1
∼= ker(ix1ωp)⊕ y1R. Let V2 = V1 \ (x1R⊕ y1R). It follows that ωp(x1, v) = 0 = ωp(y1, v)

for all v ∈ V2 and consequently ωp is a nondegenerate 2-form on V2. Continuing this process n

times, where m = 2n+ ε, ε = 0 or 1 yields

TpM ∼= x1R⊕ y1R⊕ · · · ⊕ xnR⊕ ynR⊕ Vn+1

where dimVn+1 = ε, ωp(xi, xj) = 0 = ωp(yi, yj) and ωp(xi, yj) = δij . Pick v ∈ Vn+1. By

construction, ωp(v, w) = 0 for all w ∈ V1 \ Vn+1 and skew-symmetry implies that ωp(v, w) = 0

for all w ∈ Vn+1. Thus ωp(v, w) = 0 for all w ∈ V1 and nondegeneracy implies that v = 0. Hence

ε = 0.

The definition of a Riemannian metric and a symplectic form are very similar, but already we

see a striking difference between Riemannian geometry and symplectic geometry. While every

smooth manifold admits a Riemannian metric, we see immediately that no odd dimensional

manifold admits a symplectic structure, and in fact, it is a nontrivial question as to when a

manifold will admit a symplectic structure.

Examples 2.4. (1) (R2n, ω0) where ω0 = Σn
i=1dxi ∧ dyi

(2) (S2, τ) where we define pointwise τ(v, w)p =< p, v × w >

(3) Let M be any smooth n-manifold. Then (T ∗M,ω) is a symplectic manifold where T ∗M

is the cotangent bundle, and ω =
∑n

i=1 dxi + dyi where {xi} are the coordinates on M

and {yi} are the coordinates on the fiber.

Proposition 2.5. M a smooth manifold with a smooth family of symplectic forms ωt with

exact derivative d
dtωt = dσt. Then there exists a smooth family of diffeomorphisms ψt such that

ψ∗ωt = ω0.

Proof: A family of diffeomorphisms ψt exists if and only if they may be realized as a the flow

of a smooth family of vector fields Xt, i.e.

d

dt
ψt = Xt ◦ ψt
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. If such a family exists, then, taking the derivative of ψ∗ωt = ω0 yields.

0 =
d

dt
ω0

=
d

dt
(ψ∗t ωt)

= lim
h→0

ψ∗t+hωt+h − ψ∗t ωt

h

= lim
h→0

[
ψ∗t+hωt+h − ψ∗t+hωt

h
+
ψ∗t+hωt − ψ∗t ωt

h

]
= ψ∗t (

d

dt
ωt) + ψ∗t (LXtωt)

= ψ∗t

[
d

dt
ωt + (d ◦ iXt + iXt ◦ d)ωt

]
= ψ∗t

[
d

dt
ωt + d(iXtωt) + iXt(dωt)

]
= ψ∗t [dσt + d(iXtωt)]

= d [ψ∗t σt + iXtωt]]

Now the theory of differential equations [which shall not be discussed here, see [5]] gives the

existence of a family of vector fields satisfying 0 = ψ∗t σt + iXtωt . The nondegeneracy of ωt

implies that this solution is unique. Hence we have the existence of the desired family of

diffeomorphisms.

Theorem 2.6. Let M be a 2n-dimensional smooth manifold and Q ⊂M a compact submanifold.

Suppose that ω0, ω1 ∈ Ω2(M) are closed 2-forms such that at each point q of Q the forms ω0 and

ω1 are equal and nondegenerate on TqM . Then there exist open neighborhoods N0 and N1 of Q

and a diffeomorphism ψ : N0 → N1 such that

ψ|Q = id, ψ∗ω1 = ω0

Sketch of Proof: The smoothness of ω0 and ω1 on M assures us that we may choose a small

enough open neighborhood N0 of Q in which ω0 and ω1 are nondegenerate. Let τ = ω1 − ω0

and define ωt = ω0 + tτ . Hence ωt is a smooth family of symplectic forms on N0 such that
d
dtωt = dτt. If τ is closed, then by the above proposition, then there exists a smooth family of

diffeomorphisms ψt such that ψ∗ωt = ω0. Most importantly, there exists open neighborhoods
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N0 and N1 of Q and a diffeomorphism ψ : N0 → N1 such that

ψ|Q = id, ψ∗ω1 = ω0

Now we just must show that τ is closed. Let T ∗Q be normal bundle of Q in M , and let

Eε = {(q, v) ∈ T ∗Q|||v|| ≤ ε}

Recall that the exponential map

exp : T ∗Q→M ; exp(q, v) =
d

dt
(ϕt(q))|t=0

where ϕt is the local flow generated by v in a small neighborhood of q. By the proper choice

of ε and shrinking N0 if necessary, exp is a diffeomorphism between N0 and Eε. Hence we may

define the map

φt : N0 →M ; φt(q, v) = exp(q, tv)

which is a diffeomorphism for t > 0. Now φ0(N0) ⊂ Q on which ω0 and ω1 agree, so

φ∗0τ = φ∗0ω1 − φ∗0ω0 = 0

Clearly φ1 is the identity, so φ∗1 is the identity, so

φ∗1τ = φ∗1ω1 − φ∗1ω0 = ω1 − ω0 = τ

Define the smooth family of vector fields

Xt =
(
d

dt
φt

)
◦ φ−1

t

Then, taking the derivative with to t yields

d

dt
(φ∗t τ) = φ∗t (LXtτ) = (d ◦ iXt + iXt ◦ d)τ = d(iXtτ)

So

τ = τ − 0 = φ∗1τ − φ∗0τ =
∫ 1

0

d

dt
(φ∗t τ)dt =

∫ 1

0
d(iXtτ)dt = d

(∫ 1

0
(iXtτ)dt

)
Hence τ is exact and the desired result immediately follows.

Corollary 2.7. (Darboux) Every symplectic form ω on M is locally diffeomorphic to the stan-

dard form ω0 on R2n.
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To conclude, a classical mechanical system can be completely understood as a symplectic

manifold with a chosen Hamiltonian function. Symplectic geometry is much more subtle than

Riemannian geometry as symplectic manifolds have no local invarients. Finding and exploring

global invarients is an active field to this day.
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