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Chapter 1

Peano Uniqueness Theorem

Exercise (Peano Uniqueness Theorem) For each fixed x, let F (x, y) be a
non-increasing function of y. Show that, if f(x) and g(x) are two solutions
to y′ = F (x, y), and b > a, then |f(b)− g(b) | ≤ |f(a)− g(a) |. Use this fact
to infer a uniqueness theorem.

1.1 Preliminaries

Definition 1 A solution, f , to a differential equation is called unique if
it is the only solution to a differential equation, up to constants appearing
in the solution f . The idea here is that the solution is unique given some
initial condition, y0 = f(x0); this initial condition allows us to determine
the constants that may appear in f .

Example 1 y = C · ek·x is the unique solution to the differential equation
y′ = k · y, even though the constant C allows for more than one solution.
However, given some initial condition, the solution is unique. The derivation
is commonly known, so I will omit it here.

Definition 2 1 A function, F (x, y), is said to satisfy a one-sided Lipschitz
condition in a domain D if, for some finite constant, L,

yi > yj ⇒ F (x, yi)− F (x, yj) ≤ L · (yi − yj) (1.1)

1Birkhoff, Garrett and Rota, Gian-Carlo. Ordinary Differential Equations. Fourth
Edition. 1989. Hoboken, New Jersey.
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I also find it useful to define a Lipschitz condition in the same domain, D,
as when the same function, F (x, y), satisfies the condition that ∃L ≥ 0 such
that

|F (x, y)− F (x, z) | ≤ L· |y − z | (1.2)

Lemma 1 2 Let σ(x) be a differentiable function satisfying the differen-
tial inequality

σ′(x) ≤ K · σ(x) for a ≤ x ≤ b (1.3)

where K is a constant. Then

σ(x) ≤ σ(a) · eK·(x−a) for a ≤ x ≤ b (1.4)

Proof. Multiply both sides of (1.3) by e−K·x and transpose to obtain

e−K·x · [σ′(x)−K · σ(x)] ≤ 0

But, I note that the left side of this equation is equal to d
dx

[
σ(x) · e−K·x

]
;

differentiation (with the product rule) will easily confirm this. Thus, the
function σ(x) · e−K·x has a negative or zero derivative and is thus non-
increasing for a ≤ x ≤ b. Thus, I find that σ(x) · e−K·x ≤ σ(a) · e−K·a. 3 �

Lemma 2 4 The one-sided Lipschitz condition, (1.1) implies that

[g(x)− f(x)] · [g′(x)− f ′(x)] ≤ L · [g(x)− f(x)]2 (1.5)

for any two solutions f(x) and g(x) of y′ = F (x, y).

Proof. Setting f(x) = y1, g(x) = y2, I have

[g(x)− f(z)] · [g′(x)− f ′(x)] = (y2 − y1) · [F (x, y2)− F (x, y1)]

from the differential equation given. If y2 > y1, then, by (1.2), the right
side of this equation has the upper bound L · (y2− y1)2. Noting that y1 and
y2 can be interchanged without any effect on the above expressions, I have
proven Lemma 2. 5 �

2Ibid.
3Ibid.
4Ibid.
5Ibid.
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Definition 3 6 A differential equation is said to be normal if it is in the
form

y = f(x, y) (1.6)

Theorem 1 7 Let f(x) and g(x) be any two solutions of the first-order
normal differential equation y′ = F (x, y) in a domain, D, where F satisfies
the one-sided Lipschitz condition (1.1). Then,

|f(x)− g(x) | ≤ eL·(x−a)· |f(a)− g(a) | if x > a (1.7)

Proof. Consider the function

ϑ(x) = [g(x)− f(x)]2.

Computing its derivative with elementary calculus, I find that

ϑ′(x) = 2 · [g(x)− f(x)] · [g′(x)− f ′(x)].

By Lemma 2, this implies that ϑ′(x) ≤ 2 ·L ·ϑ(x); by Lemma 1, this implies
ϑ(x) ≤ e2·L·(x−a) ·ϑ(a). Taking the square root of both sides of this inequal-
ity (both of which I know to be non-negative), I get (1.7), thus completing
the proof. 8 �

1.2 Solution to Exercise

For those of us with very short memories, I’ll restate the exercise:

Exercise (Peano Uniqueness Theorem) For each fixed x, let F (x, y) be
a non-increasing function of y. Show that, if f(x) and g(x) are two solu-
tions to y′ = F (x, y), and b > a, then |f(b)− g(b) | ≤ |f(a)− g(a) |. Use this
fact to infer a uniqueness theorem.

6Ibid.
7Ibid.
8Ibid.
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Solution For fixed x, I know that F (x, y) is non-increasing. Thus, tak-
ing y2 > y1, I immediately find that F (x, y2) ≤ F (x, y1). Thus, I can
infer

F (x, y2)− F (x, y1) ≤ 0 = 0 · (y2 − y1)

which tells us that for fixed x, F (x, y) satisfies the one-sided Lipschitz in-
equality, (1.1). I can thus apply Theorem 1, letting x = b,

|f(b)− g(b) | ≤ e0·(y2−y1)· |f(a)− g(a) |=|f(a)− g(a) |

Since this immediately places an upper bound on the amount that any two
solutions to the differential equation y′ = F (x, y) can differ from one an-
other, and, if I define another function h(x) =| f(x) − g(x) | for x > a,
then h(a) = L and h(x) is a non-increasing function, so, h(x) ∈ [0, L] for
some L ≥ 0. And, since uniqueness is only up to the initial given condi-
tion, if I assume that g(a) = f(a), then immediately L = 0, and hence
h(x) = 0 ∀x > a. Thus, I can conclude that if any two solutions have the
same initial condition, then they are precisely the same solution. �
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Chapter 2

Peano Existence Theorem

Exercise (Peano Existence Theorem) If the function X(x, t) is continuous
for |x− c |≤ δ, and | t − a |≤ γ, and if |X(x, t) |≤ θ there, then the vector
differential equation,

dx

dt
= X(x, t) or x′(t) = X(x, t) (2.1)

has at least one solution, x(t) defined for

| t− a |≤ min(γ,
δ

θ
)

and satisfying the initial condition x(0) = c.

2.1 Preliminaries

I would like to discuss this problem in the context of Banach Spaces, since
this will clairify the nature of our main theorem in this chapter. I introduce
these main ideas below:

Definition 1 1 A complex vector space, X is said to be a normed lin-
ear space if to each x ∈ X there is associated a non-negative real number,
‖x‖, called the norm of x, such that

(a) ‖x + y‖ ≤ ‖x‖+ ‖y‖,

(b) ‖αx‖ = |α| · ‖x‖,
1Rudin, Walter. Real and Complex Analysis. Third Edition. 1987. McGraw-Hill.

Boston.
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(c) ‖x‖ = 0 ⇔ x = 0.

by (a), I can deduce (trivially) the Triangle Inequality

‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖ x, y, z ∈ X. (2.2)

Definition 2 A Metric Space is a normed linear space with a function,
ξ : X ×X → R≥0. The function ξ satisfies the following properties:

(a) ξ(x, y) = 0 ⇐⇒ x = y

(b) ξ satisfies the triangle inequality (note that this is the same as (2.2)
in the case of a normed linear space),

ξ(x, y) ≤ ξ(x, z) + ξ(z, y)

(c) ξ(x, y) = ξ(y, x)

Definition 3 A sequence of terms in a metric space, (xn) is said to be
Cauchy if ∀ε > 0,∃n ∈ N such that ∀m, s ≥ n ⇒ ξ(xn, xm) < ε.

Definition 4 A Metric Space, X, is said to be Complete if every Cauchy
sequence in X converges in X. e.g. for all such (xn) as above ∃ς ∈
X such that ∀ε > 0,∃n ∈ N such that m > n ⇒ ξ(xm, ς) < ε.

Definition 5 2 A Banach Space is a normed linear space which is complete
with respect to the induced metric (as the normed linear space induced a
metric with the norm, in (2.2) as compared to the definition of the metric
in the metric space).

Definition 6 A measure is a function µ : P(X) → R≥0 such that

1 µ(∅) = 0

2 If E1, E2, E3, . . . form a countably additive set of subsets of X such that
i 6= j ⇒ Ei ∩ Ej = ∅ then µ(∪∞i=1Ei) =

∑∞
i=1 µ(Ei).

Definition 7 We now define the Lp(µ)-spaces (or just Lp-spaces for short).
2Ibid.
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This is the class of Lebesgue-integerable functions (with respect to the given
measure, µ). We formally define

Lp(µ) =
{
f : X → S | (

∫
X
|f |p · dµ)1/p < ∞

}
.

It may be easier to consider L1(µ), thinking of µ as the standard Euclidian
measure on Rn (length). I do note, though, that functions in Lp(µ) are only
defined up to their equivalence class. Two functions are in the same equiva-
lence class if they differ on a set of measure zero (interestingly, Q has measure
zero in R with respect to the standard measure). As it is defined below,
this would be equivalent to saying that ξ(f, g) = 0. This does not, however,
imply that f ≡ g. It is easy to show that this equivalence relation is well
defined, so I will not do it here (for a more in-depth discussion of measure
and Lebesgue spaces, consult Rudin’s Principles of Mathematical Analysis
1964).

Since I am concerned with a continuous function on a compact set, it is
clear that if I am considering the function on X, any compact set, then
the function is in L1(X). Furthermore, if Γ is the class of all continuous
functions on X, then Γ ⊆ L1(X), which I know to be a Banach Space, since
Lp(µ) is a Banach Space for all p (for a greater consultation of this fact,
consider Rudin’s Real and Complex Analysis, 1987).

Conveniently, since I desire to use the integral norm, ‖ · ‖p such that

ξp(f, g) = ‖f − g‖p =
( ∫

X
|f − g|dµ

)1/p

As with Lp(µ), I restrict myself to considering functions, f , for which ‖f‖p <
∞. (For our purposes here, p = 1.)

Definition 8 3 A family, Ω, of vector-valued functions fn(t), defined on
an interval, I, is said to be equicontinuous when, given ε > 0, ∃δ > 0 such
that

|t− s| < δ ⇒ |x(t)− x(s)| < ε for all x ∈ Ω provided that s, t ∈ I

3Birkhoff, Garrett and Rota, Gian-Carlo. Ordinary Differential Equations. Fourth
Edition. 1989. Hoboken, New Jersey.
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Theorem 1 4 (Arzela-Ascoli Theorem)

1 Let fn(t), (n ∈ N), be a bounded equicontinuous sequence of scalar or
vector functions, defined for a ≤ t ≤ b. Then there exists a subsequence, fni

that is uniformly convergent in the interval. Or, equivalently,

2 Suppose that Ω is a pointwise bounded equicontinuous collection of com-
plex functions on a metric space, X, and that X contains a countable dense
subset, E.
Every sequence, {fn} in Ω has then a subsequence that converges uniformly
on every compact subset of X (This is a somewhat stronger statement; I
will prove the stronger statement, and only use the weaker statement).

Proof.

1 Let x1, x2, x3, x4, . . . be an enumeration of the points of E. Let S0 be
the set of all positive integers (I will think of Sm as some subset of all the
positive integers strictly greater than m). Suppose k ≥ 1 and an infinite set,
Sk−1 ⊂ S0 has been chosen. Since {fn(xk) | n ∈ Sk−1} is a bounded sequence
of complex numbers, it has a convergent subsequence (since mathbfC is
complete). In other words, there is an infinite set, Sr ⊂ Sk−1 so that lim
fn(xk) exists as n →∞ within Sr.

2 Continuing in this way, I obtain infinite sets S0 ⊃ S1 ⊃ S2 ⊃ · · · with
the property that lim fn(xj) exists for 1 ≤ j ≤ k if n →∞ within Sr.

3 Let ωk be the kth term of Sr (with respect to the natural order of the
positive integers) and put

S = {ω1, ω2, ω3, . . .}.

For each r there are then at most r − 1 terms of S that are not in Sr.

4 Hence lim fn(x) exists, for every x ∈ E as n →∞ within S.
4Rudin, Walter. Real and Complex Analysis. Third Edition. 1987. McGraw-Hill.

Boston.
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5 Now let K ⊂ X be compact, and pick any ε > 0. By equicontinuity,
there is a δ > 0 such that ξ1(p, q) < δ ⇒ |fn(p) − fn(q)| < ε ∀n. Cover K
with open balls, B1, B2, B3, . . . BM of radius δ

2 . Since E is dense in X, there
are points pi ∈ {E

⋂
Bi} for 1 ≤ i ≤ M . Since pi ∈ E, lim fn(pi) exists as

n →∞ within S. Hence there is an integer N such that

|fm(pi)− fn(pi)| ≤ ε

for i = 1, 2, . . . M . If m > N, n > N, and m and n are in S.

6 To finish, pick x ∈ K. Then x ∈ Bi for some i, and ξ(x, pi) < δ. Our
choice of δ and N show that

|fm(x)−fn(x)| ≤ |fm(x)−fm(pi)|+|fm(pi)−fn([i)|+|fn([i)−fn(x)| < ε+ε+ε = 3·ε

assuming that m > N , n > N , m ∈ S, n ∈ S. 5 �

2.2 Proof of Peano Existence Theorem

Recall,
Theorem 2 (Peano Existence Theorem) If the function X(x, t) is contin-
uous for | x− c |≤ δ, and | t − a |≤ γ, and if |X(x, t) |≤ θ there, then the
vector differential equation,

dx

dt
= X(x, t) or x′(t) = X(x, t) (2.3)

has at least one solution, x(t) defined for

| t− a |≤ min(γ,
δ

θ
)

and satisfying the initial condition x(0) = c.

Proof. First, I note that I can consider the equivalent expression to equation
(2.3),

x(t) = c +
∫ t

a
X(x(s), s) · ds. (2.4)

5Ibid.
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Clearly, (2.3) has a solution ⇐⇒ (2.4) has a solution.
Now, I desire to construct a sequence of functions, (fn), that will converge to
the desired function x(t). However, when I consider the equivalent statement
to (2.4) for each element of the sequence of functions, it must be integrable.
Without loss of generality, I may assume that a = 0, since this will not
change anything fundamental, but will only make everything appear neater
(so I don’t account for phase shifts). Now, I let ∆ = min(γ, δ

θ ). I will
construct our sequence of functions to be defined on the interval [0,∆]. For
each n, I define fn by

fn(t) =

(
c if t ∈ [0, ∆

n ]

c +
∫ t−∆

n
0 X(fn(s), s) · ds if t ∈ (∆

n ,∆]

)

Clearly, fn is continuous for each n, and as n →∞, fn(t) → x(t)
Now, I note that this sequence of functions is uniformly bounded, e.g.,

|fn(t)| ≤ |c|+
∫ ∆

0
θ · ds ≤ |c|+ ∆ · θ. (2.5)

I will now make use of the following inequality, which can be easily derived
from the triangle inequality (above), but whose derivation I will not show
here.

|
∫ b

a
f(t)dt | ≤

∫ b

a
|f(t)| · dt (2.6)

Now, combining (2.5) and (2.6), I can form the resulting equation,

|fn(t2)− fn(t1)| ≤
∫ t2−∆

n

t1−∆
n

|X(fn(s), s)| · ds ≤ θ · |t2 − t1| (2.7)

From (2.7), it is clear that the fn(t) are equicontinuous.
Now, I apply Theorem 1 (Arzela-Ascoli), since all of the conditions of the
theorem are satisfied. Thus, I find that there is at least one solution to
equation (2.4), which completes the proof. �
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Chapter 3

Poincaré-Bendixson

3.1 Preliminaries

Definition 1 1 A point yα is called a stationary or singular point of

y′ = f(y) (3.1)

if f(yα) = 0. If f(yα) 6= 0, then the point yα is called a regular point.

Definition 2 2 If (3.1) has a solution that is defined on the half plane,
t ≥ t0, then I denote the set of points that are a solution to (3.1) by C+

indicating y = y(t), t ≥ t0. Now, I denote by Ω(C+) the set of points
yα such that there exists a sequence t0 < t1 < . . . such that tn → ∞ and
y(tn) → yα as n → ∞. The analogue in the other direction (as tn → −∞)
is the set A(C+). Similarly, if y = y(t) is defined on −∞ < t < ∞, its set
of limit points is defined to be A(C+) ∪ Ω(C+).

Theorem 1 3 Assume that f(y) is continuous on an open y-set E and
that C+ : y = yβ(t) is a solution of (3.1) for t ≥ t0. Then Ω(C+) is closed.
If C+ has a compact closure in E, then Ω(C+) is connected.

Proof. Ω(C+) is closed trivially. The content of the theorem really lies
in the second half of the statement. Now, Ω(C+) is contained in the closure
of the set of points C+ : y = yβ(t), t ≥ t0. This implies that Ω(C+) is

1Hartman, Philip. Ordinary Differential Equations. John Wiley and Sons, Inc.. New
York. 1964

2Ibid.
3Ibid.
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compact. Now, by way of contradiction, I assume that Ω(C+) is not con-
nected, hence it has a decomposition into a disjoint union of two closed sets
(and hence compact since they are subsets of Ω(C+)), C1 and C2 such that
dist(C1, C2) = δ > 0. There exists a sequence, (tn) with t0 < t1 < . . .
satisfying dist(yβ(t2n+1), C1) → 0 and dist(yβ(t2n), C2) → 0 as n → ∞.
Hence, for large n, there is a point, t = tn∗ such that tn < tn∗ < tn+1 and
dist(yβ(tn∗), Ci) ≥ δ

4 for i = 1, 2. The sequence yβ(t1∗), yβ(t2∗), yβ(t3∗), . . .
has a cluster point yγ , since C+ has compact closure. Clearly, yβ ⊂ Ω(C+)
and dist(yβ, Ci) ≥ δ

4 for i = 1, 2. This contradiction proves the theorem. 4 �

Now I will present two results which I will not prove. However, for a quick,
painless proof of both of these, see Hartman, Philip. Ordinary Differential Equations
[1964], pages 12-15.

Theorem 2 Let f(t, y) be continuous on an open (t, y)-set, E, and let y(t)
be a solution of y′ = f(t, y) on some interval. Then y(t) can be extended (as
a solution) over a maximal interval of existence, (θ−, θ+). Also, if (θ−, θ+)
is a maximal interval of existence, then y(t) tends to the boundary ∂E of E
as t → θ− and t → θ+.

Theorem 3 Let f(t, y) and f1(t, y), f2(t, y), f3(t, y), . . . be a sequence of
continuous functions defined on an open (t, y)-set, E, such that fn(t, y) →
f(t, y) as n → ∞ holds uniformly on every compact subset of E. Let
yn(t) be a solution of y′ = fn(t, y), y(tn) = yn0 for (tn, yn0) ∈ E, and let
(θn−, θn+) be its maximal interval of existence. Let (tn, yn0) → (t0, y0) ∈ E
as n →∞. Then there is a solution, y(t) of y′ = f(t, y), y(t0) = y0, having
a maximal interval of existence, (θ−, θ+), and a sequence of positive inte-
gers, n1 < n2 < . . . with the property that if θ− < t1 < t2 < θ+, then
θn− < t1 < t2 < θn+ for n = nk and k large, and ynk

(t) → y(t) as k → ∞
uniformly for t ∈ [t1, t2]. In particular, limsup θn− < θ− < θ+ < liminf θn+

as n = nk →∞.

Theorem 4 5 Assume that f(y) is continuous on an open y-set E and
that C+ : y = yβ(t) is a solution of (3.1) for t ≥ t0. Assume also that
yα ∈ E ∩ Ω(C+). Then

y′ = f(y), y(0) = yα (3.2)
4Ibid.
5Ibid.
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has at least one solution y = yα(t) on a maximal interval (θ−, θ+) such that
yα(t) ∈ Ω(C+) for t ∈ (θ−, θ+). In particular, when C+ has a compact clo-
sure in E, then Cα : y = yα(t) exists on (−∞,∞) and Cα∪A(Cα)∪Ω(Cα) ⊂
Ω(C+).

Proof. Let t0 < t1 < . . . and tn → ∞, yn → yα as n → ∞, where
yn = yβ(tn). Then yn(t) = yβ(t + tn) is a solution of

y′ = f(y) y(0) = yn. (3.3)

Using Theorem 3, above, letting fn(t, y) = f(y) for n = 1, 2, 3, . . ., such that
I can assume the existence of a solution to (3.2), yα(t) on a maximal interval
(θ−, θ+). Also, there exists a sequence of positive integers, n1 < n2 < n3 <
. . . such that

yα(t) = lim
k→∞

ynk
(t) = lim

k→∞
yβ(t + tnk

) (3.4)

holds uniformly on compact subintervals of (θ−, θ+). Also, it is easily seen
that yα(t) ∈ Ω(C+) for t ∈ (θ−, θ+). This proves the first part of the theo-
rem.
The second part concerning existence on (−∞,∞) follows at once from The-
orem 2, which implies the existence of a right maximal interval, [0, θ+) for
y = y0(t) is either [0,∞) or y0(t) → ∂E as t → θ+ < ∞.
The last part of the theorem, that when C+ has a compact closure in E,
then Cα : y = yα(t) exists on (−∞,∞) and Cα ∪ A(Cα) ∪ Ω(Cα) ⊂ Ω(C+)
follows immediately from (3.4) and the fact that Ω(C+) is closed. 6 �

Definition 3 7 A closed, bounded line segment, L in E is called a transver-
sal to (3.1) if f(y) 6= 0 for y ∈ L and the direction of f(y) at points y ∈ L
are not parallel to L. All crossings of L by a solution y = y(t) of (3.1) are
in the same direction (with respect to increasing t).

3.2 Poincaré-Bendixson

Theorem 5 8 (Poincaré-Bendixson) Let f(y) = f(y1, y2) be continuous on
an open plane set E, and let C+ : y = yβ(t) be a solution of (3.1) for t ≥ t0
with a compact closure in E. In addition, suppose that yβ(t1) 6= yβ(t2) for
0 < t1 < t2 < ∞ and that Ω(C+) contains no stationary points. Then

6Ibid.
7Ibid.
8Ibid.
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Ω(C+) is the set of points y = (y1, y2) on a periodic solution Cp : y = yp(t)
of (3.1). Furthermore, if p > 0 is the smallest period of yp(t), then yp(t1) 6=
yp(t2) for 0 ≤ t1 < t2 < p; i.e., J : y = yp(t), 0 ≤ t ≤ p is a Jordan Curve.

Proof. This proof will be divided into sections 1-5.

1 Let yα ∈ E, f(yα) 6= 0, L a transversal through yα. Then Peano’s Exis-
tence Theorem implies that there is a small neighborhood Eα of yα (Eα ⊂ E)
and an ε > 0 such that any solution y = yγ(t) of the initial value problem
y′ = f(y), y(0) = yγ for yγ ∈ Eα exists for |t| ≤ ε and crosses L exactly once
for |t| ≤ ε. In fact, if δ > 0 is arbitrary, Eα and ε can be chosen so that
yγ(t) exists and differs from yγ + t · f(yα) by at most δ · |t| for |t| ≤ ε. Thus
if Eα is sufficiently small, y = yγ(t) crosses L at least once, but can cross L
at most once for |t| ≤ ε since crossings of L are in the same direction.
In particular, it follows that if y = yγ(t) is a solution of y′ = f on a closed,
bounded interval, then y = yγ(t) has at most a finite number of crossings of
L.

2 Let L be a transversal which (without loss of generality) can be supposed
to be on y2-axis, where y = (y1, y2). Suppose that y = yβ(t) crosses L at
t-values t1 < t2 < . . ., then yβ,2(tn) is strictly monotone in n.
In order to see this, suppose (again, without loss of generality) that crossings
of L occur with increasing y1 (thus, I can say that y1 changes from positive
to negative as it crosses L). Consider the case that yβ,2(t1) < yβ,2(t2).
The set consisting of the arc y = yβ(t), t1 < t < t2, and the line segment
yβ,2(t1) < y2 < yβ,2(t2) on the y2-axis forms a Jordan curve, J . For all
t > t2, y = yβ(t) is in the exterior of J or in the interior of J , by the
assumption on yβ(t) and the fact that crossings of L occur only in one
direction. Thus, this argument can be iterated to show yβ,2(t2) < yβ,2(t3),
etc..

3 It will now be shown that if L is a transversal, Ω(C+) contains at most
one point on L. For if yα ∈ L ∩ Ω(C+), (1) implies that y = yβ(t) crosses
L infinitely many times (this occurs whenever yβ(t) is near yα). By (2), the
intersections of yβ(t) and L tend monotonically to yα as t → ∞. However,
this implies that L ∩ Ω(C+) cannot contain any point other than yα.

4 Since C+ is bounded, Ω(C+) is not empty. Let yα ∈ Ω(C+). By The-
orem 4, y′ = f, y(0) = yα has a solution, Cα : y = yα(t), −∞ < t < ∞,

14



contained in Ω(C+); Thus, Ω(Cα) ⊂ Ω(C+).
Ω(Cα) is non-empty. Let yγ ∈ Ω(Cα), so that yγ is a regular point, since
Ω(C+) contains no stationary points (by assumption). Thus there is a
transversal Lγ through yγ and y = yα(t) has infinitely many crossings of
Lγ near yγ , but yγ and every such crossing is a point of Ω(C+). By (3),
these points coincide. In particular, there exist points t1 < t2 such that
yγ = yα(t1) = yα(t2). It follows that (3.1) has a periodic solution, y = yp(t),
of period p = t2 − t1 such that yp(t) = yα(t) for t1 < t < t2. Since yα(t) is
not constant on any t-interval, it can be supposed that yp(tξ) 6= yp(t0) for
0 ≤ t0 < tξ < p.

5 It must also be shown that Ω(C+) coincides with its subset Cp : y =
yp(t), −∞ < t < ∞. If not, Ω(C+) − Cp 6= ∅. Then Cp contains a point
y1 which is a cluster point of Ω(C+) − Cp, since Ω(C+) is connected by
Theorem 1. Let Lζ be a transversal through yζ . Any small sphere about yζ

contains points yω ∈ Ω(C+) − Cp. For any such yω, y′ = f has a solution
y = yω(t), −∞ < t < ∞, such that yω(0) = yω and yω(t) is contained in
Ω(C+) by Theorem 4. If yω is sufficiently close to yζ , then yω(t) crosses the
transversal Lζ . The crossing is necessarily at the point yζ by part 3.
Since yω /∈ Cp, this is impossible when solutions of initial value problems
belonging to (3.1) are unique. I will now show that it is also impossible in
the general case.
Let yω(tp) ∈ Cp, while yω(t) /∈ Cp for t ∈ (0, tp). Since yω(tp) is a regular
point, there is a transversal Lp through yω(tp). Then a small translation of
Lp in a suitable direction is a transversal, Lpα , which meets Cp and y = yω(t)
in two distinct points, since yω(t) /∈ Cp for t ∈ (0, tp). This contradicts part
3, and thus Poincaré-Bendixson is proved. 9 �

9Ibid.
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