REU 2006
July 13, 2006
Hae Young Noh

Statement of the problem. Show that every sequence of $n^{2}+1$ distinct real numbers contains an increasing or decreasing subsequence of length $n+1$.

Example. For $n=2$, we have a sequence of length 5 . If the sequence is $2,3,1,5$, 4 ; we have an increasing subsequence of length $3(2,3,5)$.

Proof. (Pigeonhole Principle) Write a sequence as ($a_{1}, a_{2}, a_{3}, \ldots, a_{n^{2}+1}$). For $k \in$ $\left\{1,2,3, \ldots, n^{2}+1\right\}$ let I_{k} be the length of the longest increasing subsequence which begins with a_{k}. Suppose that $\mathrm{I}_{k} \leq n$ for all k; i.e. all increasing subsequences of the given sequence of length $n^{2}+1$ has at most length n. Notice that $\mathrm{I}_{k} \geq 1$ for all k as well. By the pigeonhole principle, $n+1$ of the numbers $I_{1}, I_{2}, I_{3}, \ldots I_{n^{2}+1}$ must be equal. Thus we have $\mathrm{I}_{k_{1}}, \mathrm{I}_{k_{2}}, \mathrm{I}_{k_{3}}, \ldots, \mathrm{I}_{k_{n+1}}$ such that $\mathrm{I}_{k_{1}}=\mathrm{I}_{k_{2}}=\mathrm{I}_{k_{3}}=\ldots=\mathrm{I}_{k_{n+1}}$ where $k_{1}, k_{2}, k_{3}, \ldots, k_{n+1} \in\left\{1,2,3, \ldots, n^{2}+1\right\}$.

Now suppose that for some $m \in\{1,2,3, \ldots, n\}$ we have $a_{k_{\mathrm{m}}}<a_{k_{m+1}}$. Then we can take the longest increasing subsequence beginning with $a_{k_{m+1}}$ and put $a_{k_{\mathrm{m}}}$ in front to obtain a new increasing subsequence beginning with $a_{k_{\mathrm{m}}}$. This implies that $\mathrm{I}_{k_{m}}>\mathrm{I}_{k_{m+1}}$, which contradicts our choices of $\mathrm{I}_{k_{j}}$'s. Therefore, we must have $a_{k_{\mathrm{m}}}>a_{k_{m+1}}$ for all $m \in\{1,2,3, \ldots, n\}$. We conclude that

$$
a_{k_{2}}>a_{k_{3}}>a_{k_{3}}>\ldots>a_{k_{n+1}} .
$$

This is a decreasing subsequence of length $n+1$, which we wanted.

Proof. (Mathematical Induction) If $n=1$, then we have a sequence of length 2 . If this sequence has no increasing subsequence of length 2 , then the entire sequence must be decreasing. Hence, the entire sequence forms a decreasing subsequence of length 2 .

Now assume that the result holds for $n=k$. We must show that every sequence of $(k+1)^{2}+1=k^{2}+2 k+2$ distinct real numbers contain an increasing or decreasing subsequence of length $(k+1)+1=k+2$. Write a sequence as ($a_{1}, a_{2}, a_{3}, \ldots, a_{k^{2}+2 k+2}$) and let

$$
\begin{aligned}
& \mathrm{A}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{k^{2}+2 k+2}\right\}, \\
& \mathrm{B}=\left\{a_{j} \in \mathrm{~A} \mid a_{j}>a_{i} \text { for all } a_{i} \in \mathrm{~A}, 0<i<j\right\} \cup\left\{a_{1}\right\}, \\
& \mathrm{C}=\left\{a_{j} \in \mathrm{~A} \mid a_{j}<a_{i} \text { for all } a_{i} \in \mathrm{~A}, 0<i<j\right\} \cup\left\{a_{1}\right\} .
\end{aligned}
$$

The terms in B and C clearly form an increasing and a decreasing sequence respectively. Therefore, we may assume that B and C both contain at most $k+1$ terms. Now consider a set $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})$. By our assumption, $\mathrm{B} \cup \mathrm{C}$ contains at most $2 k+2$ terms. Since B and C both contain $a_{1}, \mathrm{~B} \cup \mathrm{C}$ contains at most $2 k+1$ terms. Thus, $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})$ contains at least $k^{2}+1$ terms. By the inductive hypothesis, the terms contained in the set $A-(B \cup C)$ has an increasing or decreasing subsequence of length $k+1$.

Notice that $a_{1}, a_{2} \notin \mathrm{~A}-(\mathrm{B} \cup \mathrm{C})$. Further notice that the terms $\mathrm{B} \cup \mathrm{C}$ are bounded by a_{1} and a_{2}; i.e. WLOG assume $a_{1}<a_{2}$, then

$$
a_{1}<a_{i}<a_{2} \text { for all } a_{i} \in \mathrm{~B} \cup \mathrm{C} .
$$

This means we can add a_{1} or a_{2} to the increasing or decreasing subsequence of length $k+1$ respectively to form a new increasing or decreasing subsequence of length $k+2$, which is what we wanted to show.

