
Principles of Pseudo-Random Number

Generation in Cryptography

Ned Ruggeri

August 26, 2006

1 Introduction

The ability to sample discrete random variables is essential to many areas of
cryptography. The most obvious example is key-generation for encryption algo-
rithms or keyed hash functions – if one uses deterministic algorithms to generate
keys, then the security of the key is dependent on the secrecy of the algorithm,
which is both impractical and unnecessary. Modern cryptography posits that
messages and keys are the secrets, not algorithms. Only (well-constructed) al-
gorithms incorporating random keys offer legitimate users abilities that an ad-
versary cannot replicate.1 Since security should not reside in uncertainty about
a party’s algorithm, it must instead originate from the entropy of the key-space.
However, it is often impractical to generate and transfer very long strings of ran-
dom bits. A good way to minimize these problems is to use cryptographically
secure pseudo-random number generators (CSPRNG).

This paper hopes to be an accessible resource to introduce the principles
of pseudo-random number generation in cryptography. Key topics are what it
means to be a CSPRNG, the conditions for the existence of a CSPRNG, as well
as more general cryptographic concepts such as ‘security’ and ‘adversary.’

2 Preliminaries

Definition: A discrete variable X takes on values in an associated finite set X.
For x ∈ X, we denote the (unconditional) probability that X = x as Pr[X = x],
or simply Pr[x] if there is no confusion. Of course,

∑
x∈X Pr[x] = 1.

A discrete random variable X is a variable such that, for any event E,
the conditional probability Pr[X = x|E] = Pr[X = x]. Put another way,
no knowledge of the world gives you any insight into the expected value of a
sample of X (beyond the insight you have from knowing X and the probability
distribution on X).

1Though there are important unkeyed cryptographic primitives, they do not grant unique
abilities to privileged parties (e.g., anyone can hash a message).

1



If Pr[X = x] = 1
|X| for all x ∈ X, then we say that X is a uniformly

distributed random variable.
By X{0,1}n , we denote a uniformly distributed random variable over the set

of bit-strings of length n. Our discussion will be about X{0,1}n since this is
the variable of greatest cryptographic interest, though the contents of our state-
ments aren’t really specific to any one uniformly distributed random variable.
Though the variable is over a set of bit-strings, it often makes sense to think
of a single sample of X{0,1}n as equivalent to a sequence of n samples from a
uniformly distributed random variable over {0, 1} (a coin flip). �

NB: We do not deal with continuous random variables, which are variables
over an infinite set of possible values, since due to memory boundedness there
is no way to store this information in the relevant computational model (the
further importance of the computational model will become apparent later).
Moreover, we assume that (a) random variables exist, (b) we can sample random
variables (i.e., assign their current value to some register), and (c) sampling X
takes polynomial-time with respect to |X|.

Definition: [Shannon] Entropy, denoted H(X), is a measure of the uncer-
tainty about the value of a future sample of a random variable X. Specifically,
H(X) = −

∑
x∈X Pr[x] log2 Pr[x] (which is a lower bound on the average num-

ber of bits per sample for a Huffman encoding of X), but none of this need
concern us. The concept is really what’s important – that entropy is a mea-
sure of how difficult it is to predict a future (or guess a secret) event, given
all other available knowledge about the world. Conditional entropy, written as
H(X|Y) = −

∑
y∈Y

∑
x∈X Pr[y]Pr[x|y] log2 Pr[x|y], measures how much un-

certainty of X is not due to uncertainty about Y. �
Definition: A function ensemble is an indexed family of functions denoted

by f : {0, 1}l(n) → {0, 1}t(n), where l(n) and t(n) are polynomial in n (for any
fixed n, we could refer to a specific function fn). Of course, computing the value
of the function ensemble given an input takes a certain amount of time. We
will thus often consider the worst-case time bound for f parameterized by n,
denoted T (n). A polynomial-time function ensemble has T (n) ≤ nO(1).2

Most times, for n, m, l(n) 6= m(n), and so there is no ambiguity to treat
the function ensemble as a single function f . If this is the case, then we are,
essentially, viewing the family as not indexed by n, but by the length of the
input. �

Definition: Cryptographic primitives are the basic building blocks for pro-
tocols. An instance of a primitive is a polynomial-time function ensemble with
a security property (e.g., one-way, collision-resistant, etc.). �

Definition: An adversary A is a function ensemble which attempts to defeat
the security property of an instance of a cryptographic primitive. They are often
Monte Carlo algorithms (a randomized algorithm always returning a result,
though sometimes inaccurately). The average success-probability (over inputs
to the primitive instance) of an adversary depends is written (δ(n)). We refer

2If k, l are functions, then k(x) = O(l(x)) iff there exists c such that k(x) ≤ c · l(x).

2



to the time-success ratio of A, which is T (n)
δ(n) .3

Let S be a function of n. If there is no adversary of a primitive instance f
with time-success ratio better than S(n), we say that the security property is
S(n)-secure, or that the security of f is S(n). �

It is now obvious why we want to talk about function ensembles rather
than simply functions. We want to consider the asymptotic behavior of the
difficulty to attack a primitive relative to the difficulty to compute it. Perhaps
today it is infeasible to attack a primitive instance given current computational
limitations. But as computing power increases, an adversary’s task will become
easier. But if f has security S(n) > nO(1), while taking only time T (n) =
nO(1) to compute, then we can increase the difficulty of attacking f without a
commensurate increase in the difficulty to compute f .

3 Next-Bit Unpredictability

While we assume it takes polynomial-time to sample a random variable, in
practice it is expensive to do so. Specialized hardware is necessary. If another
party needs to be sent the random information, transmission can pose a serious
task. Also, what if extra bits are required after the parties can no longer stay
in touch via private channels?

If we could use some deterministic algorithm to ‘stretch out’ the entropy of
a relatively short sequence of random samples (a seed), we would not have to
generate or transmit as much secret information. We hope that after stretching
the seed, the subsequent sequence will still appear to be a series of random
samples.

Consider X{0,1}n , and x ∈ {0, 1}n. Since the conditional probability that
X{0,1}n = x given any event E is still Pr[X{0,1}n = x] = 1

2n , we might say that
the values of future samples of X are unpredictable. By assumption, no amount
of computing power could possibly find anything out about the value of a single
sample of X{0,1}n .4 We call this property next-bit unpredictability. However,
we don’t have infinite computational resources anyway. What we would like to
know is whether there is a weaker criteria of unpredictability which, given our
computing power, suffices for cryptographic purposes.

To do this, consider a polynomial-time, deterministic function ensemble
f : {0, 1}n → {0, 1}l(n), with l(n) > n. Assume that the input of f is always
a sample from X{0,1}n . We might consider X{0,1}n and f to define a variable

3The importance of time-success ratio is due to the fact that we can generally trade speed
for accuracy. If an adversary A1 takes time T1(n) and achieves accuracy δ1(n), then we can
write another, randomized adversary A2 which samples a random bit to decide whether to
(a) fail or (b) run A1. δ2(n) = (δ1(n))(Pr[1]) = O(δ1(n), while T2(n) = (T1(n))(Pr[1]) + z =
O((T1(n))) (where z is the time it takes to sample a single bit). Regardless, we see that
A2 may be much faster than A1, but the time-success ratio is the same (up to a constant):

O(
T (n)
δ1(n)

). We can similarly can hope to increase the accuracy of a randomized adversary by

running it multiple times and picking the most frequent result.
4We can say more about long sequences of samples from X{0,1}n . We expect half of the

‘runs’ to be of length 2, an eighth to have length 3, etc.

3



Fl(n). To sample Fl(n), one simply lets x (the seed) be a sample of X{0,1}n and
computes f(x).

Note that since f is deterministic, f is not onto and thus Fl(n) is not a
uniformly distributed variable. Also, even if the seed is completely forgotten,
H(Fl(n)) ≤ H(X{0,1}n). This immediately implies that a sample of Fl(n) is not
analogous to flipping a fair coin l(n) times – there is less unknown information
about the bits than that. Regardless of whether the entropy is spread out over
all the bits evenly, since the entropy per bit is less than 1, for at least one i,
H(xi|x{j6=i}) < 1. Thus, one value of xi is more likely than another, given the
values of the other l(n)− 1 bits.

Definition: Fix n. An i-th bit predictor pi for Fl(n), takes the first i − 1
bits of a sample from Fl(n), and attempts to predict the value of the i-th bit
before it is revealed. The success probability of the predictor is

δi(n) =
∑

y∈Fl(n)

(
Pr[Fl(n) = y]

)
(Pr[pi(y1,2,...,i−1) = yi])

(where y1,2,...,i−1 means the first i− 1 bits of y).
A next-bit predictor p attempts to predict the next bit given some initial bits

of a sample y ∈ Fl(n). Such a predictor can be seen as calling on a library {pi}
of i-th bit predictors (1 ≤ i ≤ l(n)). The success probability of p is∑l(n)

i=1 δp(n)
l(n)

.

�

Theorem 1. Fix n. For some i, an i-th bit predictor exists for Fl(n) (that is,
a predictor with δ > 0).

Proof. Let y be a sample from Fl(n). Assume a predictor does not exist for any
of the first n bits of y. Let us think of these bits as random variables. Then for
1 ≤ i ≤ n, Pr[yi = 1] = 1

2 (if not, we need zero bits to predict yi). Moreover:

Pr[yj = 1|yi = 1] =
1
2
, 1 ≤ i < j ≤ n.

If this weren’t true, than knowing the value of yi would let us predict yj with

δj(n) = Pr[yj = 1|yi = 1].

By Bayes’ Theorem, we also have that:

Pr[yi = 1|yj = 1] =
Pr[yi = 1]Pr[yj = 1|yi = 1]

Pr[yj = 1]
=

1
2
.

So the first values of the first n bits are independent, which means

H(yi,yi, . . . ,yn) = n = H(Fl(n))

which means that H(yn+1|x1,...,n) = 0, and thus can always be predicted suc-
cessfully from the first n bits. �

4



If we can find a next-bit predictor of Fl(n) with a fairly high level of accuracy,
it would make sense to say that f doesn’t generate a ‘particularly random’
variable. While a sample of Fl(n) may have a distribution of ones and zeros
which might be expected from l(n) random coin flips, it would diverge from the
defining property of a random variable – unpredictability. Of course, we want to
consider how long it takes for a next-bit predictor to run. Therefore, we define
pseudo-randomness in terms of the lower-bound on the time-success ratio of a
next-bit predictor.

Definition: Consider a polynomial-time, deterministic function ensemble
f : {0, 1}n → {0, 1}l(n). An adversary A (a sequence of next-bit predictors)
attacking f has average success probability

δ(n) =
(

1
l(n) · 2n

)  ∑
x∈{0,1}n

∑
{i∈1,2,...,l(n)}

Pr[A(f(x)1,...,i−1) = f(x)i]


for predicting any given bit of the sequence, given the preceding bits.

If the time-success probability of any adversary is at least S(n), we say that
f is a S(n)-secure pseudo-random bit-string generator, which offers the security
property that output is S(n)-secure next-bit unpredictable when input is chosen
from X{0,1}n . The variable Fl(n) is called S(n) pseudo-random. �

4 Indistinguishability

We have now finally defined pseudo-randomness in terms of S(n)-secure next-bit
unpredictability. The variable a S(n)-secure pseudo-random bit-string genera-
tor defines, from the perspective of an adversary with bounded computational
power, has the essential property of a random variable: next-bit unpredictability.
Yet, while our approach was intuitive, there is a seemingly distinct conception
of pseudo-randomness.

Say we are presented with two variables, X0 and X1, over the same set X.
Imagine a friend (randomly, fairly, secretly) chooses one of the variables and
samples a value from it. He then presents the value to you and asks you to
guess whether the value came from X0 or X1.

Definition: One idea is to consider all functions (including randomized
functions) of the form d : X → {0, 1}. If d(x) = 0, we consider this a ‘guess’
that x came from X0, otherwise, we take d as guessing x was from X1. Given
an element from Xi, the success probability of d is∑

x∈X

Pr[Xi = x]Pr[d(x) = i],

and for an element chosen fairly from either set,

δ =
∑
x∈X

(Pr[X0 = x]Pr[d(x) = 0] + Pr[X1 = x]Pr[d(x) = 1])
2

.

5



We say that d is a distinguisher with success probability δ. �
This line of inquiry suggests defining a pseudo-random variable differently

than we did in the prior section, based on the security property of S(n)-secure
indistinguishability. However, it turns out that the two security properties are
basically the same, and thus any primitive instance which offers security for one
property offers (basically) identical security for the other.

Lemma 1 (Without proof – Sorry!). This kind of thing can be found in a
statistics text, I guess. We make use of the regularized, incomplete beta function:

Ix(a, b) =

∫ x

0
ta−1(1− t)b−1 dt∫ 1

0
ta−1(1− t)b−1 dt

and this fact about the binomial distribution:

k∑
i=0

n!(p)i(1− p)(n−i)

i!(n− i)!
= I(1−p)(n− k, k + 1)

Theorem 2. Consider a pseudo-random bit-string generator f . Suppose there
exists a next-bit predictor A for f with time-success ratio R(n). Then there
exists a distinguisher of Fl(n) and X{0,1}l(n) with time-success ratio at least
O(R(n)).

Proof. Fix n.
Let x be a sample from either Fl(n) or X{0,1}l(n) . Recall that we can think

of A as calling a library of i-th bit predictors pi. We want to define another
adversary A′ which will use this library to attack distinguishability of the two
variables. Let

β =
∑l(n)

i=1 pi(x1,...,i−1)⊕ xi

l(n)
.

If β > 1
2 , that means that A was unable to predict more than half the bits, and A′

should guess that x had been generated randomly, from X{0,1}l(n) . Otherwise,
A′ should guess x is from the pseudo-random variable Fl(n).

If x is a sample from X{0,1}l(n) , then we know that A (and every next-bit
predictor) predicts the next bit with accuracy 1

2 . Thus, the probability that
A′ correctly guesses x is from X{0,1}l(n) is equal to the probability that an odd
number of l(n) coin flips turn up heads. This is clearly 1

2 .
Now, if x is from Fl(n), A′ succeeds if the number of failures is less than or

equal to b l(n)
2 c. The average probability of failure is 1 − ( 1

2 + δ(n)), which we
call pf . Of course, this calls upon our knowledge of the binomial distribution:

Pr[Success] =
i=b l(n)

2 c∑
i=0

(l(n))!(pf )i(1− pf )(l(n)−i)

i!(l(n)− i)!

6



We simply want to say that this is always greater than or equal to 1
2 + δ(n). We

call upon our lemma:

Pr[Success] = I1−pf
(l(n)− b l(n)

2
c, b l(n)

2
c+ 1)

= Ips
(d l(n)

2
e, b l(n)

2
c+ 1)

=

∫ ps

0
t(d

l(n)
2 e−1)(1− t)b

l(n)
2 c dt∫ 1

0
t(d

l(n)
2 e−1)(1− t)b

l(n)
2 c dt

Clearly, if p = 1
2 + δ(n) = 1, then Pr[Success] = 1 = p. If l(n) is odd, then

it is easy to see that the quantity inside the integrals is symmetric about .5,
and thus p = 1

2 implies Pr[Success] = .5 = p. If l(n) is even, then the success
probability is strictly greater than that for l(n) + 1 (since it still takes the same
number of incorrect guesses for A′ to fail with l(n)+1 tests, but there are more
chances for failure), so we have Pr[Success] > p = .5.

Of course, the nice thing to have would be that

Pr[Success] ≥ p

on the interval [.5, 1]. We have the statement at p = .5 and p = 1. Since the
function inside the integral is continuous, we can apply the First Fundamental
Theorem of Calculus, to get

d(Pr[Success− p)]
dp

=
(p)(d

l(n)
2 e−1)(1− p)b

l(n)
2 c∫ 1

0
t(d

l(n)
2 e−1)(1− t)b

l(n)
2 c dt

− 1,

and also d(Pr[Success]−p)
dp = 1 at p = −1. Thus, if the derivative has only one

root in [.5, 1], we have the statement (since the derivative is clearly continuous,
we apply Role’s Theorem). This is fairly clear, so we can finally say that the
accuracy of A′ if x came from Fl(n) is at least 1

2 + δ(n).
The success-probability of A′, then, is

δA′(n) =
∑

x∈{0,1}l(n)

(Pr[Fl(n) = x]Pr[A′(x) = 0]

+ Pr[X{0,1}l(n) = x]Pr[A′(x) = 1])− 1

≥ 1
2

+ δA(n) +
1
2
− 1

≥ δA(n).

As for TA′(n), the adversary simply calls A, does l(n) mod 2 additions, one
division, and one comparison. So TA′(n) = TA(n) + nO(1), so since TA ≥ nO(1)

(it returns l(n) bits), we have TA′ = O(TA).

7



So the time success-ratio of A′ to mount a distinguishing attack is RA′(n) ≤
O(RA(n)). �

Theorem 3. If a pseudo-random bit-string generator f defines a variable Fl(n)

which is distinguishable from X{0,1}l(n) by A with time-success ratio RA(n), then
there exists an adversary A′ which is a next-bit predictor with time-success ratio
less than O(R(n)).

Still to do:
(A) Prove this (due to Yao)
(B) Talk about the existence criteria for pseudo-random generators (iff one-

way functions exist, meaning necessary condition is P 6= NP .)
(C) Probabilistic encryption (basically, that the ciphertext space, considered

as a random variable, is indistinguishable from a random variable)

References

[1] Luby, Michael George., Pseudorandomness and Cryptographic Applications,
(Princeton, NJ: Princeton University Press, 1996).

[2] Stinson, Douglas R., Cryptography: Theory and Practice, (Boca Raton:
Chapman & Hall, 2002).

[3] Yao, Andrew C., “Theory and applications of trapdoor functions,” In Pro-
ceedings of the Twenty-third Annual IEEE Symposium on Foundations of
Computer Science, Chicago, Illinois, November 1982, 80-91.

[4] Hastad, Johan and Impagliazzo, Russell and Levin, Leonid A. and Luby,
Michael, “A Pseudorandom Generator from any One-way Function,” SIAM
Journal on Computing, 28 (4), 1364–1396.

8


