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We develop properties about Hilbert spaces and spectral measures in order to give a
generalization of the spectral theorem to infinite dimensions. We follow the treatment of
[Ha] closely, which is one of only a few rare sources that treat this form of the spectral
theorem. We then apply our new machinery to representation theory and prove an
irreducibility criterion that Professor Sally stated in his summer lectures.

1 Preliminary Facts about Hilbert Spaces

We work in a Hilbert space H with the inner-product of v and w denoted (v | w).

1.1 The Riesz Lemma

We begin by proving an incredibly useful lemma on the existence of operators, but first, we
need a standard theorem on Hilbert spaces.

Lemma: If η is a linear functional on H, then ψ(v) = (v | w) for suitable choice of w ∈ H.

Proof: Let K =Ker(ψ). We may suppose K⊥ 6= {0}, else the theorem would be clear with
A the zero operator. Then take w to be some non-zero vector in K⊥. Normalize w so that

ψ(w) = ‖w‖2. For a given vector v, let v = v1 + v2, where v1 =
ψ(v)

|w|2
w and v2 = v − v1. We

observe that:

ψ(v2) = ψ(v)− ψ(
ψ(v)

|w|2
w) = ψ(v)− ψ(v)

|w|2
ψ(w) = ψ(v)− ψ(v) = 0

Therefore, v2 ∈ K, which implies:
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(v | w) = (v1 + v2 | w) = (v1 | w) + (v2 | w) = (v1 | w) = (
ψ(v)

|w|2
w | w) = ψ(v)

Definition: A bounded bilinear functional is a map ϕ : H×H → R which is linear in
the first term, conjugate linear in the second term, and such that there exists a
non-negative constant we denote |ϕ| for which |ϕ(v, w)| ≤ ‖ϕ‖‖v‖‖w‖.

Lemma (Riesz): If ϕ is a bounded bilinear functional on H, then there exists a unique
operator A such that φ(v, w) = (Av | w) for all v, w ∈ H.

Proof: For fixed v, let ψv(w) = φ(v, w). Then, by the above, there exists some vector
which we suggestively denote Av such that ψv(w) = (w,Av) ⇒ ϕ(v, w) = (Av,w). Because
ϕ is a linear functional, it follows easily that A is a linear transformation, so we check that
it is bounded:

‖Av‖2 = |ϕ(v, Av)| ≤ ‖ϕ‖‖v‖‖Av‖

Therefore, ‖A‖ ≤ ‖ϕ‖.

1.2 Adjoints

Theorem: For A an operator, there exists a unique operator A∗, the adjoint of A,
satisfying the identity (Av | w) = (v | A∗w) for all v, w ∈ H.

Proof: Let ϕ(w, v) = (w | Av). Clearly, ϕ is a bounded, bilinear functional, so there exists
a unique operator A∗ such that ϕ(w, v) = (A∗w | v) ⇒ (Av | w) = (v | A∗w).

Definition: An operator A is Hermitian if A = A∗. An operator A is normal if
‖Av‖ = ‖A∗v‖ for all v ∈ H.

Proposition: An operator A is normal iff AA∗ = A∗A.

Proof: We take v an arbitrary vector in H. Then A is normal ⇔
(Av | Av) = (A∗v | A∗v) ⇔ (A∗Av | v) = (AA∗v | v) ⇔ AA∗ = A∗A

Remark: Note that in the Riesz lemma, if ϕ is symmetric, that is, ϕ(v, w) = ϕ(w, v), then
the resulting operator will be Hermitian.
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1.3 Projections

Definition: If M is a closed subspace of H, then elementary Hilbert space theory tells us
that every vector v ∈ H has a unique decomposition v = v1 + v2, where v1 ∈M and
v2 ∈M⊥. We define the projection onto M to be the map P : v 7→ v1. Note that P is
necessarily an operator. If M = C, we denote P by 1, and if M = {0}, we denote P by 0.

Definition: Let {Pi}i∈I be projections onto Mi. We partially order these by Pi ≤ Pj if
Mi ⊂Mj. We further define

∑
i∈I Pi to be the projection onto ∪i∈IMi.

Theorem: An operator P is a projection if and only if it is Hermitian and idempotent
(P 2 = P ).

Proof: It is clear that if P is a projection, then P 2 = P . For two vectors v and w, let
v = v1 + v2 and w = w1 + w2, where Pv = v1 and Pw = w1. Then:

(Pv | w) = (v1 | w1) + (v1 | w2) = (v1 | w1) + 0 = (v1 | w1) + (v2 | w1) = (v | Pw)

Therefore, P is Hermitian.

Now suppose that P is Hermitian and idempotent. Let M = {w ∈ H | Pw = w}. We claim
that P is a projection onto M. It suffices to prove that for all v ∈ H, (Pv | v − Pv) = 0.

(Pv | v − Pv) = (Pv | v)− (Pv | Pv) = (Pv | v)− (P 2v | v) = (Pv | v)− (Pv | v) = 0

Corollary: If P is a projection, then for all v ∈ H, ‖Pv‖2 = (Pv | v).

Proof: ‖Pv‖2 = (Pv | Pv) = (P 2v | v) = (Pv | v)

2 Spectral Measures

2.1 Definition and Basic Properties

Let B(C) be the set of Borel sets in C and P (H) the set of projections on H. Definition:
A (complex) spectral measure is a function E : B(C) → P (H) satisfying the following
properties:

1. E(∅) = 0 and E(C) = 1

2. If {Bn}n∈N is a family of disjoint Borel sets, then E(
⋃
Bn) =

∑
E(Bn)
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Remark: The standard techniques of the theory of complex-valued measures can be used
to show many of the basic facts about spectral measures. For one, the requirement that
E(∅) = 0 is superfluous given the second property. Furthermore, we can see that if
B0 ⊂ B1, then E(B0) ≤ E(B1). Another interesting property that spectral measures share
with their complex counterparts is modularity, that is:

E(B0 ∪B1) + E(B0 ∩B1) = E(B0) + E(B1).

From this and the observation that E(B0)E(B0 ∪B1) = E(B0), we can see that
E(B0 ∩B1) = E(B0)E(B1).

Proposition: Suppose E : B(C) → P (H) is any function such that ∀v, w ∈ H, the
function E∗(B) = (E(B)v | w) satisfies E∗(

⋃
Bn) =

∑
E∗(Bn) and that E(C) = 1. Then E

is a spectral measure.

Proof: The remark shows that we needn’t worry about the empty set, so it suffices to
show only the second property. Suppose {Bn} a disjoint family of Borel sets in C. Then:∑

‖E(Bn)v‖2 =
∑

(E(Bn)v | v) =
∑

(E(
⋃
Bn)v | v) = ‖E(

⋃
Bn)v‖2

Thus, the sequence vn = E(Bn)v is summable. We note now that for all disjoint Borel sets
B,C, we have

(E(B)v + E(C)v | w) = (E(B)v | w) + (E(C)v | w) = (E(B ∪ C)v | w)

so that our claim is clear simply by examining the partial sums of
∑
E(Bn).

2.2 Spectral Integrals and their Associated Operators

We will find frequent occasion to denote E(λ) by Eλ.

Defintion: Given a spectral measure E, we define the spectral integral with respect to
v, w ∈ H of the measurable function f to be the Lebesgue-Stieltjes integral∫
f(λ)d(Eλv | w), which we will sometimes abbreviate

∫
f(λ)dE.

Definition: The spectrum of a spectral measure E is Λ(E) = C \ ∪Ui, where the union is
taken over all open sets Ui for which E(Ui) = 0. We say that E is compact if Λ(E) is
compact.
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Theorem: For E a compact spectral measure, there is a unique normal operator A such
that ∀v, w ∈ H,

∫
λd(Eλv | w) = (Av | w). For the sake of brevity, we will find occasion to

write A =
∫
λdE.

Proof: Let ϕ(v, w) =
∫
λd(Eλv | w), which is finite for all (v, w) because Λ(E) is compact.

Clearly, ϕ is a bilinear functional. Furthermore, ϕ(v, v) is bounded because
|ϕ(v, v)| ≤

∫
|λ|d(‖Eλv‖2) ≤ sup{|λ| | λ ∈ Λ(E)} · ‖v‖2 = M‖v‖2. But by applying the

parallelogram law, we see that:

|ϕ(v, w)| ≤ 1
4
M(‖v + w‖2 + ‖v − w‖2 + ‖v + iw‖2 + ‖v − iw‖2) ≤M(‖v‖2 + ‖w‖2)

If we set ‖v‖ = ‖w‖ = 1, we see that ‖ϕ‖ ≤ 2M , so ϕ is bounded. Thus, by the Riesz
lemma such a unique operator A must exist.

We now wish to show that A is a normal operator. By the same process, construct an
operator A′ such that A′ =

∫
λ̄dE. Then:

(v | A′w) = (A′w | v) =
∫
λ̄d(Eλw | v) =

∫
λd(v | Eλw) =

∫
λd(Eλv | w) = (Av | w).

Therefore, by the uniqueness of the adjoint, A′ = A∗.

Let B be a Borel set. We then have:

(A∗v | E(B)w) =
∫
λ̄d(Eλv | E(B)w) =

∫
λ̄d(E(B)Eλv | w) =∫

λ̄d(E(B ∩ λ)v | w) =
∫

B
λ̄d(Eλv | w).

This means that:

(AA∗v | w) = (A∗w | A∗v) =
∫
λ̄d(Eλw | A∗v) =

∫
λd(EλA

∗v | w) =
∫
λ · λ̄d(Eλv | w) =∫

|λ|2dE

But a parallel argument and the symmetry here shows that this is also equal to
(A∗Av | w). Because v and w were arbitrary, we must have that A is a normal operator.

2.3 The Spectrum of an Operator

We hope to generalize the notion of the eigenvalue, ubiquitous to the study of finite
dimensional vector spaces, to infinite dimensions.

Definition: The spectrum of an operator A is the set Λ(A) = {λ ∈ C | A− λI is not
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invertible}.

In order to use this definition effectively, we’ll need a characterization of invertible and
non-invertible operators.

Theorem: An operator A on H is invertible iff its image is dense in H and ∃α > 0 s.t.
∀v ∈ H, ‖Av‖ ≥ α‖v‖ (we call this second property being bounded from below).

Proof: We suppose first that A is invertible. Then the image of A is all of H, which is

obviously dense in H. Now let α =
1

‖A−1‖
. Then ∀v ∈ H, ‖v‖ = ‖A−1Av‖ ≤ ‖A−1‖‖Av‖.

Now suppose that our two properties hold. We claim first that the range of our operator A
is all of H. It suffices to show that it is closed. Suppose that vn is a Cauchy sequence in the

image. For all n, choose wn so that Awn = vn. Then ‖wn − wm‖ ≤
1

α
‖vn − vm‖, which

means that wn is Cauchy, and thus converges to a point w ∈ H. But by continuity,
vn → Aw, which implies that the range is closed.

To prove injectivity, we note that if Av1 = Av2, then 0 = ‖Av1 − Av2‖ ≥ α‖v1 − v2‖, so
that v1 = v2. Thus, A is bijective. It is clear that its inverse is also linear. It suffices now to
show that A−1 is bounded, which we see by:

‖w‖ = ‖Av‖ ≥ α‖v‖ = α‖A−1w‖ ⇒ ‖A−1w‖ ≤ 1
α
‖w‖

Proposition: If A is any operator such that ‖A− I‖ < 1, then A is invertible.

Proof: Let α = 1− ‖A− I‖, so that 0 < α. Then for any v ∈ H:

‖Av‖ = ‖v − (v − Av)‖ ≥ ‖v‖ − ‖Av − v‖ ≥ (1− ‖I − A‖)‖v‖ = α‖v‖

Therefore, A is bounded from below. Let M be the range of A in H. Let
δ = inf{‖v − w‖ | v ∈ H, w ∈M}. It suffices to prove that δ = 0. Suppose otherwise.
Then, because 1− α < 1, there exist v ∈ H and w ∈M such that ‖v −w‖ < δ

1−α
. Then we

must have:

δ ≤ ‖(v − w)− A(v − w)‖ ≤ (1− α)‖v − w‖ < δ

Thus, assuming δ not equal to zero gives a contradiction.

Theorem: If A is an operator, then Λ(A) is compact. In particular, if λ ∈ Λ(A), then
‖λ‖ ≤ ‖A‖.
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Proof: We first prove that Λ(A) is closed, in which case the first statement will follow
from the second. Suppose the λ0 is not an element of Λ(A). Take δ < ‖A− λ0‖ and let
‖λ− λ0‖ < δ. Then:

‖I − (A− λ0)
−1(A− λ)‖ = ‖(A− λ0)

−1((A− λ0)− (A− λ))‖ ≤ ‖A− λ0‖−1|λ− λ0‖ < 1

Thus, A− λ is invertible in a ball of radius δ about λ0, so C \ Λ(A) is open, which proves
our claim.

Now suppose that |λ| > ‖A‖. Then ‖A
λ
‖ < 1, which implies that I − A

λ
is invertible.

Multiplying this operator by a scalar, we see that A− λ is invertible. Thus, λ is not in
Λ(A).

Theorem: If E is a compact spectral measure and A =
∫
λdE, then Λ(E) = Λ(A).

Proof: Suppose that λ0 ∈ C \ Λ(E). By definition, Λ(E) is open, so there exists δ > 0
such that B = B(λ0, δ) ⊂ C \Λ(E) and E(B) = 0. Using that E(C) = 1, one may see that:

‖Av−λv‖2 =
∫

C |λ− λ0|2d(Eλv | v) =
∫

C\B |λ0 − λ|2d(Eλv | v) ≥
∫

C\B δ
2d(Eλv | v) = δ2‖v‖2

which means that A− λ0I is bounded from below. We now need only to prove that the
image of A− λ0I = A0 is dense in H.

Suppose that A0 is any normal operator which is bounded from below. Let R be the image
of A0. It suffices to prove that R⊥ = 0. Suppose that w ∈ R⊥. Then for all v ∈ H,
0 = (A0v | w) = (v | A∗

0w), which means that A∗
0w = 0. But

0 = ‖A∗
0w‖ = ‖A0w‖ ≥ α‖w‖,

which means that w = 0.

On the other hand, suppose that λ0 ∈ Λ(E). Take δ > 0. Then E(B(λ0, δ)) 6= 0. As E(B)
must contain some unit vector v, we have, by the argument above:

‖Av − λ0v‖2 =
∫

B
|λ− λ0|2d(Eλv | v) ≤ δ2‖v‖2

Thus, because δ was arbitrary, A− λ0 cannot be bounded from below, and thus, is not
invertible.
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3 The Spectral Theorem

3.1 Useful Theorems of Analysis

For the proof of the spectral theorem, we will need two standard theorems of analysis. The
curious reader is referred to [R1] and [R2] respectively. We denote by C(X) the set of
complex-valued continuous functions on X and by C0(X) the subset of C(X) of functions
which go to 0 at infinity (formally: for all ε > 0, there exists a compact set K for which
|f(x)| < ε for all x 6∈ K.

Theorem (Stone-Weierstrass): For a given compact set K, suppose that A is an
algebra of continuous functions f : K → C which is closed under conjugation, separates
points of K and there are no elements of K which all functions in A vanish on. Then A is
dense in C(K).

Theorem (Riesz): If X is a locally compact Hausdorff space and ϕ is a bounded linear
functional on C0(X), then there is a unique regular complex Borel measure µ such that
ϕ(f) =

∫
fdµ and such that ‖ϕ‖ = |µ(X)|.

3.2 Proof of the Spectral Theorem

Theorem: Let A be a Hermitian operator. Then there exists a spectral measure E such
that for all v, w in H, (Av | w) =

∫
Λ(A)

λd(Eλv | w).

Proof: Fix vectors v and w. For a given polynomial p, let L(p) = (p(A)v | w). Note that
|L(p)| ≤ sup{|p(λ)| | λ ∈ Λ(A)} · ‖v‖‖w‖. Because Λ(A) is compact, we can apply
Stone-Weierstrass to see that the polynomials are dense in C(Λ(A)). Therefore, L defines a
bounded linear functional on all of C(Λ(A)) = C0(Λ(A)). Thus, there is a unique bounded
complex measure µ(v,w) such that (p(A)v | w) =

∫
p(λ)dµ(v,w)(λ).

Fix a Borel set B. We may now define µB(v, w) = µ(v,w)(B). An obvious check reveals that
µB is a bounded symmetric bilinear form. Therefore, by the Riesz lemma, there exists a
unique Hermitian operator E(B) such that µB(v | w) = (E(B)v | w). Setting p(λ) = 1, we
see that E(Λ(A)) = E((C)) = 1, and setting p(λ) = λ, we see that∫
λd(Eλv | w) = (Av | w).

By an earlier theorem, it’s enough to check that E is projection-valued to see that it is
actually a spectral measure. Because E is Hermitian, we need only to check that it is an
idempotent operator. Take p, q to be arbitrary polynomials. We define a new measure
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ν(B) =
∫

B
p(λ)d(Eλv | w). Then, by the construction of E:∫
q(λ)dν(λ) =

∫
q(λ)p(λ)dE = (q(A)p(A)v | w) = (p(A)q(A)v | w) =
(q(A)v | p(A)w) =

∫
q(λ)d(Eλv | w)

Thus, by the arbitrary choice of q, Stone-Weierstrass and the fact that
compactly-supported, continuous functions are dense in L1, we have∫
χB(λ)p(λ)d(Eλv | w) = ν(B) = (E(B)v | p(A)w) for all Borel sets B. But applying

Stone-Weierstrass again, this time on p, we now see that:

(E(B)v | w) =
∫
χB(λ)dE =

∫
χB(λ) · χB(λ)dE = (E(B)v | E(B)w) = (E(B)2v | w)

Thus, as v and w were arbitrary, this was exactly what we intended to prove.

3.3 Applications to Representation Theory

Definition: Let G be a group. A unitary representation of G into H is a
homomorphism T : G→ U(H), where U(H) is the set of unitary (inner-product preserving)
operators on H. We denote T (g) by Tg to emphasize that T (g) is itself a function on H.
We say a representation T of G is irreducible if the only closed invariant subspaces of H
under T (G) are 0 and H.

Definition: The commuting algebra of a representation T of G is the set of operators A
such that TgA = ATg for all g ∈ G. We denote the commuting algebra of T by C(T ). Note
that I is always in C(T ).

Theorem: A representation T of G is irreducible iff C(T ) is one-dimensional.

Proof: Suppose first that T is reducible. Then there is a proper closed subspace M⊂ H
which is invariant under the action of T . Let P be the projection onto M. Then for any
v ∈ H, if v = v1 + v2 where v1 = Pv and if wi = Tgvi, we have

PTgv = PTgv1 + PTgv2 = Pw1 + Pw2 = w1 = Tv1 = TPv

Thus, because P is not a scalar multiple of the identity, the commuting algebra is not
one-dimensional.

Suppose now that T is irreducible and A is in C(T ). We first assume that A is Hermitian.
Choose E so A =

∫
λdEλ. Fix v and w vectors in H as well as some polynomial p. We

define two measures on Borel sets B: µ(B) =
∫

B
d(EλTgv | w) and ν(B) =

∫
B
d(TgEλv | w).

Then:
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∫
p(λ)dν =

∫
p(λ)d(Eλv | T ∗

gw) = (p(A)v | T ∗
gw) = (Tgp(A)v | w) =

(p(A)Tgv | w) =
∫
p(λ)dµ

Thus, applying Stone-Weierstrass, (EBTgv | w) = (TgEBv | w). As v and w were arbitrary,
this tells us that Tg commutes with EB for all g ∈ G and B a Borel set. But, because T is
irreducible and E is projection-valued, this implies that EB = 0 or 1 for all B. Therefore:

(Av | w) =
∫
λd(Eλv | w) = λ0(v | w) = (λ0v | w)

so that A = λ0I, as was claimed.

Now we loosen the restriction that A is self-adjoint. Let A1 = A+A∗

2
and A2 = A−A∗

2i
. We

observe that both A1 and A2 are self-adjoint and in the commuting algebra of T . Thus, by
the above, there are constants λ1 and λ2 so that A1 = λ1I and A2 = λ2I. Then
A = (λ1 + iλ2)I.
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