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1. Introduction

Heinrich Maschke was born on October 24, 1853 in Breslau, Germany. He started his

studies at the University of Heidelberg in 1872, studying there under Konigsberger. After

a year of military service he continued his studies at the University of Berlin, where he was

under the instruction of such outstanding mathematicians as Weierstrass, Kummer and

Kronecker. He eventually received his doctorate from Gottingen in 1880. As it was very

difficult to get a position as a professor in Germany, Maschke immigrated to the United

States. In 1892 at the inception of the University of Chicago department of Mathematics,

Eliakim Hastings Moore appointed Maschke as well as Oskar Bolzacore to professorships

in the department. The three became the core of the department from 1892 to the time

of Maschke’s death in 1908.

During his time at Gottingen Maschke became very interested in Klein’s ideas on using

group theory to solve algebraic equations, and started to work on finite groups of lin-

ear transformations. He published Maschke’s Theorem in 1899 which states that linear

representations of a finite group over fields of characteristic 0, such as the complex, real,

and rational numbers, break up into irreducible pieces. A consequence of this theorem

is that every FG-module is a direct sum of irreducible FG-submodules, where F is R or

C. This is important because it essentially reduces representation theory to the study of

irreducible FG-modules.

In this paper we will state and prove Maschke’s Theorem, investigate some of its direct

consequences, and explore examples. We will assume that the reader is familiar with basic
1
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algebra, but we will define all of the representation theory concepts that are necessary to

understand the proof. No new ideas will be presented.

2. Basic Definitions

The basic concept in representation theory is that of a group representation. Let G be

a group and let F be R or C. Recall that GL(n,F) denotes the group of invertible n × n

matrices with entries in F.

Definition 2.1. A representation of G over F is a homomorphism ρ from G to GL(n,F)

for some n. The degree of ρ is the integer n.

Remark 2.2. We will use the notation of applying homomorphisms on the right, so the

image of g under a homomorphism τ is written as gτ . Furthermore by the expression

τ : g → h where g∈G and h∈H, we mean that h=gτ .

Example 2.3. Let G be the dihedral group D8 =〈 a, b : a4 = b2=1, b−1ab=a−1〉. Define

the matrices A and B by

A =

0 1

1 0

 , B =

1 0

0 −1


and check that

A4 = B2 = I, B−1AB = A−1

It follows that the homomorphism

ρ : aibj −→ AiBj (0 ≤ i ≤ 3, 0 ≤ j ≤ 1)

is a representation of D8 over F. The degree of ρ is 2.

Next we will define the concept of an FG-module and show the close connection between

FG-modules and representations of G over F. This will be useful because we will state

and prove Maschke’s Theorem in terms of FG-modules.
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Definition 2.4. Let V be a vector space over F and let G be a group. Then V is an

FG-module if we can define a multiplication vg where v is an element of V, and g is an

element of G, satisfying the following conditions for all u,v in V, λ in F and g,h in G:

(1) vg ∈ v

(2) v(gh) = (vg)h

(3) v 1= v

(4) (λv)g = λ(vg)

(5) (u + v)g = ug + vg

By conditions (1) (4) and (5) we know that for all g ∈ G, the function

v −→ vg (v ∈ V )

is an endomorphism of V.

Definition 2.5. Let V be an FG-module. A subset W of V is said to be an FG-

submodule of V if W is a subspace and for all w∈W and all g ∈ Gwg∈ W, i.e. an

FG- submodule of V is a subspace which is also an FG-module.

Clearly for every FG-module V, the zero subspace, denoted 0 and V itself are FG-

submodules of V.

Example 2.6. Let G=C2 = 〈a : a2 = 1〉 and let V = F2 where F is either R or C. For

(α, β) ∈ V define (α, β)1=(α, β) and (α, β)α=(β, α). It is clear that V is an FG-module

because (α, β) and (β, α) are both linear combinations of (α, β) and (α, β) ∈ V . Does V

have any FG-submodules? Assume yes. Let U be a non-zero FG-submodule of V, and

let (α, β) ∈ U with (α, β) 6= (0, 0). Then (α, β) + (α, β)α = (α + β, α + β) ∈ U, and

(α, β) − (α, β)α = (α − β, β − α) ∈ U. Now at least one of α + β and α − β is nonzero.

Thus (1,1) or (1, -1) belongs to U, so the FG-submodules of V are 0, sp((1,1)), sp((1, -1))

and V. This example comes from the exercises in [2].
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Definition 2.7. Let V and W be FG-modules. A function τ :V → W is said to be an

FG-homomorphism if τ is a linear transformation and for all v∈ V, g∈G(vg)τ =(vτ)g.

That is to say, if τ sends v to w then it sends vg to wg.

FG-homomorphisms are the structure-preserving functions for FG-modules in the same

way that group homomorphisms are to groups and linear transformations are to vector

spaces. Now we shall see that FG-homomorphisms give rise to FG-submodules in a natural

way.

Lemma 2.8. Let V and W be FG-modules and let τ :V → W be an FG-homomorphism.

Then Ker(τ) is an FG-submodule of V and Im(τ) is an FG-submodule of W.

Proof. Clearly Ker (τ) is a subspace of V and Im τ is a subspace of W, since τ is a linear

transformation. Let v ∈ Ker(τ) and g ∈ G. Then

(vg)τ = (vτ)g

= 0g

= 0

so vg ∈Ker(τ). Thus Ker(τ) is an FG-submodule of V. Put w ∈ Im (τ) to that w=vτ for

some v∈ V. Then for all g∈G

wg = (vτ)g = (vg)τ ∈ Im(τ)

so Im(τ) is an FG-submodule of W. �

We need two more definitions that will be useful later.

Definition 2.9. Let G be a subgroup of Sn. The FG-module V with basis v1, ..., vn such

that vi g=vig for all i, and all g ∈ G is called the permutation module for G over F.

We call v1, ..., vn the natural basis of V.

Definition 2.10. Let V be an FG-module, and let B be a basis of V. For each g ∈ G let

[g]B denote the matrix of the endomorphism v → vg of V relative to the basis B.
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3. Maschke’s Theorem

Theorem 3.1. Let G be a finite group, let F be R or C, and let V be an FG-module. If

U is an FG-submodule of V, then there is an FG-submodule W of V such that V=U⊕W.

Proof. First choose any subspace W0 of V such that V=U⊕W0. We can find such a W0

by taking a basis v1, ..., vm of U, and extending it to a basis v1, ..., vn of V. Then W0 =

sp(vm+1, ..., vn).

Now for all v ∈ V there exists unique vectors u ∈ U and w ∈ W0 such that v = u + w.

We define φ : V → V by setting vφ=u. Recall from algebra that if V=U ⊕ W, and if we

define π: V → V by

(u + w)π = u ∀u ∈ U,w ∈ W

then π is an endomorphism of V. Moreover, Im(π) =U, Ker(π) = W and π2= π. With

this in mind we see that φ is a projection of V with kernel W0 and image U. Our aim is

to modify the projection φ to create an FG-homomorphism from V → V with image U.

Define τ : V → V by

vτ =
1

|G|
∑
g∈G

vgφg−1 v ∈ G(1)

Then τ is an endomorphism of V and Im(τ) ⊆ U.

Now we will show that τ is an FG-homomorphism. For v ∈ V and x ∈ G we have

vxτ =
1

|G|
∑
g∈G

(vx)gφg−1

As g runs through the elements of G, so does h = xg. Thus we have

(vx)τ =
1

|G|
∑
h∈G

vhφh−1x

=

(
1

|G|
∑
h∈G

vhφh−1

)
x

= (vτ)x

Thus τ is an FG-homomorphism.
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It remains to show that τ is a projection with image U. To show that τ is a projection

it suffices to demonstrate that τ 2 = τ . Note that given u∈ U and g∈ G, we have ug∈ U,

so (ug)φ=ug. Using this we see that:

uτ =
1

|G|
∑
g∈G

ugφg−1

=
1

|G|
∑
g∈G

(ug)g−1

=
1

|G|
∑
g∈G

u

= u

Now let v∈ V. Then vτ ∈U, so we have (vτ)τ = vτ . We have shown that τ 2 = τ .

Summary . We have established that τ : V→ V is a projection and an FG-homomorphism.

Furthermore Im(τ) =U. If we let W= Ker(τ) then W is an FG-submodule of V and

V=U⊕W. So we are done. The ideas in this proof are taken from [2].

�

Remark 3.2. The converse of Maschke’s Theorem is also true. That is, if the character-

istic of F does not divide |G|, then G possesses finitely generated FG-modules which are

not completely reducible. Specifically, the FG-module itself is not completely reducible.

We can also state the theorem in more generality. Let G be a finite group and let

F be a field whose characteristic does not divide |G|. If V is any FG-module and U is

any submodule of V, then V has a submodule W such that V=U⊕W. Observe that the

hypothesis of Maschke’s Theorem applies to any finite group when F has characteristic 0.

A full proof of the more general statement appears in [1] but we will outline it. We aim

to produce an FG-module homomorphism π : V → U which is a projection onto U, such
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that it satisfies the following two properties:

i) (u)π = u for all u ∈ U

ii) ((v)π)π = (v)π for all v ∈ V

Note that the second property is implied by the first and the fact that (V)π ⊆U. We

assume that we can produce such an FG-module homomorphism. Then the kernel of that

homomorphism (say W=Ker(π)) is the direct sum complement to U. Thus U∩W=0, and

V=U⊕W. Then we just have to find such an FG-module projection π.

Since U is a subspace it has a vector space direct sum compliment W0 in V, which we

can find as we did above, by taking a basis for U and building up to a basis for V. Thus

V=U⊕W0 as vector spaces, but W0 need not be G-stable. We let π0:V→U be the vector

space projection of V onto U associated with this direct sum decomposition. Thus

(u + w)π0 = u for all u ∈ U and w ∈ W

The key is to ’average’ π0 over G to form an FG-module projection π. We do this similarly

to the procedure above.

Let n=|G| and view n as an element of F, such that n=(1+1+1..., n times). By

hypothesis n is not zero in F so it has an inverse in F. We define

π =
1

n

∑
g∈G

gπ0g
−1

Then

(1) π : V → U is a linear transformation

(2) (u)π = u for all u ∈ U

(3) (v)π2 = (v)π

It remains to show that π is an FG-module homomorphism. It suffices to prove that for

all h ∈ G, (hv)π=(hπ)v for v ∈ V, which we do in the same way as above.
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Example 3.3. This example comes from [2], and illustrates the matrix version of Maschke’s

Theorem. Namely, suppose that ρ is a reducible representation of a finite group G over F

of degree n. Then we know that ρ is equivalent to a representation where for all g ∈ G,

g →
Xg 0

Yg Zg

for some matrices Xg, Yg, Zg where Xg is k × k with 0 < k < n. Using Maschke’s

Theorem we can go a step further to say that ρ is equivalent to a representation where

g →
Ag 0

0 Bg

where Ag is also a k × k matrix.

Let G=S3 and let V=sp(v1, v2, v3) be the permutation module for G over F. Say u =

v1+v2+v3 and U=sp(u). Then U is the FG-submodule of V since ug=u for all g ∈ G. We

use the proof of Maschke’s Theorem to find an FG-submodule W of V such that V=U⊕W.

To begin we let W0=sp(v1, v2). Then V=U⊕W0, but W0 is not an FG-submodule. The

projection φ onto U is given by

φ : v1 → 0, v2 → 0, v3 → v1 + v2 + v3

Now we can check that that FG-homomorphism τ given by equation 1 is

τ : v1 →
1

3
(v1 + v2 + v3) (i = 1, 2, 3)

The required FG-submodule W is then Ker(τ), so

W = sp(v1 − v2, v2 − v3)

Observe that if B is the basis v1 + v2 + v3, v1, v2 of V, then for all g ∈ G the matrix [g]B

has the form

[g]B =


∗ 0 0

∗ ∗ ∗

∗ ∗ ∗
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where the zeros reflect the fact that U is an FG-submodule of V. If we use v1+v2+v3, v1−

v2, v2 − v3 instead as a basis B’ the we get a matrix of the form

[g]B′ =


∗ 0 0

0 ∗ ∗

0 ∗ ∗


because sp(v1 − v2, v2 − v3) is also an FG-submodule of V.

4. Conclusion

Maschke’s Theorem is a fundamental result in representation theory. It is because of

Maschke’s Theorem that we can conclude that every non-zero FG-module is a direct sum

of irreducible FG-submodules. Furthermore, we can use Maschke’s Theorem to prove that

if V is an FG-module where F is R or C, G is a finite group, and U is an FG-submodule

of V, then there exists a surjective FG-homomorphism from V onto U. The consequences

of Maschke’s Theorem are far reaching, and nontrivial.
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