
The Graphs of Triangulations of Polygons

Matthew O’Meara

Research Experience for Undergraduates Summer 2006

1 Basic Considerations

Let Γ(n) be the graph with vertices being the labeled planar triangulation of
a convex n-gon with the vertices only one the boundary. Let the edges be all
the possible diagonal flips. A diagonal flip is defined for each internal edge,
e, of J in Γ(n). Since e is an internal edge, there are two faces, f1 and f2

that have e as an edge. Taken together, they form a quadrilateral with e as
a diagonal. By flipping e to the other diagonal, e′, and replacing f1 and f2

with the appropriate faces such that the boundary of the quadrilateral remains
fixed, one creates a new triangulation J ′ in Γ(n). This paper investigates the
properties of the collection of graphs Γ(n) for all n.

Definition 1.1. For a triangulation J in Γ(n), the degree of a vertex v in J ,
deg(v), is the number of internal edges terminal at v.

Definition 1.2. An ear in a triangulation J in Γ(n) is a face, f in J having a
vertex v such that deg(v) is 0.

Definition 1.3. For some J in Γ(n), each diagonal e partitions J . So J is
said to be made of subtriangulations t1 and t2 glued along e. t1 and t2 each
are triangulated, so they are homeomophic to something in Γ(n1) and Γ(n2).
So by taking their representatives and topologically gluing them along e, they
produce a triangulation homeomorphic to something in Γ(n).

Lemma 1.4. If J in Γ(n) has two adjacent vertices each with degree 0 then
n = 3.

Proof. If J in Γ(n) has two adjacent vertices vi and vi+1 both with degree 0.
Then there must be a single face, f that has vi−1, vi, vi+1, vi+2 as vertices. But
f is a triangle, so, vi−1 = vi+2 hence the only vertices are vi, vi+1, vi+2.

Lemma 1.5. For any triangulation J in Γ(n) with n > 3, J has at least 2 ears.

Proof. We prove the lemma by induction. Let J be a triangulation in Γ(4).
Then clearly J is homeomorphic to two triangles glued along an edge. These
two triangles are both ears. Inductively assume the lemma for all triangulations
with less then n vertices. Let J be an element of Γ(n) and let e be some diagonal
of J . Then J can be considered the result of gluing j1 and j2 along e, where
j1 is everything to the left of e and j2 is everything to the right of e. This is
well defined since J is convex. Since e is an internal edge, j1 and j2 each have
less then n vertices. By the inductive hypothesis, j1 and j2 each have two ears.
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Now if both ends of e in j1 are 0 degree vertices, then j1 must be a triangle and
therefore must have a third vertex also with degree equal to 0. Therefore gluing
j1 and j2 effectively glues an ear onto j2. If the ends of e in j1 are both not
ears then j1 must have at least one ear away from the gluing region. Therefore
when j1 and j2 are glued together, j1 contributes at least one ear. Similarly j2
contributes at least one ear, so J has at least 2 ears.

Definition 1.6. A triangulation of an n-gon with all diagonals having one end
terminal at a single vertex v is called a triangulation in radial position at v .

Theorem 1.7. Γ(n) is connected.

Proof. Since each diagonal flip is reversible, it suffices to construct a path from
any J in Γ(n) to the radial position at v1. We construct this sequence of flips
by induction. The triangle is trivially in radial position. Let J be in Γ(n), then
either v1 in J has degree 0 or not. If it does, then there is an edge e from
vn to v2. Let flipping e be the edge τ in Γ(n). If v1 has a non zero degree,
then either we are in radial position or not. If not, consider the internal edges
ei, ei+1, ..., ei′ that are terminal at v1 as partitioning J , i.e. J is composed of the
subtriangulations ji, ji+1, ...ji′ glued along the partitioning edges. Since there
is at least one diagonal e terminal at v1, the number of vertices of fi is strictly
less then the then the number of vertices in J . By induction, there is a sequence
of moves that transforms the triangulation of each subgraph into the subgraph
in radial position at v1. Since the diagonal flips in each partition are disjoint,
they can be globally ordered to construct the desired sequence of diagonal flips.
Thus each edge is terminal at v1.

Lemma 1.8. The degree of each vertex in Γ(n) is n − 3.

Proof. If e is an internal edge of some triangulation J in Γ(n), then e is flippable.
It suffices to show that there are n − 3 internal edges of any normal, planar
triangulation of polygon. We prove this by induction. The triangle trivially
satisfies the lemma. Let J be in Γ(n) for n > 3. Then since no two ears are
adjacent, then J with an ear cut off, called J ′, is an element of Γ(n − 1). By
induction J ′ has n− 4 internal edges. However it is clear that by gluing the ear
back on, that the edge that ear was cut off along becomes an internal edge thus
J has n − 3 internal edges.

2 Dihedral Symmetry

In this section, it is shown that Γ(n) quotiented by the action of the dihedral
with 2n elements is ismorphic to the set Ξ(n) of unlabeled triangulations. Then
the size of Ξ(n) is computed for each n.

Lemma 2.1. The dihedral group with 2n elements act on Γ(n) by relabeling the
vertices of each triangulation J in Γ.
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Proof. By embedding each J in Γ(n) in the polygon with vertices evenly spaced
on the unit circle in R2 then letting d in D2n act on R2 by a rotation and or a
flip in the standard way Γ(n) inherits the action of the ambient space.

Lemma 2.2. The automorphism group of Γ(n) is the dihedral group with 2n
elements.

Proof. An automorphism φ of Γ(n) must send each J in Γ(n) to some J ′ in
Γ(n). Let vi be in J . Then let wi = φ(vi). Then since vi+1 is adjacent to vi

in J , wi+1 must be adjacent to wi in J ′. By extension, this specifies the image
of all vertices and therefore the boundary of the polygon. Because a polygon
is a disk, the automorphism can be extended to the whole triangulation. Since
there are n choices for wi with a cyclic relationship and 2 choices for wi+1, this
is the dihedral group.

Definition 2.3. The set of unlabeled triangulations with n vertices is Ξ(n), the
quotient of Γ(n) under the dihedral action.

Definition 2.4. A self symmetry of a triangulation J is an element of a group
that acts on a set of triangulations that that fix J .

Definition 2.5. Since Γ(n) is isomorphic to the set of triangulations of the
regular n-gon embedded in R2 with the vertices labeled clockwise with v1 on
the positive y-axis, the center is the the point (0, 0).

Lemma 2.6. The only self symmetries of a triangulation J in Γ(n) are the self
symmetries of the line or triangle containing the center.

Proof. Since Aut(Γ(n)) is the dihedral group with 2n elements, every automor-
phism must fix the center. Since there are no internal vertices, the center must
be contained in either a line or a triangle called c. Therefore for some J in
Γ(n), φ in Stab(Γ(n)), φ is in Stab(center) so φ must send c to c, i.e. φ is in
Stab(c).

Lemma 2.7. If J is in Γ(n) with n even, then J does not have an axis of
reflection that passes through an external edge away from a vertex.

Proof. The proof follows by induction. The square with a diagonal cannot have
an axis of symmetry that passes through an external edge away from a vertex,
as the only axes of symmetry pass through the vertices. Assume that for all
triangulations with an even number of vertices less than n, the lemma holds.
Then let J be a triangulation with n vertices and an axis of reflection along
a that passes through an external edge away from any vertex. The symmetry,
φ across a must send vertices to vertices. Therefore there must be the same
number of vertices on each side of a, and a does not intersect any vertex. If no
internal edge crosses a, J contains a square, there must be an internal edge e
that crosses a. Since e crosses a, φ(e) = e. So e partitions J into t1 and t2, each
closed under φ. Then, t1 and t2 each contain an even number of vertices as it
otherwise breaks the symmetry. However, by induction, t1 cannot have a as an
axis of symmetry, so J does not have a as an axis of symmetry.
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Theorem 2.8. The number of element in Ξ(n) is,

|Ξ(n)| =



1
2nCa(n) + 1

2Ca(n+1
2 ) 2 6 | n, 3 6 | n

1
2nCa(n) + 1

2Ca(n+1
2 ) + 1

3Ca(n
3 + 1) 3 | n, 2 6 | n

1
2nCa(n) + 3

4Ca(n
2 + 1) + 1

3Ca(n
3 + 1) 2 | n, 3 | n, 4 6 | n

1
2nCa(n) + 3

4Ca(n
2 + 1) 2 | n, 3 6 | n

1
2nCa(n) + 3

4Ca(n
2 + 1) + 1

3Ca(n
3 + 1) 4 | n, 3 | n

where Ca(n) is the Catalan number (2n
n )

n+1 .

Proof. To compute |Ξ(n)| it is sufficient to count the number of conjugacy classes
of Γ(n) under the dihedral action. Since the dihedral action fixes the center,
and there are no vertices on the interior, the possible symmetries are limited by
the symmetries of the cell containing the center.

Consider Ξ(n) when neither 2 nor 3 divides n. Claim: no element in Ξ(n) has
any rotational symmetry. If the center of a triangulation k in Ξ(n) is contained
in a line e then any rotation must fix e. Therefore the only possible rotation is
a rotation by 180 degrees, or reflection across an axis parallel or perpendicular
to e. However these all induce a bijection on the vertices on either side of e,
but since n is odd, this pairs sets of different parity, which is a contradiction.
If the center is contained in a face f , then any rotation, or reflection. But by
the transitivity of the action, all three of the subregions glued to the edges of
f must have the same number of vertices, so the number of vertices must be
divisible by 3, which contradicts the assumptions.

Let Ã be all k in Ξ(n) such that τ is a reflection across an axis of symmetry
a. Then τ induces a bijection on the vertices on either side of a. If a contains
0 or 2 vertices, then since there is an odd number of vertices τ , pairs sets of
different parity, which is a contradiction. Therefore a contains exactly 1 vertex
v. Let f be the face containing a on it’s interior and v, and let e1 and e2 be
the edges of f terminal at v and e3 the edge opposite v. Claim: e3 is external.
Assume that it is not, then let r1, e2 and r3 be the subtriangulations glued along
e1, e2 and e3. Then r2 must be the mirror image of r2. Since r1 and r2 share v,
the number of vertices in the union of r1 and r2 is odd. But since n is itself odd,
r3 must contain an even number of vertices. However, for τ to be a reflection
of K, a must be a reflection of r3. But a extends through e3, a face of r3 so a
cannot be an axis of reflection for r3, and e3 is external. To count the size of
Ã, observe that for each possible r1 as considered an element of Γ(n+1

2 ), there
is precisely 1 subtriangulation r2 such that r1 and r2 glued appropriately to f
is in Ã. No k in Ã can have more then one axis of reflection. k certainly cannot
have more then 3 axis of reflection as neither the line nor the triangle has more
then 3. If k had 2 or 3 axes of reflection, then r1, r2 and r3 must be equal, but
e3 is external, so f must be the triangle, but the triangle has 3 vertices and by
assumption 3 does not divide n.

Let A be the set of all j in Γ(n) congruent to some k in Ã. Then since each k
in Ã has exactly one axis of reflection |A| = 2n

2 Ã. If X is the set of all elements
in Ξ(n) without any symmetry, then
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|Ξ(n)| = Ã + X

= Ã +
|Γ(n)| − A

2n

= |Γ(
n + 1

2
)| +

|Γ(n)| − 2n
2 Ã

2n

=
1
2n

Ca(n) +
1
2
Ca(

n + 1
2

).

Consider Ξ(n) when 2 does not divide n but 3 does, then by the above
case, for all n > 3, if k in Ξ(n) has an axis of reflection then that is the only
symmetry of k. So if Ã, and A are defined as above, then Ã| = |Γ(n+1

2 ) and
|A| = 2n

2 |Γ(n+1
2 )|. Let B̃ be all b in Ξ(n) that have rotation by 120 degrees as

a symmetry. Then each b must consist of 3 copies of a subtriangulation t glued
appropriately around a triangle containing the center. Observe that for each t
taken from Γ(n

3 + 1), it admits a triangulation, b, in B̃ (copy t appropriately).
However since n is odd, Ã and B̃ are disjoint for all n > 3, therefore the triangle
b′ obtained by reflecting b across an axis containing one vertex and the center
of the opposite edge of the central triangle is conjugate but not equal to b. So
|B̃| = 1

2 |Γ(n
3 + 1). Since the orbit of rotation by 120 degrees is 3, B, the set of

all j in Γ(n) such that j is conjugate to something in B̃, has 2n
3 B̃ elements. If

X is the set of all triangulations in Ξ(n) without any symmetry, then

|Ξ(n)| = Ã + B̃ + X

= Ã + B̃ +
|Γ(n)| − A − B

2n

= |Γ(
n + 1

2
)| + 1

2
|Γ(

n

3
+ 1)| +

|Γ(n) − 2n
2 |Γ(n + 12)| − 2n

3
1
2 |Γ(n

3 + 1)
2n

=
1
2n

Ca(n) +
1
2
Ca(

n + 1
2

) +
1
3
Ca(

n

3
+ 1).

Consider Ξ(n) when 2 and 3 divide n, while 4 does not. Let C̃ be all the k
in Ξ(n) that have 3 axes of reflection. Then k must consist of a central triangle
with a triangle glued to each of its edges, and onto each of the 6 boundary edges
is glued 6 copies of a triangulation s with n

6 + 1 vertices with every other one
reflected across the axis perpendicular to gluing edge. k must be symmetric
to itself under rotation by 120 degrees. Since this is all of the symmetries of
the triangle, no action of the dihedral group on k can send k to itself without
sending s to itself, there is a one-to-one correspondence between choices of s
and elements in C̃ so C̃ has Ca(n

6 + 1) elements. Since each k in C̃ represents
6 elements in Γ(n), C, the set of elements in Γ(n) conjugate to an element of C̃
has 2n

6 Ca(n
6 + 1) elements.

Let B be the set of all k with rotation only by 120 and 240 degrees as
its only symmetries. For some k to have these symmetries it must have three
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identical copies of a subtriangulation t with n
3 + 1 vertices glued appropriately

around a central triangle. Some choices of t, however, admit a line of reflection
perpendicular to each edge t that is glued to the central triangle. Since n
has a factor of 2, n

3 has a factor of 2 so t has an odd number of vertices.

Therefore from the considerations of the first case there are (Ca( n
3 +1))+1

2 =
Ca(n

6 + 1) choices for triangulation of t that admit an axis of reflection. Since
the rest of the triangulations do not admit an axis of reflection, one half of
the remaining admit only rotation by 120 and 240 as their only symmetries.
Therefore |B̃| = 1

2 (Ca(n
3 + 1) − Ca(n

6 + 1)). And since each k in B̃ represents
3 elements in Γ(n), B, the set of elements in Γ(n) congruent to something in B̃
has 2n

3
1
2 (Ca(n

3 + 1) − Ca(n
6 1

)) elements.
Let D̃ be the set all elements k in Ξ(n), such that rotation by 180 degrees

is a self symmetry. Then if for some k in D̃ the center was not contained on
a diagonal then the face containing the center must be mapped to itself under
rotation by 180 degrees, but a triangle does not have that symmetry. So, the
center is contain on some edge e of k. If k posssessed an axis of reflection, then it
must be either parallel to e or perpendicular to e and through the center. Since
reflecting by one axis, rotating by 180 degrees and reflecting back across the axis
is the same as reflecting across the axis perpendicular, k must have both axes
of reflection. However, if k contains two perpendicular axes of reflection then k
must be 4 copies of a subtriangle glued around a two triangles glued along the
central triangle. Therefore the number of vertices of k must be divisible by 4,
which by assumption it is not. Therefore, each element k in D̃ has only rotation
by 180 degrees as a self symmetry. Let t1 and t2 be the 2 subtriangulations
glued along e. Then for each choice of t taken from Γ(n

2 + 1) there is exactly
choice of t2 such that k is in D̃. However reflecting k across the axis parallel
to e or reflecting across the axis perpendicular to e produces a triangulation in
the same orbit as k but not equal to k, and since e is fixed by both reflections,
t1 must be different as well. Therefore only half the choices of t1 correspond
with unique elements in D̃, that is, |D̃| = 1

2Ca(n
2 +1). Since each element in D̃

represents 2 distinct elements in Γ(n), D, the set of triangulations in Γ(n) that
are congruent to some element in D̃, has 2n

2
1
2Ca(n

2 + 1) elements.
Let Ẽ be the set of all elements k in Ξ(n) that have a reflection across a

central edge e as a self symmetry. Then for some k in Ẽ, k does not have
any other symmetries as it would force n to be divisible by 4 but it is not by
assumption. Therefore, if t1 and t2 are the subtriangulations glued along e, for
each choice of t1 taken from Γ(n2 + 1) there is precisely 1 choice of t2 such that
k is in Ẽ. However rotating k by 180 degrees is not equal to k as it is not a
symmetry, but is congruent to k as it is an element of the dihedral action since n
is even. Also, since rotating by 180 degrees sends e to itself, t1 must be different
as well. Therefore only half of the choices of t1 specify a unique element in Ẽ.
So |Ẽ = 1

2Ca(n
2 + 1). Since each element in Ẽ represents 2 distinct elements in

Γ(n), E, the set of triangulations in Γ(n) that are congruent to some element
in Ẽ, has 2n

2
1
2CA(n

2 + 1) elements.
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So far the triangulations with symmetry that have been counted include:
triangulations with rotation by 120 and 240 degrees and 3 axes of symmetry;
triangulations with only rotation by 120 and 240 degrees; triangulations with
just rotation by 180 degrees; and triangulations with just reflection across a cen-
tral line. Since the symmetries of a triangulation are limited by the symmetries
of the cell containing the center, the cases that remain are: triangulations with
a central line and one axis of symmetry perpendicular to the line and through
the center; and triangulations with a central face with one axis of reflection ex-
tending through a vertex, the center and the center of the opposite edge. Both
of these cases shall be dealt with at one time. Let F̃ be the set of all triangula-
tions k in Ξ(n) that have a reflection that fixes a line e perpendicular to axis a
of reflection. Since n is even, a must intersect two distinct vertices or none at
all. But if it intersects none, then by a lemma it cannot be an axis of symmetry.

Claim: A reflection can only fix at most one line perpendicular to a. Since
a is a line of reflection all lines that cross a must be fixed. Say reflection across
a fixes two edges e1 and e2 such that there are no edges in between e1 and e2

on a. Then they must either share both end points or non of the end points. If
they share both end points then the region in between e1 and e2 forms a bigon
and if they share non of the points then the region between e1 and e2 has more
then three edges, neither of which are allowed in a triangulation.

Let F ′ be the set of labeled triangulations with an axis of symmetry a aligned
vertically fixing a line e perpendicular to a. Claim: F ′ has Ca(n

2 + 1) elements.
To show the claim, a bijection between F ′ and the set of all labeled triangulations
with an axis that fixes a perpendicular edge D′ will be established. For some
j in F ′, the endpoints of e and the end points of a form a quadrilateral with a
and e along the diagonal. Flipping e aligns e with a. Since a and is an axis of
symmetry, this produces the desired map. Observe that flipping e in different
triangulations j1 and j2 cannot map to the same image in D′ as nothing else in
j1 or j2 was changed. Therefore the map is injective. To see that it is surjective,
note that for each j in D′ there must be two triangles t1 and t2 that share e
as an edge. Then t1 and t2 are mapped to each other under reflection across
e. Therefore the line connecting the vertices of t1 and t2 not on e, v1 and v2,
must be perpendicular to e and fixed under reflection across e. So flipping e
to (v1, v2) produces a triangulation with a single perpendicular edge fixed by
the same reflection. In particular this shows that there are Ca(n

2 + 1) such
triangulations as there are Ca(n

2 + 1) choices of triangulations t1 that admit
elements of D′ and each one produces a unique labeled triangulation in D′.

Not every triangulation j in F ′ has no other symmetries. Since n is not
divisible by 4, e cannot pass through the center so e cannot have an axis of
reflection along it, however j may have two additional axes to be an element
in C̃. For each j in C̃, orienting the central triangle with a vertex or an edge
at the top gives two different elements of F ′ that are not in C̃. Since reflecting
across the axis perpendicular to a and through the center and rotating by 180
degrees are both not symmetries, reflecting a triangulation j in F ′ across the
axis perpendicular to a and through the center, or rotating by 180 degrees
both give the same new triangulation j′ in F ′. So exactly half the elements
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in F ′ that are not in C̃ can be extended to unique triangulations in F̃ . So
|F̃ | = 1

2 (Ca(n
2 + 1) − 2Ca(n

6 + 1)). Since each represents exactly 2 elements in
Γ(n), F , the set of element j in Γ(n) that are congruent to element of F̃ , has
1
2 ( 1

2 (Ca(n
2 + 1) − 2Ca(n

6 + 1))) elements.
Therefore together this shows,

|Ξ(n)| = B̃ + C̃ + D̃ + Ẽ + F̃ +
Ca(n) − B − C − D − E − F

2n

=
1
2
(Ca(

n

3
+ 1) − Ca(

n

6
+ 1)) + Ca(

n

6
+ 1) +

1
2
Ca(

n

2
+ 1) +

1
2
Ca(

n

2
+ 1) +

1
2
(Ca(

n

2
+ 1) − 2Ca(

n

6
+ 1)) +

Ca(n) − 2n
3

1
2 (Ca(n

3 + 1) − Ca(n
6 + 1)) − 2n

6 Ca(n
6 + 1) − 2n

2
1
2Ca(n

2 + 1)−

2n
2

1
2Ca(n

2 + 1) − 1
2

1
2 (Ca(n

2 + 1) − 2Ca(n
6 + 1))

2n

=
1
2n

Ca(n) +
3
4
Ca(

n

2
+ 1) +

1
3
Ca(

n

3
+ 1).

Consider Ξ(n) when 2 divides n, while both 4 and 3 do not. For some k in
Ξ(n), if the center is contained in a face f , then the symmetries of k are a subset
of the symmetries of f . Although f is symmetric under rotation by 120 and
240 degrees, the subtriangulations glued to f must all have the same number
of vertices, but n is not divisible by 3 so k does not posses these symmetries.
Also f has reflection across each line that extends from a vertex, through the
center and through the center of the opposite face. But if k possessed any two
of these, it would be symmetric under rotation by 120 degrees. So k has at
most 1 one of these axes of reflection. If the center of k is contained in a line
e, then the symmetries of k are some subset of the symmetries of e, rotation
by 180 degrees, reflection across e, and reflection across the line perpendicular
to e that passes through the center. If k has any 2 of these symmetries, it has
all 3. In particular, if k has both reflections as symmetries, then k is made
of a square with e a diagonal with 4 identical copies of a subtriangulation t
glued appropriately around the boundary of the square. Then k has 4 times the
number of vertices of t, but k is not divisible by 4. Therefore, k has at most
one of the symmetries of the line.

Following the previous case, let D̃, D, Ẽ, E be defined similarly so |D̃| =
|Ẽ| = 1

2Ca(n
2 + 1) and D = E = 2n

4 Ca(n
2 + 1). F̃ can still be defined as the set

of all k in Ξ(n) that have an axis of reflection that fixes one edge perpendicular
to the axis of reflection. Since, however, there are no triangulations with that
have more then one axis of reflection, |F̃ | = 1

2Ca(n
2 + 1) and let F be the set of

all j in Γ(n) that are conjugate to some k in F̃ . So then |F | = 2n
4 Ca(n

2 + 1).
Therefore for Ξ(n) when 2 divides n, while both 4 and 3 do not,
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|Ξ(n)| = D̃ + Ẽ + F̃ +
Ca(n) − D − E − F

2n

= 3
1
2
Ca(

n

2
+ 1) +

Ca(n) − 3 2n
4 Ca(n

2 + 1)
2n

=
1
2n

Ca(n) +
3
4
Ca(

n

2
+ 1).

Consider Ξ(n) when 4 divides n, while 3 do not. By the same argument used
in the previous case, Ξ(n) does not contain any elements 3 axes of symmetry
or are symmetric under rotation by 120 and 240 degrees. Let G̃ be the set all
triangulations in Ξ(n) that have exactly 2 axes of reflection. Then as above,
k in G̃ must have a central square with one axis of reflection along e the line
containing the center and a diagonal of the square and the other axis the other
diagonal perpendicular to e through the center. Then for each choice of a
subtriangulation t glued on to the central square, there is precisely one choice
for the remaining 3 subtriangulations such that the whole triangulation k is in
G̃. But there are Ca(n

4 + 1) choices of t. Since conjugation of one reflection by
the other gives a rotation by 180 degrees, e has no symmetries that k does not,
so each choice of t gives one of each element of G̃. Therefore |G̃| = Ca(n

4 + 1),
and G, the set of elements in Γ(n) that are congruent to something in G̃, has
2n
4 Ca(n

4 + 1) elements.
Following the previous case, let D̃, D, Ẽ, E, F̃ , F be defined similarly, that

is the sets of triangulations that have precisely one particular symmetry. To
count the number of elements in D̃, consider the triangulations in Ξ(n) with a
central line e and 2 subtriangulations t1 and t2 glued on either side of e. Then for
each t1 taken from Γ(n

2 + 1) there is exactly one way to choose t2 such that the
whole triangulation is symmetric when rotated by 180 degrees. However there
are Ca(n

4 + 1) choices of a subtriangulation s1, one for each element in G̃, of t1
such that t1 is symmetric to itself when reflected across the line a perpendicular
to e and through the center. The rest do not have a as an axis of symmetry, so
reflecting each whole triangulation k across a is a triangulation different from
k but conjugate to k. Therefore there |D̃| = 1

2 (Ca(n
2 + 1) − Ca(n

4 + 1)) and
|D| = 2n

4 (Ca(n
2 + 1) − Ca(n

4 + 1)), by similar arguments to the ones above
|Ẽ| = |F̃ | = |D̃| and |E| = |F | = |D|.

Therefore when 4 divides n, while 3 do not, Ξ(n) has that,

|Ξ(n)| = D̃ + Ẽ + F̃ + G̃ +
Ca(n) − D − E − F + G

2n

= 3
1
2
(Ca(

n

2
+ 1) − Ca(

n

4
+ 1)) + Ca(

n

4
+ 1) +

Ca(n) − 3 2n
4 (Ca(n

2 + 1) − Ca(n
4 + 1)) − 2n

4 Ca(n
4 + 1)

2n

=
1
2n

Ca(n) +
3
4
Ca(

n

2
+ 1).
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Since this is the same result as when simply 2 divides n while neither 4 nor
3 do, it will be subsumed under that case in the result.

Consider Xi(n) when 4 divides n and 3 divides n. Then combining the work
of the previous cases gives,

|Ξ(n)| = B̃ + D̃ + Ẽ + F̃ + G̃ +
Ca(n) − B − D − E − F − G

2n

=
1
2
(Ca(

n

3
+ 1) − Ca(

n

6
+ 1)) + Ca(

n

6
+ 1) +

1
2
(Ca(

n

2
+ 1) −

Ca(
n

4
+ 1)) +

1
2
(Ca(

n

2
+ 1) − Ca(

n

4
+ 1)) +

1
2
(Ca(

n

2
+ 1) − 2Ca(

n

6
+ 1) − Ca(

n

4
+ 1)) + Ca(

n

4
+ 1)

Ca(n) − 2n
3

1
2 (Ca(n

3 + 1) − Ca(n
6 + 1)) − 2n

2
1
2 (Ca(n

2 + 1)

−Ca(n
4 + 1)) − 2n

2
1
2 (Ca(n

2 + 1) − Ca(n
4 + 1)) − 1

2
1
2 (Ca(n

2 + 1)−

2Ca(n
6 + 1) − Ca(n

4 + 1)) − 2n
4 Ca(n

4 + 1) − 2n
6 Ca(n

6 + 1)
2n

=
1
2n

Ca(n) +
3
4
Ca(

n

2
+ 1) +

1
3
Ca(

n

3
+ 1),

which completes the proof of the theorem.
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