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Abstract

We summarize some of the basic principles of microlocal analysis and their
applications. After reviewing distributions, we then define pseudodifferential
operators, their symbols, and the pseudolocal property. This then leads to the
fundamental notion of microlocal analysis: the wave front set of a distribution.
The wave front set will then be used to analyze the problem of the propagation
of singularities.

1 Introduction

The techniques of microlocal analysis were developed in the 1960’s and 70’s as part
of the study of linear partial differential equations. Many of the ideas are due to
the work of Hormander, Kohn and Nirenberg, and Maslov, in which they general-
ized existing notions from analysis to investigate distributions and their singularities.
Indeed, much of microlocal analysis is concerned with shifting the study of a distri-
bution’s singularities from the base space to the cotangent bundle. Such a study will
allow us to answer basic questions such as when the product of two distributions is
well-defined, as well as extending and strengthening some standard theorems from
differential equations, such as elliptic regularity.

2 Review of Distributions

In elementary calculus, one is immediately confronted with functions that are not
differentiable. The introduction of distributions seeks to remedy this shortcoming by
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providing the smallest set of objects such that every member is infinitely differentiable
in a sense to be made precise later (hence the term “generalized function”). In this
section, we will give a precise definition and topology of this space of functions. Fix an
open set Ω ⊂ Rn, and consider the space of smooth functions with compact support
C∞

c (Ω). We would like to give this space a suitable topology under which it will be
complete. This can be accomplished by introducing a family of seminorms that range
over all compact K ⊂ Ω:

PK,m = sup
|α|≤m,x∈K

|Dαf(x)|, (1)

where

Dα =
∂|α|

∂α1∂α2 · · · ∂αk
; ‖α‖l1 = |α|, and supp(f) ⊆ K.

Because this family of seminorms {P j} separates points in that P j(x) for all j
implies x = 0, they turn C∞

c (Ω) into a locally convex space, such that the natural
metrizable topology is Hausdorff. It is well-known that C∞

c (Rn) is not complete
under this topology, but it can be made so by equipping it with the “strict inductive
limit topology”1. To get the largest space of such functions contained in C∞

C (Ω), we
take the union of all sets of smooth functions whose support is contained in a compact
subset of Ω. We define this space to be D(Ω) =

⋃
K⊂Ω C∞

c (K), where K is compact.
We have now made the space of “test functions” D(Ω) into a Fréchet space,

which gives us an acceptable notion of what it means for a sequence to converge
in this space, i.e. a notion of continuity. More precisely, a sequence {φj} ∈ D(Ω)
converges to φ ∈ D(Ω) if supp(φj) is contained in some compact K ⊂ Ω for all j, and
Pm,k(φj − φ) → 0. A distribution is then defined to be a continuous linear functional
on this space of test functions. The space of all distributions is denoted D′(Ω). In
other words, a linear functional T on D(Ω) is a distribution if and only for every
compact K ⊂ Ω, there is a constant C > 0 and n ∈ N such that

T (ϕ) ≤ C sup
|α|≤n,x∈K

|Dαϕ(x)|, for ϕ ∈ D(Ω). (2)

Even though we have defined distributions on open subsets of Rn, they can easily
be extended to a smooth manifold M . The construction proceeds in the obvious
way, by defining distributions on the homeomorphic images of coordinate patches.
More specifically, if (Uj, φj) is an arbitrary chart, then consider the distribution uj ∈

1See p. 146 of [4] for a discussion of strict inductive limits
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D′(φj(Uj)). A distribution on M is given by all such local representatives that satisfy
uj ◦ (φj ◦ φ−1

i ) = ui on φi(Ui ∩ Uj). It is clear that this definition coincides with our
previous definition in the case that M is an open subset of Rn. Furthermore, it can
be shown that this definition is independent of the charts we choose.

Finally, we define the notion of a “weak” derivative, a construct that allows every
distribution to be infinitely differentiable. The basic idea in this definition is that
since the test functions are smooth and vanish outside a suitably large space, then
we can integrate by parts and discard the boundary terms. More formally, the weak
derivative of T ∈ D′(Ω) is defined as the distribution DαT that satisfies∫

(DαT )(x)ϕ(x)dx = (−1)|α|
∫

T (x)(Dαϕ)(x)dx ∀ϕ ∈ D(Ω). (3)

3 Pseudodifferential Operators and Symbols

In this section we define some of the basic properties of pseudodifferential operators
and the symbols associated with them. To motivate the definition of symbols, con-
sider the following result from ordinary real analysis. Let p(x, D) =

∑
|α|≤k aα(x)Dα

x

be a differential operator, where the coefficients aα(x) are smooth functions, Dα
x =

Dα1
x1

. . . Dαn
xn

, and Dxj
= −i∂xj

. If f is a function of rapid decrease, then the Fourier

inversion formula is valid, and we can write f as an integral of its f̂ . Now apply
p(x, D) to f to get:

p(x, D)f(x) =
1

(2π)n

∫
p(x, ξ)e−ix·ξf̂(ξ)dξ. (4)

We will see that (4) eventually will define a pseudodifferential operator as a map
from C∞

c (X) to C∞. To make this definition more precise, however, we first need to
specify what p(x, ξ) is. Since we have applied a differential operator that is a polyno-
mial in derivatives, (4) suggests that p(x, ξ) (called the characteristic polynomial of
the differential operator) is not just an arbitrary function, but a polynomial in some
vector. Since p(x, D) takes derivatives with respect to x, every time we apply p(x, D)
to f(x), we pick up more powers of ξ; note that there are no factors of i present
due to our definition of Dα

x . In particular, p(x, ξ) can be replaced by
∑

|α|≤k aα(x)ξα,
which is now a type of function instead of a differential operator. We would like this
p(x, ξ) to satisfy a certain bound such that every time we differentiate it, we lose a
degree of smoothness. This leads to the definition of symbols, a class of functions
that plays an important role in microlocal analysis.
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Definition 3.1 Let Ω ⊂ Rq be open, δ, η ∈ [0, 1], m ∈ R, and n a positive integer.
Then the space of symbols of order m and type (η, δ), denoted Sm

η,δ(Ω ×Rn), is the
set of all u ∈ C∞(Ω × Rn) such that for all compact K ⊂ Rn and all α ∈ Nqand
β ∈ Nn, there is a constant C = C(K,α, β) such that

|∂α
x ∂β

θ u(x, θ)| ≤ C(1 + |θ|)m−η|β|+δ|α|. (5)

We denote the intersection of Sm
η,δ for all real m by S−∞

η,δ .

Definition 3.2 Let p(x, ξ) ∈ Sm
η,δ. Then a pseudodifferential operator A is a function

from C∞
c (X) to D′(X) defined by (4). The space of all such operators is denoted Lm

η,δ.

Sm
η,δ(Ω×Rn) can be made into a Fréchet space by introducing the seminorms:

PK,α,β(u) = sup
(x,y)∈K×Rn

|∂α
x ∂β

y u(x, y)|
(1 + |y|)m−η|β|+δ|α| .

According to our definition, pseudodifferential operators are only functions on
C∞

c (X); we do not know if they can be defined on more general spaces, e.g. the space
of distributions. In order to determine when such an extension is allowed, we must
consider the “kernel” of the operator. In the above expression for pseudodifferential
operators, expand the function f̂(ξ) in terms of f(ξ) using the definition of the
transform. This suggests that the kernel of the pseudodifferential operator A, denoted
KA, is given by an “oscillatory integral” of the form

1

(2π)n

∫
p(x, ξ)ei(x−y)·ξ,

where p(x, ξ) is a symbol of order m. This is indeed the case, and it can be made
more rigorous using the Schwartz kernel theorem2, which establishes a one-one corre-
spondence between distributions on X × Y and linear maps C∞

c (Y ) → D′(X). The
correspondence that defines the kernel can be written as

< Au, v >=< KA, u(y)v(x) >=
1

(2π)n

∫ ∫ ∫
u(y)p(x, ξ)v(x)ei(y−x)·ξdydxdξ. (6)

This leads to the following important lemma:

2For a statement and proof of the Schwartz kernel theorem, see §5.2 of [3].
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Lemma 3.3 If η > 0, then KA is a smooth function off the diagonal in Rn ×Rn.

Proof : For an arbitrary β > 0, we can integrate by parts β-times the integral for
KA and discard the boundary terms to get

(y − x)βKA =
∫

ei(y−x)·ξDβ
ξ p(x, ξ)dξ. (7)

This integral converges when β is chosen large enough so that m + n − η|β| < 0. If
we differentiate the above equation q-times, where m + q + n − η|β| < 0, then the
integral also converges, implying that (y − x)βKA ∈ Cq(Rn ×Rn).2

This lemma implies that if KA ∈ C∞(X × Y ), then A can be extended to a
continuous map from D′

c(Y ) to C∞(X) (D′
c denotes the space of compactly supported

distributions). Before stating an important corollary of this lemma, we need some
definitions that will allow us to characterize singularities of a distribution:

Definition 3.4 If u ∈ D′(X), then the singular support of u, denoted sing supp u,
is the smallest closed subset of X on which u is not C∞.

Definition 3.5 A ∈ Lm
η,δ(Ω) is properly supported if supp KA = C ⊂ X × Y is

proper, i.e. if the projections πx : C → X and πy : C → Y are proper maps.

It is clear that if A ∈ Lm
η,δ(Ω) is properly supported, then it is a continuous map

from D′(Ω) to D′(Ω).

Corollary 3.6 Let A ∈ Lm
η,δ and u be a compactly supported distribution on Ω. If

η > 0, then sing supp Au ⊂ sing supp u.

Proof : Let A ∈ Lm
η,δ(Ω) and u ∈ D′

c(Ω). Consider some open set U in sing supp u
and a test function φ=1 on sing supp u. We can “localize” u by multiplying it by the
test function, which gives two new distributions u1 = φu and u2 = (1 − φ)u so that
u = u1 +u2. Let KA be the kernel associated with A. By the lemma above, KA(x, y)
is C∞ off the diagonal, i.e. when x /∈ V and y ∈ V . Since Au is just KA smeared
with u, we have

Au1 =
∫

supp u1

KA(x, y)u1(y)dy. (8)

We know that the kernel is smooth, so apply the operator Dα to both sides to get

DαAu1 =
∫

supp u1

DαKA(x, y)u1(y)dy. (9)
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This implies that DαA is smooth off the diagonal as well, hence it is smooth outside
of V . Since u2 is C∞

c on Ω, it follows that Au2 ∈ C∞(Ω). Because pseudodifferential
operators are linear maps, Au1+Au2 = A(u1+u2) = Au, implying that Au is smooth
outside of V . But since we chose V to be an arbitary open subset of sing supp u, this
implies that Au is smooth outside of sing supp u.2

This corollary is often called the pseudolocal property of operators, and it will play
an important role in the discussion of wave front sets below.

Now we give a generalized notion of an elliptic differential operator in the context
of pseudodifferential operators. Recall that if p(x, D) is a differential operator with
smooth coefficients

p(x, D) =
∑
|α|≤m

aα(x)Dα
x , (10)

then the principal part of p(D) is defined to be

Pm(x, D) =
∑
|α|=m

aα(x)Dα
x . (11)

Similarly, if p(x, ξ) ∈ Sm
η,δ(Ω) as above, then we define the principal symbol to be the

symbol
pm(x, ξ) =

∑
|α|=m

aα(x)ξα. (12)

The operator p(x, D) is said to be elliptic if pm(x, ξ) 6= 0 for all 0 6= ξ ∈ Rn.
Pseudodifferential operators generalize this idea by extending the same notion to the
associated symbol. An operator p(x, D) ∈ Lm

η,δ, is said to be elliptic at the point
(x0, ξ0) if there is some conical neighborhood V of (x0, ξ0) and a positive constant C
such that

|p(x, ξ)| ≥ C(1 + |ξ|)m (13)

for all (x, ξ) ∈ V and |ξ| ≥ C.
If we restrict our attention to elliptic operators, we can make the estimate of the

pseudolocal property more precise by showing that the singular supports are equal.
Before proving this theorem, we first need a definition:

Definition 3.7 If P is a pseudodifferential operator of order m, then a parametrix
for P is a properly supported pseudodifferential operator Q ∈ L−∞

η,δ such that PQ−I ∈
L−∞

η,δ and QP − I ∈ L−∞
η,δ . It is true that if P is elliptic, then P has a parametrix

Q ∈ L−m
η,δ (See [1] p. 298 for details).
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Theorem 3.8 If P ∈ Lm
η,δ(Ω) is elliptic and u is a distribution on Ω, then sing supp

(Pu)=sing supp (u).

Proof : We already know that sing supp (Pu) ⊂ sing supp (u), which amounts to
saying that if u ∈ D′(Ω) is smooth on some open V ⊂ Ω, then Pu is smooth on V . To
show the converse inclusion, we need to show that if Pu ∈ C∞(V ), then u|V is smooth.
To show this, let Q be a properly supported parametrix for P . Then the restriction
of its kernel KQ to V × V is also properly supported. Because Pu|V ∈ C∞(V ), it
follows that QPU |V ∈ C∞(V ) and KQ is smoothing (i.e. KQu ∈ C∞). As a result,
u|V ∈ C∞(V ). So we have shown that sing supp (u) ⊂ sing supp (Pu) for the case
of an elliptic operator. Combining this with Corollary 3.6 shows that equality must
hold. 2

Note that a key result used in the proof was that every elliptic operator has a
parametrix and has a kernel that is smooth off the diagonal.

4 Microlocal Analysis

It is well known that the decay properties of the Fourier transform of a distribution
are related to its smoothness. More specifically, if u ∈ D′(Ω), then we can localize
u by multiplying it by a test function ϕ and considering ϕu. By a basic theorem of
Fourier analysis and the Paley-Wiener theorem, ϕ̂u is an entire holomorphic func-
tion, and it is smooth if it is of rapid decrease. The idea of the wave front set is
to characterize both the points and the directions in which this condition fails to
hold. Even though this construct is most easily motivated by considering the Fourier
transforms of localized distributions, we find it more satisfying to use our above ideas
of pseudodifferential operators. Instead, our definition of the smoothness of u will
be the following: (In this section, all pseudodifferential operators are assumed to be
properly supported)

Definition 4.1 If u ∈ D′(Ω) and (x, ξ) ∈ T ∗Ω, then u is smooth on a neighborhood of
(x, ξ) if there is some A ∈ Lm

η,δ(Ω) that is elliptic at (x, ξ), and such that Au ∈ C∞(Ω).

This suggests that the set of points where u is not smooth is related to the set
of points where some pseudodifferential operator A is not elliptic. Indeed, this is the
case. We now define the characteristic variety of A ∈ Lm

η,δ(Ω) to be

Char A = {(x, ξ) ∈ T ∗Ω |A is not elliptic at (x, ξ)}.
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From here, it is easy to define the wave front set of a distribution, a concept that
plays a central role in microlocal analysis.

Definition 4.2 If u ∈ D′(Ω), then the wave front set of u, denoted WF(u), is given

by
⋂{Char A

∣∣∣A ∈ Lm
1,0, and Au ∈ C∞} .

It is immediate that the wave front set is a refinement of the notion of singular
support considered above, as it also describes singular directions. Moreover, the wave
front set also has the advantage of being a closed conic subset of the cotangent bundle.
Because of this, it is clear that we can recover the singular support of a distribution
by merely projecting the wave front set onto its first factor:

Lemma 4.3 Let Π : T ∗X → X be the projection map defined by Π(x, ξ) = x for all
(x, ξ) ∈ T ∗X. Then Π(WF(u)) =sing supp u.

Using the following definition, we also have a microlocal analogue of the pseudolocal
property from above;

Definition 4.4 For P ∈ Lm
η,δ, define the microsupport of P , denoted µsupp(P ), to

be the complement of the set on which P is smoothing.

Theorem 4.5 If P ∈ Lm
η,δ(Ω), u ∈ D′(Ω), then WF(Pu) ⊂WF(u)∩µsupp(P ).

Proof :We will only sketch the steps here; see e.g. [1] for a complete treatment. If
(x0, ξ0) /∈ µsupp(P ), then there is a Q ∈ Lm

1,0 such that Q is elliptic at (x0, ξ0) and
the microsupports of Q and P are disjoint. Then QP ∈ L−∞

η,δ and (x0, ξ0) /∈ WF(Pu).
Now assume that (x0, ξ0) /∈ WF(u), which implies there is a Q ∈ Lm

1,0 such that
Qu ∈ C∞ and Q is elliptic on a cone around ξ0. The theorem will follow once we
prove the following claim: there are R,S ∈ Lm

1,0 such that (x0, ξ0) /∈ Char(R) and
RP − SQ ∈ L−∞

η,δ . To see that it is sufficient to prove this claim, note that since
Q, SQ, and RP − SQ are smoothing, this implies RP is smoothing. It then follows
that (x0, ξ0) /∈ WF(Pu).2

We can extend the result on elliptic operators to wave front sets by simply replac-
ing the singular support with the wave front set. We then have the following theorem:

Theorem 4.6 If PLm
η,δ(Ω) is elliptic, then WF(Pu)=WF(u) ∀u ∈ D′(Ω).
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Proof : If Q is a parametrix for P , then by definition QPu − u ∈ C∞. Since
WF(QPu−u) = ∅, it is clear that WF(QPu)=WF(u). But by theorem 3.4, we know
that WF(Pu) ⊂WF(u) and WF(u)=WF(QPu) ⊂WF(Pu). Hence, equality must
hold. 2

In order to impose a suitable topology on the set of distributions whose wave front
set is bounded above, it is necessary to introduce a new collection of seminorms. If
Γ ⊂ T ∗X is a closed cone, then denote the space of all distributions whose wave
front set lies in Γ by D′

Γ(X). We say that a sequence of distributions {uj} ∈ D′
Γ(X)

converges to u ∈ D′
Γ(X) if uj → u weakly and PN,ϕ,U(uj − u) → 0, where P is a

seminorm defined by
P (u) = sup

ξ∈U
|ϕ̂u|(1 + |ξ|)N (14)

for some ϕ ∈ C∞
c (X) and closed cone U ⊂ Rn.

The final property of wave front sets that we will give is perhaps the most useful
one: defining the product of distributions. The tensor product of two distributions
u1 and u2 is defined whenever they depend on different sets of variables, but the
pointwise product is often ill-defined. We will see that whenever the two wave front
sets have a particular form, the product is unambiguously defined. Let f : X → Y be
a smooth map, where X and Y are open subsets of Rn. The pull-back of f , denoted
f ∗, is defined in the usual way by f ∗(φ)(x) = φ(f(x)).

Definition 4.7 If u, v ∈ D′(Ω), then the product uv is defined to be the pull-back of
the tensor product by the diagonal map δ : Ω → Ω× Ω that sends x to (x, x).

We can now formulate a precise condition for when the product of two distributions
is well-defined:

Theorem 4.8 Let u1, u2 ∈ D′(X), with respective wave front sets WF(u1), WF(u2).
Then u1u2 is defined whenever the composite wave front set WF(u1)⊕ WF(u2) =
{(x, ξ1 + ξ2) |(x, ξ1) ∈ WF(u1); (x, ξ2) ∈ WF(u2)} does not contain an element of the
form (x, 0).

We conclude this section with examples of this theorem([5]):

i) If f : U → V is C∞, then WF(f) = ∅, and so, as we expect, the product of
smooth functions is well-defined.
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ii) Let δx be the usual delta distribution, i.e. δxf = f(x) for f ∈ D(X). It is
easy to see that WF(δ)={(0, λ) |λ 6= 0} . Now we want to consider two delta
distributions δ(x1) and δ(x2). We know that

WF(δ(x1)) = {(0, x2; λ, 0) |x2 ∈ R, λ 6= 0}

WF(δ(x2)) = {(x1, 0; 0, λ) |x1 ∈ R, λ 6= 0}.

Since we know that λ 6= 0, it is clear that δ(x1)δ(x2) exists and is given by
δ(x1, x2) that acts on f(x1, x2) by∫

f(x1, x2)δ(x1, x2)dx1dx2 = f(0, 0). (15)

iii) Let P( 1
x
) be the Cauchy principle part integral given by

P(1/x) : f → lim
ε↓0

∫
|x|≥ε

f(x)

x
dx. (16)

Then for the operator P( 1
x
)− iπδ(x), we can rewrite it as

P(1/x)− iπδ(x) = lim
ε↓0

1

x + iε
. (17)

Its wave front set is given by

{(0, λ) |λ > 0}.

By the above theorem, the product of P( 1
x
) with itself clearly exists.

5 Propagation of Singularities

Let (M, ω) be a symplectic manifold, and H : M → R a Cr map. We define the
Hamiltonian vector field on M generated by H to be the vector field XH determined
by

ω(XH , ·) = dH. (18)
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Note that the nondegeneracy of ω guarantees the existence of XH . Due to a theorem of
Darboux ([2] p.98), we can always choose local canonical coordinates (q1, . . . , qn, p1, . . . , pn)
so that

ω =
n∑

i=1

dqi ∧ dpi. (19)

It turns out that the principal symbol of a pseudodifferential operator A can also
define Hamiltonian vector field in a similar way (A must actually be a special type
of operator; see p. 35 of [GS] for details). In the above canonical coordinates, the
Hamiltonian field generated by the principal symbol P is

XP =
n∑
i

∂P

∂pi

∂

∂qi

− ∂P

∂qi

∂

∂pi

. (20)

An integral curve3 γ : [a, b] → M is called a bicharacteristic strip of XH if H
vanishes along γ, i.e. if γ is an integral curve of XH through H−1(0). We now have
assembled the necessary geometrical tools to state the propagation of singularities
theorem. The motivation for this result is that since the wave front set is the set
of points where P ∈ Lm

1,0 is not elliptic, we have that WF(u) ⊂ P−1(0) = {(x, ξ) ∈
T ∗X |P (x, ξ) = 0} . Our goal is to formulate conditions on certain subsets of P−1(0)
so that they are of the form WF(u) for some u. This idea may be stated precisely as
follows:

Theorem 5.1 Let A ∈ Lm
η,δ and let Pm be its associated real, positive principal symbol

of degree m. Furthermore, let γ : [a, b] → T ∗X be a bicharacteristic strip of XPm.
If u ∈ D′(X) satisfies γ([a, b]) ∩ WF(Au) = ∅, then either γ([a, b]) ⊂ WF(u) or
γ([a, b]) ∩WF(u) = ∅.

The proof of this theorem is rather involved, and the reader is referred to §8 of
[2] for details. The importance of this theorem is that if A(x, D)u = f and (x0, ξ0)
is a point in p−1

A (0), then the entire bicharacteristic strip beginning at (x0, ξ0) is
contained in WF(u). So the singularities of u are literally “flowed” along the vector
field generated by pA.

3Recall that an integral curve of a vector field X is a Ck curve γ such that γ′(t) = X(γ(t)) for
all t in the domain of γ.
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