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1. Abstract

Newton’s Method is one of the most powerful tools available for finding the
roots of polynomials. Given an initial guess for the root, the Newton Iteration
Function, provided that initial properties are satisfied, will often converge to a
root. This paper will address connections between the roots of a polynomial to
the fixed points of the Newton Iteration Function. In the cases where the Iteration
Function converges to a root, the speed of convergence will also be determined. It
will be shown that a root with multiplicity 1 converges quadratically, while a root
with multiplicity greater than 1 converges linearly.

2. Newton’s Method Is An Iterated Function

Given a differentiable function F (x), x ∈ R it is possible to find where F (x) = 0
by making an initial guess and then applying Newton’s Method. First make a guess
for the root and call it x0. Find an equation to the tangent line at (x0, F (x0)). Since
the slope is F ′(x0) the equation of the tangent line is of the form

y = F ′(x0)x + B

B = F (x0)− F ′(x0)x0

⇒ y = F ′(x0)x + F (x0)− F ′(x0)x0

y = F ′(x0)(x− x0) + F (x0)

Next, set y = 0 and find the root of this tangent line, which will be denoted by
x1.

0 = F ′(x0)(x1 − x0) + F (x0)

x1 = x0 +
F (x0)
F ′(x0)

This process can be continued, until a root is reached, with each process being
referred to as an iteration

Definition 1 (Newton Iteration Function). The Newton Iteration Function is de-
fined by

N(x) = x− F (x)
F ′(x)

Frequently, but not always, the orbit of a point x0 converges to a root of the
polynomial.

Definition 2 (Orbit). The orbit of an iterated function is defined as the sequence
{fon(x)}n→∞, where fon denotes the nth iteration of f starting at x.
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In the case of Newton’s Method the initial guess of the root of the polynomial
is the point whose orbit we focus on.

3. The Fixed Point Theorem And The Failure of Newton’s Method

Depending on the function under consideration and the initial point selected, the
orbit of this point may not always converge. For example, in order for Newton’s
Method to be successful it is required that for all x such that F (x) = 0, F ′(x) 6= 0,
as this leaves the Newton Iteration Function undefined. In addition, this initial
guess must be sufficiently close to the root.

According to the Newton-Raphson Fixed Point Theorem the roots of a function,
F are also fixed points of the Newton Iteration function, and vice versa

Definition 3 (Fixed Point). A fixed point x is a point such that given a function
G, G(x) = x.

Definition 4 (Multiplicity). A root x0 has multiplicity k iff [k−1](x0) = 0 and
fk(x0) 6= 0, where f [k]denotes the kth derivative of f at x0.

Definition 5 (Attracting Point ). x0 is an attracting point of a function F if it
satisfies the inequality

|F ′(x0)| < 1.

Definition 6 (Repelling Point). A repelling point x0 satisfies the inequality

|F ′(x0)| > 1.

Lemma 1. If x0 is a root of multiplicity k of F , then F (x) can be written as

F (x) = (x− x0)kG(x)

Where G is a continuous function such that G(x0) 6= 0.

Theorem 1. The Fixed Point Theorem states that if F is a function with Newton
Iteration Function N then x0 is a root of F with multiplicity k if and only if x0 is
an attracting fixed point of N .

Proof. For the case when a root x0 of a function F (x) has multiplicity 1, then by
definition F ′(x0) 6= 0 and F (x0) = 0. From Newton’s Iteration Formula it follows
that

f(x0) = 0 ⇒ N(x0) = x0

So x0 is a fixed point of N . Conversely, if x0 is a fixed point of N then N(x0) = x0

which implies that F (x0) = 0 proving that x0 is a root of F To prove the more
general case where a root x0 has multiplicity k > 1 apply Lemma 1 Suppose a
function F (x) has a root x0 of multiplicity k > 1 then F (x) = (x − x0)kG(x)
Taking the derivative,

F ′(x) = k(x− x0)k−1G(x) + (x− x0)kG′(x)

Newton’s Iteration Function then becomes

N(x) = x− (x− x0)kG(x)
k(x− x0)k−1G(x) + (x− x0)kG′(x)

(1)

N(x) = x− (x− x0)G(x)
kG(x) + (x− x0)G′(x)

(2)
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Substituting the root x0 into (2),

N(x0) = x0

proving that a root of multiplicity k > 1 is a fixed point of N(x) To show that it is
an attracting point, we take the derivative of N(x)

N ′(x) =
k(k − 1)(G(x))2 + 2k(x− x0)G(x)G′(x) + (x− x0)2G(x)G′′(x)

k2(G(x))2 + 2k(x− x0)G(x)G′(x) + (x− x0)2(G′(x))2

Applying x = x0 gives

N ′(x0) =
k(k − 1)(G(x))2

k2(G(x))2

⇒ N ′(x0) =
k − 1

k
< 1

So x0 is an attracting fixed point of N. Conversely, if a point x is a fixed point of
N then it is a root of F. By equation (2) the numerator

(x− x0)G(x) = 0 ⇒ x = x0

Because, by definition, G(x) 6= 0. [1] �

4. The Speed of Convergence of Newton’s Method

Definition 7 (Linear Convergence). If a sequence {xk} converges to a root R then
we say it converges linearly to R if

lim
k→∞

|xk+1 −R|
|xk −R|

= µ.

where 0 < µ < 1

Definition 8 (Quadratic Convergence). If a sequence converges quadratically to a
root R then

lim
k→∞

|xk+1 −R|
|xk −R|2

= µ.

where µ > 0

Lemma 2. If a root x0 has multiplicity k > 1 and the orbit of Newton’s Iteration
Function converges, then the orbit converges linearly.

Lemma 3. If a root x0 has multiplicity 1 and the orbit of Newton’s Iteration
Function converges, then the orbit converges quadratically.

Proof. To prove that Newton’s Method converges quadratically for a root of muli-
tiplicity 1, we first express

lim
k→∞

|xk+1 −R|
|xk −R|2

as

lim
k→∞

|Ek+1|
|Ek|2

where E represents the error term. Consider the Taylor Polynomial of a function
f(x) whose roots we wish to compute around the point xk. Assume that f ′(xk) 6= 0
then

(3) f(x) = f(xk) + f ′(xk)(x− xk) +
f ′′(xk)(x− xk)2
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If f(x) has a root at x = xr then if xr is substituted for x then (3) becomes

0 = f(xk) + f ′(xk)(xr − xk) +
f ′′(xk)(xr − xk)2

2

⇒ −f ′′(xk)(xr − xk)2

2
= f(xk) + f ′(xk)(xr − xk)

Dividing by f ′(xk)

−f ′′(xk)(xr − xk)2

2
=

f(xk)
f ′(xk)

+ (xr − xk)

Applying the iteration formula, xk+1 = xk − f(xk)
f ′(xk) gives

−f ′′(xk)(xr − xk)2

2
= xr − xk+1

⇒ −f ′′(xk)(Ek)2

2
= Ek+1

If, in fact, the orbit does converge to a root then limk→∞ f ′(xk) = f ′(xr) and
limk→∞ f ′′(xk) = f ′′(xr) So that

Ek+1

E2
k

=
−f ′′(xk)
2f ′(xk)

⇒ lim
k→∞

|Ek+1|
|Ek|2

=
| − f ′′(xr)|
|2f ′(xr)|

> 0

Note that f ′(xr) 6= 0 because xr has mulitiplicity 1. If xr has mulitiplicity k > 1
then, applying Lemma 1, f(x) can be written as f(x) = (x− xr)kG(x). Therefore,

f ′(x) = k(x− xr)k−1G(x) + (x− xr)kG′(x) ⇒ f ′(xr) = 0.

[2]
�
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