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1 Preface

I hope that this document will be a coherent summary of elementary measure
theory and statistics, as well as a rough treatment of stochastic processes.

That said, it was very interesting coming at this topic with a strong grasp
on the analytic aspects and a minimal knowledge of statistics. Of course, this
will not be much of an issue, as most of the proofs are borrowed directly from
Probability Theory by S.R.S.Varadhan.

A copy of the text is available on the internet at:
http://math.nyu.edu/faculty/varadhan/limittheorems.html

All page numbers are from that book. In the not entirely unlikely event
that an error should be suspected in this document, the corresponding section
of that book should clarify the matter.

2 Some Measure Theory

The major idea here is to create a device by which we can measure sets
in a fairly general context. Measure theory will allow us to do so. This is
necessary for the follow probability theory, because we will be building our
probability distributions into measure and then integrating random variables
to get expectation values. We give a few important
Definitions:

• σ-field A class B such that:

(i) The sets ∅,Ω are in B,

(ii) If A ∈ B then Ac ∈ B,

(iii) If Aj ∈ B, ∀j ∈ N then ∪j∈NAj ∈ B and ∩j∈NAj ∈ B.

• Measure Let B be a σ-field over Ω. The function µ : B → R+ is called
a measure on B if:
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(i) µ(∅) = 0,

(ii) If {Aj}j∈N ⊂ B, Ai ∩ Aj = ∅, ∀i 6= j then

P (∪j∈NAj) = Σj∈NP (Aj)

• Probability Measure A measure such that P (Ω) = 1.

• Convergence in measure A sequence (fn)n∈N is said to converge in mea-
sure to the function f if

lim
n→∞

P ({ω : |fn(ω)− f(ω)| ≥ ε}) = 0

for all ε > 0.

• Almost everywhere convergence A sequence (fn)n∈N is said to converge
in measure to the function f if

fn(ω)→ f(ω)

for all ω except for a set of measure zero.

We have the following relation between the last two types of convergence:
Lemma(1.3, p.18)

If fn → f almost everywhere then fn → f in measure.

Proof. The fact that fn → f outside the set N is equivalent to

∩n ∪m≤n {ω : |fm(ω)f(ω)| ≥ ε} ⊂ N

for every ε > 0. In particular by countable additivity

P ({ω : |fn(ω)− f(ω)| ≥ ε}) ≤ P (∪m≥n{ω : |fm(ω)− f(ω)| ≥ ε})→ 0

as n→∞ and we are done.�
On the other hand we have the following
Exercise(p.18)
If fn → f as n → ∞ in measure, then there is a subsequence fnj such

that fnj → f almost everywhere as j →∞.

Proof. From Lemma 1.3 (p. 18): fn → f outside N is equivalent to

∩n ∪m≥n {ω : |fm(ω)− f(ω)| ≥ ε} ⊂ N

We know that fn → f as n→∞ in measure, which means that

lim
n→∞

P ({ω : |fn(ω)− f(ω)| ≥ ε}) = 0

2



Note also that

{ω : |fn(ω)− f(ω)| ≥ ε} ⊂ ∪m≥n{ω : |fm(ω)− f(ω)| ≥ ε}
Define

Ej = {ω : |fnj(ω)− f(ω)| > 2−j}
where nj is sufficiently large so that that

P (Ej) ≤ 2−j

If ω 6∈ ∩n≥0 ∪k≥n Ek then ∃n0 ∈ N such that ∀k > n0, ω 6∈ Ek. Therefore
fnj(ω)→ f(ω).

Additionally, because P ({ω : |fnj(ω) − f(ω)| > 2−j}) ≤ 2−j, we know
that P (∪k≥nEk) ≤ 2−n+1, which goes to zero as n goes to zero.

The above imply that fnk → f almost everywhere. QED

3 Convergence Theorems

The purpose of these theorems is allow us to go from a sequence of functions
to a limit function, and ultimately to be able to be a little bit more free when
integrating with respect to various probability measures. These will turn up
in later proofs, so their inclusion here is necessary for completeness.

Theorem 1.4(Bounded Convergence Theorem)

If the sequence fn of measurable functions is uniformly bounded and if
fn → f in measure as n→∞, then

limn→∞

∫
fndP =

∫
fdP.

Proof. Since

|
∫
fndP −

∫
fdP | = |

∫
(fn − f)dP | ≤

∫
|fn − f |dP

we need only prove that if fn → 0 in measure and |fn| ≤M then
∫
|fn|dP → 0.

To see this
∫
|fn|dP =

∫

|fn|≤ε
|fn|dP +

∫

|fn|>ε
|fn|dP ≤ ε+MP ({ω : |fn(ω)| > ε})
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and taking limits

lim
n→∞

sup

∫
|fn|dP ≤ ε

and since ε > 0 is arbitrary we are done. See also p. 19 �
Theorem 1.5 (Fatou’s Lemma)

If for each n ≥ 1, fn ≥ 0 is measurable and fn → f in measure as n→∞
then ∫

fdP ≤ lim
n→∞

inf

∫
fndP.

Proof. Suppose g is bounded and satisfies 0 ≤ g ≤ f . Then the sequence
hn = fn ∧ g = min(fn, g) is uniformly bounded and

hn → h = f ∧ g = g.

Therefore, by the bounded convergence theorem,
∫
gdP = lim

n→∞

∫
hndP.

Since
∫
hndP ≤

∫
fndP for every n it follows that

∫
gdP ≤ lim

n→∞
inf

∫
fndP.

As g satisfying 0 ≤ g ≤ f is arbitrary we are done. See also p. 20 �
Corollary 1.6 (Monotone Convergence Theorem)

If for a sequence fn of nonnegative functions, we have fn ↑ f monotoni-
cally then ∫

fndP →
∫
fdP as n →∞

Proof. Obviously
∫
fndP ≤

∫
fdP and the other half follows from

Fatou’s lemma. See also p. 20. �
Corollary 1.11 For any A ∈ B if we denote by Aω1andAω2 the respective

sections
Aω1 = {ω2 : (ω1, ω2) ∈ A}

and
Aω2 = {ω1 : (ω1, ω2) ∈ A}

then the functions P1(Aω2) and P2(Aω1) are measurable and

P (A) =

∫
P1(Aω2)dP2 =

∫
P2(Aω1)dP1.
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In particular for a measurable set A, P (A) = 0 if and only if for almost all
ω1 with respect to P1 , the sections Aω1 have measure 0 or equivalently for
almost all ω2 with respect to P2 , the sections Aω2 have measure 0.

Proof. The assertion is clearly valid if A is rectangle of the form A1×A2

with A1 ∈ B1 and A2 ∈ B2 . If A ∈ F , then it is a finite disjoint union of
such rectangles and the assertion is extended to such a set by simple addition.
Clearly, by the monotone convergence theorem, the class of sets for which
the assertion is valid is a monotone class and since it contains the field F it
also contains the field B generated by the field F . See also p. 26.�

Theorem 1.12(Fubini’s Theorem)

Let f (ω) = f (ω1 , ω2 ) be a measurable function of ω on (Ω,B). Then
f can be considered as a function of ω2 for each fixed ω1 or the other way
around. The functions gω1() and hω2() defined respectively on Ω2 and Ω1 by

gω1(ω2) = hω2(ω1) = f(ω1, ω2)

are measurable for each ω1 and ω1. If f is integrable then the functions gω1(ω2)
and hω2(ω1) are integrable for almost all ω1 and ω2 respectively. Their inte-
grals

G(ω1) =

∫

Ω2

gω1(ω2)dP2

and

H(ω2) =

∫

Ω1

hω2(ω1)dP1

are measurable, finite almost everywhere and integrable with respect to P1

and P2 respectively. Finally

f(ω1, ω2)dP =

∫
G(ω1)dP1 =

∫
H(ω2)dP2

Conversely for a nonnegative measurable function f if either G or H, which
are always measurable, has a finite integral so does the other and f is inte-
grable with its integral being equal to either of the repeated integrals, namely
integrals of G and H.

Proof. The proof follows the standard pattern. It is a restatement of
the earlier corollary if f is the indicator function of a measurable set A. By
linearity it is true for simple functions and by passing to uniform limits, it is
true for bounded measurable functions f . By monotone limits it is true for
nonnegative functions and finally by taking the positive and negative parts
separately it is true for any arbitrary integrable function f . See also p. 27 �
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4 Distribution Functions

Here we introduce distribution functions. Also we are showing a very impor-
tant property: the points of continutiy tell the whole story for a distribution
function (which is good, considering that the discontinuities are at worst
countably many).

Definition A distribution function f is a right-continuous non-decreasing
function f : R→ [0, 1] such that limx→−∞ f(x) = 0 and limx→∞ f(x) = 1.
(See also p.13)

ExerciseProve that if two distribution functions agree on the set of points
at which they are both continuous, they agree everywhere.

Proof. Call the distribution functions F and G. Because these functions
are non-decreasing, they have denumerably many discontinuities. As an im-
mediate consequence of this, if F is discontinuous at c and d, then ∃x ∈ (c, d)
such that F is continuous at x. As a result of this, F and G clearly must
have exactly the same points of discontinuity, otherwise they would have
to differ at a point of continuity. Any distribution function must have a
right limit at all points. If F (x) = G(x) for all x ∈ {x|F cts at x} then
limx→c+ F (x) = limx→c+ G(x). However, as previously stated, limx→c+ F (x)
exists for all c. Therefore F (x) = G(x) for all x ∈ R⇒ F = G.�

5 Weak Law of Large Numbers

A rough paraphrasing of the law of large numbers would be that reality
will eventually start to act like our statistical models predict, as long as our
models were right to begin with.

Definition If α is a probability distribution on the line, its characteristic
function is defined by

φ(t) =

∫
exp[itx]dα

Theorem 3.3(Weak Law of Large Numbers)

If X1, X2, . . . , Xn are independent and identically distributed with a finite
first moment and E(Xi) = m, then X1+X2+...+Xn

n
converges to m in probability

as n→∞. ( See also p. 56)

Proof. We can use characteristic functions. If we denote the character-
istic function of Xi by φ(t), then the characteristic function of 1

n
Σ1≤i≤nXi is

given by ψn(t) = [φ( t
n
)]n. The existence of the first moment assures us that

φ(t) is differentiable at t = 0 with a derivative equal to im where m = E(Xi).
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Therefore by Taylor expansion

φ(
t

n
) = 1 +

imt

n
+ o(

1

n
).

Whenever nan → z it follows that (1 + an)n → ez . Therefore,

lim
n→∞

ψn(t) = exp[imt]

which is the characteristic function of the distribution degenerate at m.
Hence the distribution of Sn

n
tends to the degenerate distribution at the

point m. The weak law of large numbers is thereby established. ( See also
p. 57) �

6 Central Limit Theorem

We present The Central Limit Theorem, from which the importance of the
bell-curve becomes visible. This is especially useful in trying to pick models
to which reality is likely to conform.

Theorem 3.17(The central limit theorem)

Let {X1, X2, . . . , Xn, . . . } be a sequence of independent, identically dis-
tributed random variables of mean zero and finite variance σ2 > 0. The
distribution of Sn√

n
converges as n→∞ to the normal distribution with den-

sity

p(x) =
1√
2πσ

exp[− x2

2σ2
]

Proof. If we denote by φ(t) the characteristic function of any Xi then
the characteristic function of Sn√

n
is given by

ψn(t) = [φ(
t√
n

)]n

We can use the expansion

φ(t) = 1− σ2t2

2
+ o(t2)

to conclude that

φ(
t√
n

) = 1− σ2t2

2n
+ o(

1

n
)
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and it then follows that

lim
n→∞

ψn(t) = ψ(t) = exp[−σ
2t2

2
]

Since ψ(t) is the characteristic function of the normal distribution with den-
sity p(x) given in the statement of the theorem, we are done. ( See also p.
70)�

7 Kolmogorov’s Zero-One Law

Kolmogorov’s Zero-One Law states that if an event depends only on the tail-
behavior of a sequence of random variables then the event will occur with
either probability zero or probability one. This is fascinating, although there
aren’t too many interesting events that depends only on tail-behavior, since
they happen either essentially always or basically never.

Definitions
• Random variable (measurable function) A random variable or measur-

able function is a map f : Ω → R, i.e. a real valued function f(ω) on Ω
such that for every Borel set B ⊂ R, f−1(B) = {ω ∈ Ω : f(ω) ∈ B} is a
measurable subset of Ω. (p. 14)

• Independent The events A and B are independent if P (A ∩ B) =
P (A)P (B) (p. 51)

• Product measure If P1 is a measure on Ω1 and P2 is a measure on Ω2

then we may define a measure P3 on rectangles in Ω1 × Ω2 by

(∀A1 ∈ Ω1), (∀A2 ∈ Ω2), P3(A1 × A2) = P1(A1)P2(A2)

and then extend P3 in a natural way to the σ-field generated by these rect-
angles. The measure thus obtained is called the product measure. (See also
p. 14)

• Monotone class a class that is closed under monotone limits of an in-
creasing or decreasing sequence of sets. (p. 9)

• Riemann-Stieltjes Integral Limit as N →∞ of

ΣN
j=0g(xj)[F (aNj+1)− F (aNj )]

where −∞ < aN0 < aN1 < · · · < aNN < aNN+1 < ∞ is a partition of the finite
interval [aN0 , a

N
N+1] with the limit taken in such a way that aN0 → −∞, aNN+1 →

∞, and the oscillation of g in any and [aNj , a
N
j+1] goes to 0. In the above g is

bounded and continuous and F is a distribution function.
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Theorem 3.15(Kolmogorov’s Zero-One Law)

If A ∈ B∞ and P is any product measure (not necessarily with identical
components) then either P (A) = 0 or P (A) = 1. In here B denotes the
tail σ-field which contains only events that depend on the tail behavior of the
sequence of random variables (See also p. 49)

Proof. The proof depends on showing that A is independent of itself so
that

P (A) = P (A ∩ A) = P (A)P (A) = [P (A)]2

and therefore equals 0 or 1. The proof is elementary. Since A ∈ B∞ ⊂ Bn+1

and P is a product measure, A is independent of Bn = σ-field generated by
{xj : 1 ≤ j ≤ n}. It is therefore independent of sets in the field F = ∪nBn .
The class of sets A that are independent of A is a monotone class. Since it
contains the field F it contains the σ-field B generated by F . In particular
since A ∈ B, A is independent of itself. (p. 70)�

8 Hahn-Jordan Decomposition

Here we define a signed measure, and then decide that this it is not something
we like working with and then prove that it is actually just two normal
(unsigned) measures working against each-other. It might have been possible
to define two measures working against each other, but what would be the
fun in that?

Definition A countably additive signed measure is a countably additive
measure which allows for sets to have negative measure.

Theorem 4.3(Hahn-Jordan Decomposition)

Given a countably additive signed measure λ on (Ω,F) it can be written
always as

λ = µ+ − µ−

the difference of two nonnegative measures. Moreover µ+ and µ− may be
chosen to be orthogonal i.e, there are disjoint sets Ω+,Ω− ∈ F such that
µ+(Ω−) = µ−(Ω+) = 0. In fact Ω+ and Ω− can be taken to be subsets of
Ω that are respectively totally positive and totally negative for λ. µ± then
become just the restrictions of λ to Ω± . (p. 104)

Proof. Totally positive sets are closed under countable unions, disjoint
or not. Let us denote

m+ = supAλ(A).

If m+ = 0 then λ(A) ≤ 0 for all A and we can take Ω+ = Φ and Ω− = Ω which
works. Assume that m+ > 0. There exist sets An with λ(A) ≥ m+ − 1

n
and
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therefore totally positive subsets An of An with λ(An) ≥ m+ − 1
n
. Clearly

Ω+ = ∪nAn is totally positive and λ(Ω+) = m+. It is easy to see that
Ω = Ω − Ω+ is totally negative. µ± can be taken to be the restriction of λ
to Ω± . ( See also p. 105)�

9 Jensen’s Inequality

Jensen’s inequality describes the intuitive* and useful behavior of convex
functions. That it also holds for expectation values is impressive but not en-
tirely surprising. (*: depending on exactly what inclinations one’s intuitions
have)

Theorem (Jensen’s Inequality) p.80

If φ(x) is a convex function of x, and g = E{f |Σ} (see p. 79 for the
definition) then

E{φ(f(ω))|Σ} ≥ φ(g(ω)) a.e.

and if we take expectations

E[φ(f)] ≥ E[φ(g)]

(See also p. 80)

Proof. We note that if f1 ≥ f2 then E{f1|Σ} ≥ E{f2|Σ}a.e. and conse-
quently E{max(f1, f2)|Σ} ≥ max(g1, g2)a.e. where gi = E{fi|Σ} for i = 1, 2.
Since we can represent any convex function φ as φ(x) = supa[ax − ψ(a)],
limiting ourselves to rational a, we have only a countable set of functions to
deal with, and

E{φ(f)|Σ} = E{sup
a

[af − ψ(a)]|Σ}

≥ sup
a

[aE{f |Σ} − ψ(a)]

= sup
a

[ag − ψ(a)]

= φ(g)

a.e. and after taking expectations

E[φ(f)] ≥ E[φ(g)].

10


