Problems in Ordinary Differential Equations

Andrew Steiner

August 2, 2006

Chapter 1

Peano Uniqueness Theorem

Exercise (*Peano Uniqueness Theorem*) For each fixed x, let F(x, y) be a non-increasing function of y. Show that, if f(x) and g(x) are two solutions to y' = F(x, y), and b > a, then $|f(b) - g(b)| \le |f(a) - g(a)|$. Use this fact to infer a uniqueness theorem.

1.1 Preliminaries

Definition 1 A solution, f, to a differential equation is called *unique* if it is the only solution to a differential equation, up to constants appearing in the solution f. The idea here is that the solution is unique given some initial condition, $y_0 = f(x_0)$; this initial condition allows us to determine the constants that may appear in f.

Example 1 $y = C \cdot e^{k \cdot x}$ is the unique solution to the differential equation $y' = k \cdot y$, even though the constant C allows for more than one solution. However, given some initial condition, the solution is unique. The derivation is commonly known, so I will omit it here.

Definition 2¹ A function, F(x, y), is said to satisfy a *one-sided Lipschitz* condition in a domain D if, for some finite constant, L,

$$y_i > y_j \Rightarrow F(x, y_i) - F(x, y_j) \le L \cdot (y_i - y_j)$$
 (1.1)

¹Birkhoff, Garrett and Rota, Gian-Carlo. <u>Ordinary Differential Equations</u>. Fourth Edition. 1989. Hoboken, New Jersey.

I also find it useful to define a *Lipschitz condition* in the same domain, D, as when the same function, F(x, y), satisfies the condition that $\exists L \ge 0$ such that

$$|F(x,y) - F(x,z)| \le L \cdot |y - z|$$
(1.2)

Lemma 1² Let $\sigma(x)$ be a differentiable function satisfying the differential inequality

$$\sigma'(x) \leq K \cdot \sigma(x) \quad for \quad a \leq x \leq b$$
 (1.3)

where K is a constant. Then

$$\sigma(x) \le \sigma(a) \cdot e^{K \cdot (x-a)} \quad for \quad a \le x \le b \tag{1.4}$$

Proof. Multiply both sides of (1.3) by $e^{-K \cdot x}$ and transpose to obtain

$$e^{-K \cdot x} \cdot [\sigma'(x) - K \cdot \sigma(x)] \le 0$$

But, I note that the left side of this equation is equal to $\frac{d}{dx} \left[\sigma(x) \cdot e^{-K \cdot x} \right]$; differentiation (with the product rule) will easily confirm this. Thus, the function $\sigma(x) \cdot e^{-K \cdot x}$ has a negative or zero derivative and is thus non-increasing for $a \leq x \leq b$. Thus, I find that $\sigma(x) \cdot e^{-K \cdot x} \leq \sigma(a) \cdot e^{-K \cdot a}$. $\stackrel{3}{\sim}$

Lemma 2⁴ The one-sided Lipschitz condition, (1.1) implies that

$$[g(x) - f(x)] \cdot [g'(x) - f'(x)] \le L \cdot [g(x) - f(x)]^2$$
(1.5)

for any two solutions f(x) and g(x) of y' = F(x, y).

Proof. Setting $f(x) = y_1$, $g(x) = y_2$, I have

$$[g(x) - f(z)] \cdot [g'(x) - f'(x)] = (y_2 - y_1) \cdot [F(x, y_2) - F(x, y_1)]$$

from the differential equation given. If $y_2 > y_1$, then, by (1.2), the right side of this equation has the upper bound $L \cdot (y_2 - y_1)^2$. Noting that y_1 and y_2 can be interchanged without any effect on the above expressions, I have proven Lemma 2. ⁵ \diamond

²Ibid.

³Ibid.

 $[\]frac{4}{2}$ Ibid.

 $^{^{5}}$ Ibid.

Definition 3 6 A differential equation is said to be *normal* if it is in the form

$$y = f(x, y) \tag{1.6}$$

Theorem 1⁷ Let f(x) and g(x) be any two solutions of the first-order normal differential equation y' = F(x, y) in a domain, D, where F satisfies the one-sided Lipschitz condition (1.1). Then,

$$|f(x) - g(x)| \le e^{L \cdot (x-a)} \cdot |f(a) - g(a)| \quad if \quad x > a$$
 (1.7)

Proof. Consider the function

$$\vartheta(x) = [g(x) - f(x)]^2.$$

Computing its derivative with elementary calculus, I find that

$$\vartheta'(x) = 2 \cdot [g(x) - f(x)] \cdot [g'(x) - f'(x)].$$

By Lemma 2, this implies that $\vartheta'(x) \leq 2 \cdot L \cdot \vartheta(x)$; by Lemma 1, this implies $\vartheta(x) \leq e^{2 \cdot L \cdot (x-a)} \cdot \vartheta(a)$. Taking the square root of both sides of this inequality (both of which I know to be non-negative), I get (1.7), thus completing the proof.⁸ \diamond

1.2 Solution to Exercise

For those of us with very short memories, I'll restate the exercise:

Exercise (*Peano Uniqueness Theorem*) For each fixed x, let F(x, y) be a non-increasing function of y. Show that, if f(x) and g(x) are two solutions to y' = F(x, y), and b > a, then $|f(b) - g(b)| \le |f(a) - g(a)|$. Use this fact to infer a uniqueness theorem.

⁶Ibid.

⁷Ibid.

⁸Ibid.

Solution For fixed x, I know that F(x, y) is non-increasing. Thus, taking $y_2 > y_1$, I immediately find that $F(x, y_2) \leq F(x, y_1)$. Thus, I can infer

$$F(x, y_2) - F(x, y_1) \le 0 = 0 \cdot (y_2 - y_1)$$

which tells us that for fixed x, F(x, y) satisfies the one-sided Lipschitz inequality, (1.1). I can thus apply Theorem 1, letting x = b,

$$|f(b) - g(b)| \le e^{0 \cdot (y_2 - y_1)} \cdot |f(a) - g(a)| = |f(a) - g(a)|$$

Since this immediately places an upper bound on the amount that any two solutions to the differential equation y' = F(x, y) can differ from one another, and, if I define another function h(x) = |f(x) - g(x)| for x > a, then h(a) = L and h(x) is a non-increasing function, so, $h(x) \in [0, L]$ for some $L \ge 0$. And, since uniqueness is only up to the initial given condition, if I assume that g(a) = f(a), then immediately L = 0, and hence $h(x) = 0 \forall x > a$. Thus, I can conclude that if any two solutions have the same initial condition, then they are precisely the same solution. \diamond

Chapter 2

Peano Existence Theorem

Exercise (*Peano Existence Theorem*) If the function $\mathbf{X}(\mathbf{x}, \mathbf{t})$ is continuous for $|\mathbf{x} - \mathbf{c}| \leq \delta$, and $|t - a| \leq \gamma$, and if $|\mathbf{X}(\mathbf{x}, \mathbf{t})| \leq \theta$ there, then the vector differential equation,

$$\frac{dx}{dt} = \mathbf{X}(\mathbf{x}, \mathbf{t}) \quad \mathbf{or} \quad \mathbf{x}'(\mathbf{t}) = \mathbf{X}(\mathbf{x}, \mathbf{t})$$
(2.1)

has at least one solution, $\mathbf{x}(\mathbf{t})$ defined for

 $|t-a|{\leq}\min(\gamma,\frac{\delta}{\theta})$

and satisfying the initial condition $\mathbf{x}(\mathbf{0}) = \mathbf{c}$.

2.1 Preliminaries

I would like to discuss this problem in the context of Banach Spaces, since this will clairify the nature of our main theorem in this chapter. I introduce these main ideas below:

Definition 1¹ A complex vector space, X is said to be a normed linear space if to each $x \in X$ there is associated a non-negative real number, ||x||, called the norm of x, such that

- (a) $||x + y|| \le ||x|| + ||y||,$
- (b) $\|\alpha x\| = |\alpha| \cdot \|x\|,$

¹Rudin, Walter. <u>Real and Complex Analysis</u>. Third Edition. 1987. McGraw-Hill. Boston.

(c) $||x|| = 0 \Leftrightarrow x = 0.$

by (a), I can deduce (trivially) the Triangle Inequality

$$||x - y|| \le ||x - z|| + ||z - y|| \quad x, y, z \in X.$$
(2.2)

Definition 2 A *Metric Space* is a normed linear space with a function, $\xi: X \times X \to \mathbf{R}_{>0}$. The function ξ satisfies the following properties:

- (a) $\xi(x,y) = 0 \iff x = y$
- (b) ξ satisfies the triangle inequality (note that this is the same as (2.2) in the case of a normed linear space),

$$\xi(x,y) \le \xi(x,z) + \xi(z,y)$$

(c)
$$\xi(x, y) = \xi(y, x)$$

Definition 3 A sequence of terms in a metric space, (x_n) is said to be *Cauchy* if $\forall \epsilon > 0, \exists n \in \mathbf{N}$ such that $\forall m, s \ge n \Rightarrow \xi(x_n, x_m) < \epsilon$.

Definition 4 A Metric Space, X, is said to be *Complete* if every Cauchy sequence in X converges in X. e.g. for all such (x_n) as above $\exists \varsigma \in X$ such that $\forall \epsilon > 0, \exists n \in \mathbf{N}$ such that $m > n \Rightarrow \xi(x_m, \varsigma) < \epsilon$.

Definition 5^{2} A *Banach Space* is a normed linear space which is complete with respect to the induced metric (as the normed linear space induced a metric with the norm, in (2.2) as compared to the definition of the metric in the metric space).

Definition 6 A *measure* is a function $\mu : \mathcal{P}(X) \to \mathbf{R}_{\geq 0}$ such that

 $\mathbf{1} \quad \mu(\emptyset) = 0$

2 If E_1, E_2, E_3, \ldots form a countably additive set of subsets of X such that $i \neq j \Rightarrow E_i \cap E_j = \emptyset$ then $\mu(\cup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$.

Definition 7 We now define the $L^p(\mu)$ -spaces (or just L^p -spaces for short).

 $^{^{2}}$ Ibid.

This is the class of Lebesgue-integerable functions (with respect to the given measure, μ). We formally define

$$L^{p}(\mu) = \left\{ f : X \to S \mid (\int_{X} |f|^{p} \cdot d\mu)^{1/p} < \infty \right\}.$$

It may be easier to consider $L^1(\mu)$, thinking of μ as the standard Euclidian measure on \mathbb{R}^n (length). I do note, though, that functions in $L^p(\mu)$ are only defined up to their equivalence class. Two functions are in the same equivalence class if they differ on a set of measure zero (interestingly, \mathbb{Q} has measure zero in \mathbb{R} with respect to the standard measure). As it is defined below, this would be equivalent to saying that $\xi(f,g) = 0$. This does not, however, imply that $f \equiv g$. It is easy to show that this equivalence relation is well defined, so I will not do it here (for a more in-depth discussion of measure and Lebesgue spaces, consult Rudin's <u>Principles of Mathematical Analysis</u> 1964).

Since I am concerned with a continuous function on a compact set, it is clear that if I am considering the function on X, any compact set, then the function is in $L^1(X)$. Furthermore, if Γ is the class of all continuous functions on X, then $\Gamma \subseteq L^1(X)$, which I know to be a Banach Space, since $L^p(\mu)$ is a Banach Space for all p (for a greater consultation of this fact, consider Rudin's Real and Complex Analysis, 1987).

Conveniently, since I desire to use the integral norm, $\|\cdot\|_p$ such that

$$\xi_p(f,g) = \|f - g\|_p = \left(\int_X |f - g| d\mu\right)^{1/p}$$

As with $L^p(\mu)$, I restrict myself to considering functions, f, for which $||f||_p < \infty$. (For our purposes here, p = 1.)

Definition 8³ A family, Ω , of vector-valued functions $f_n(t)$, defined on an interval, **I**, is said to be *equicontinuous* when, given $\epsilon > 0$, $\exists \delta > 0$ such that

 $|t-s| < \delta \Rightarrow |\mathbf{x}(t) - \mathbf{x}(s)| < \epsilon$ for all $\mathbf{x} \in \Omega$ provided that $s, t \in \mathbf{I}$

³Birkhoff, Garrett and Rota, Gian-Carlo. <u>Ordinary Differential Equations</u>. Fourth Edition. 1989. Hoboken, New Jersey.

Theorem 1⁴ (Arzela-Ascoli Theorem)

1 Let $f_n(t)$, $(n \in \mathbf{N})$, be a bounded equicontinuous sequence of scalar or vector functions, defined for $a \leq t \leq b$. Then there exists a subsequence, f_{n_i} that is uniformly convergent in the interval. Or, equivalently,

2 Suppose that Ω is a pointwise bounded equicontinuous collection of complex functions on a metric space, X, and that X contains a countable dense subset, E.

Every sequence, $\{f_n\}$ in Ω has then a subsequence that converges uniformly on every compact subset of X (This is a somewhat stronger statement; I will prove the stronger statement, and only use the weaker statement).

Proof.

1 Let $x_1, x_2, x_3, x_4, \ldots$ be an enumeration of the points of E. Let S_0 be the set of all positive integers (I will think of S_m as some subset of all the positive integers strictly greater than m). Suppose $k \ge 1$ and an infinite set, $S_{k-1} \subset S_0$ has been chosen. Since $\{f_n(x_k) \mid n \in S_{k-1}\}$ is a bounded sequence of complex numbers, it has a convergent subsequence (since mathbfC is complete). In other words, there is an infinite set, $S_r \subset S_{k-1}$ so that $\lim_{n \to \infty} f_n(x_k)$ exists as $n \to \infty$ within S_r .

2 Continuing in this way, I obtain infinite sets $S_0 \supset S_1 \supset S_2 \supset \cdots$ with the property that $\lim f_n(x_j)$ exists for $1 \leq j \leq k$ if $n \to \infty$ within S_r .

3 Let ω_k be the k^{th} term of S_r (with respect to the natural order of the positive integers) and put

$$S = \{\omega_1, \omega_2, \omega_3, \ldots\}.$$

For each r there are then at most r-1 terms of S that are not in S_r .

4 Hence $\lim f_n(x)$ exists, for every $x \in E$ as $n \to \infty$ within S.

⁴Rudin, Walter. <u>Real and Complex Analysis</u>. Third Edition. 1987. McGraw-Hill. Boston.

5 Now let $K \subset X$ be compact, and pick any $\epsilon > 0$. By equicontinuity, there is a $\delta > 0$ such that $\xi_1(p,q) < \delta \Rightarrow |f_n(p) - f_n(q)| < \epsilon \forall n$. Cover K with open balls, $B_1, B_2, B_3, \ldots B_M$ of radius $\frac{\delta}{2}$. Since E is dense in X, there are points $p_i \in \{E \cap B_i\}$ for $1 \leq i \leq M$. Since $p_i \in E$, $\lim f_n(p_i)$ exists as $n \to \infty$ within S. Hence there is an integer N such that

$$|f_m(p_i) - f_n(p_i)| \le \epsilon$$

for $i = 1, 2, \dots M$. If m > N, n > N, and m and n are in S.

6 To finish, pick $x \in K$. Then $x \in B_i$ for some *i*, and $\xi(x, p_i) < \delta$. Our choice of δ and N show that

$$|f_m(x) - f_n(x)| \le |f_m(x) - f_m(p_i)| + |f_m(p_i) - f_n([i)| + |f_n([i) - f_n(x)| < \epsilon + \epsilon + \epsilon = 3 \cdot \epsilon$$

assuming that $m > N, n > N, m \in S, n \in S$. ⁵ \diamond

2.2 **Proof of Peano Existence Theorem**

Recall,

Theorem 2 (*Peano Existence Theorem*) If the function $\mathbf{X}(\mathbf{x}, \mathbf{t})$ is continuous for $|\mathbf{x} - \mathbf{c}| \leq \delta$, and $|t - a| \leq \gamma$, and if $|\mathbf{X}(\mathbf{x}, \mathbf{t})| \leq \theta$ there, then the vector differential equation,

$$\frac{dx}{dt} = \mathbf{X}(\mathbf{x}, \mathbf{t}) \quad \mathbf{or} \quad \mathbf{x}'(\mathbf{t}) = \mathbf{X}(\mathbf{x}, \mathbf{t})$$
(2.3)

has at least one solution, $\mathbf{x}(\mathbf{t})$ defined for

$$|t-a| \le \min(\gamma, \frac{\delta}{\theta})$$

and satisfying the initial condition $\mathbf{x}(\mathbf{0}) = \mathbf{c}$.

Proof. First, I note that I can consider the equivalent expression to equation (2.3),

$$x(t) = c + \int_{a}^{t} \mathbf{X}(\mathbf{x}(s), s) \cdot ds.$$
(2.4)

⁵Ibid.

Clearly, (2.3) has a solution $\iff (2.4)$ has a solution.

Now, I desire to construct a sequence of functions, (f_n) , that will converge to the desired function x(t). However, when I consider the equivalent statement to (2.4) for each element of the sequence of functions, it must be integrable. Without loss of generality, I may assume that a = 0, since this will not change anything fundamental, but will only make everything appear neater (so I don't account for phase shifts). Now, I let $\Delta = \min(\gamma, \frac{\delta}{\theta})$. I will construct our sequence of functions to be defined on the interval $[0, \Delta]$. For each n, I define f_n by

$$f_n(t) = \begin{pmatrix} c & \text{if } t \in [0, \frac{\Delta}{n}] \\ c + \int_0^{t - \frac{\Delta}{n}} \mathbf{X}(f_n(s), s) \cdot ds & \text{if } t \in (\frac{\Delta}{n}, \Delta] \end{pmatrix}$$

Clearly, f_n is continuous for each n, and as $n \to \infty$, $f_n(t) \to x(t)$ Now, I note that this sequence of functions is uniformly bounded, e.g.,

$$|f_n(t)| \le |c| + \int_0^\Delta \theta \cdot ds \le |c| + \Delta \cdot \theta.$$
(2.5)

I will now make use of the following inequality, which can be easily derived from the triangle inequality (above), but whose derivation I will not show here.

$$\left|\int_{a}^{b} f(t)dt\right| \leq \int_{a}^{b} |f(t)| \cdot dt \tag{2.6}$$

Now, combining (2.5) and (2.6), I can form the resulting equation,

$$|f_n(t_2) - f_n(t_1)| \le \int_{t_1 - \frac{\Delta}{n}}^{t_2 - \frac{\Delta}{n}} |\mathbf{X}(f_n(s), s)| \cdot ds \le \theta \cdot |t_2 - t_1|$$
(2.7)

From (2.7), it is clear that the $f_n(t)$ are equicontinuous.

Now, I apply Theorem 1 (Arzela-Ascoli), since all of the conditions of the theorem are satisfied. Thus, I find that there is at least one solution to equation (2.4), which completes the proof. \diamond

Chapter 3

Poincaré-Bendixson

3.1 Preliminaries

Definition 1¹ A point y_{α} is called a *stationary* or *singular* point of

$$y' = f(y) \tag{3.1}$$

if $f(y_{\alpha}) = 0$. If $f(y_{\alpha}) \neq 0$, then the point y_{α} is called a *regular* point.

Definition 2 ² If (3.1) has a solution that is defined on the half plane, $t \ge t_0$, then I denote the set of points that are a solution to (3.1) by C^+ indicating y = y(t), $t \ge t_0$. Now, I denote by $\Omega(C^+)$ the set of points y_α such that there exists a sequence $t_0 < t_1 < \ldots$ such that $t_n \to \infty$ and $y(t_n) \to y_\alpha$ as $n \to \infty$. The analogue in the other direction (as $t_n \to -\infty$) is the set $A(C^+)$. Similarly, if y = y(t) is defined on $-\infty < t < \infty$, its set of limit points is defined to be $A(C^+) \cup \Omega(C^+)$.

Theorem 1 ³ Assume that f(y) is continuous on an open y-set E and that $C^+: y = y_{\beta}(t)$ is a solution of (3.1) for $t \ge t_0$. Then $\Omega(C^+)$ is closed. If C^+ has a compact closure in E, then $\Omega(C^+)$ is connected.

Proof. $\Omega(C^+)$ is closed trivially. The content of the theorem really lies in the second half of the statement. Now, $\Omega(C^+)$ is contained in the closure of the set of points C^+ : $y = y_\beta(t)$, $t \ge t_0$. This implies that $\Omega(C^+)$ is

¹Hartman, Philip. <u>Ordinary Differential Equations</u>. John Wiley and Sons, Inc.. New York. 1964

²Ibid.

³Ibid.

compact. Now, by way of contradiction, I assume that $\Omega(C^+)$ is not connected, hence it has a decomposition into a disjoint union of two closed sets (and hence compact since they are subsets of $\Omega(C^+)$), C_1 and C_2 such that $dist(C_1, C_2) = \delta > 0$. There exists a sequence, (t_n) with $t_0 < t_1 < \ldots$ satisfying $dist(y_{\beta}(t_{2n+1}), C_1) \to 0$ and $dist(y_{\beta}(t_{2n}), C_2) \to 0$ as $n \to \infty$. Hence, for large n, there is a point, $t = t_n *$ such that $t_n < t_n * < t_{n+1}$ and $dist(y_{\beta}(t_n*), C_i) \geq \frac{\delta}{4}$ for i = 1, 2. The sequence $y_{\beta}(t_1*), y_{\beta}(t_2*), y_{\beta}(t_3*), \ldots$ has a cluster point y_{γ} , since C^+ has compact closure. Clearly, $y_{\beta} \subset \Omega(C^+)$ and $dist(y_{\beta}, C_i) \geq \frac{\delta}{4}$ for i = 1, 2. This contradiction proves the theorem. $4 \diamond$

Now I will present two results which I will not prove. However, for a quick, painless proof of both of these, see Hartman, Philip. Ordinary Differential Equations [1964], pages 12-15.

Theorem 2 Let f(t, y) be continuous on an open (t, y)-set, E, and let y(t) be a solution of y' = f(t, y) on some interval. Then y(t) can be extended (as a solution) over a maximal interval of existence, (θ_-, θ_+) . Also, if (θ_-, θ_+) is a maximal interval of existence, then y(t) tends to the boundary ∂E of E as $t \to \theta_-$ and $t \to \theta_+$.

Theorem 3 Let f(t, y) and $f_1(t, y)$, $f_2(t, y)$, $f_3(t, y)$,... be a sequence of continuous functions defined on an open (t, y)-set, E, such that $f_n(t, y) \rightarrow f(t, y)$ as $n \rightarrow \infty$ holds uniformly on every compact subset of E. Let $y_n(t)$ be a solution of $y' = f_n(t, y)$, $y(t_n) = y_{n0}$ for $(t_n, y_{n0}) \in E$, and let $(\theta_{n-}, \theta_{n+})$ be its maximal interval of existence. Let $(t_n, y_{n0}) \rightarrow (t_0, y_0) \in E$ as $n \rightarrow \infty$. Then there is a solution, y(t) of y' = f(t, y), $y(t_0) = y_0$, having a maximal interval of existence, (θ_-, θ_+) , and a sequence of positive integers, $n_1 < n_2 < \ldots$ with the property that if $\theta_- < t_1 < t_2 < \theta_+$, then $\theta_{n-} < t_1 < t_2 < \theta_{n+}$ for $n = n_k$ and k large, and $y_{n_k}(t) \rightarrow y(t)$ as $k \rightarrow \infty$ uniformly for $t \in [t_1, t_2]$. In particular, $limsup \theta_{n-} < \theta_- < \theta_+ < liminf \theta_{n+}$ as $n = n_k \rightarrow \infty$.

Theorem 4 ⁵ Assume that f(y) is continuous on an open y-set E and that $C^+ : y = y_{\beta}(t)$ is a solution of (3.1) for $t \ge t_0$. Assume also that $y_{\alpha} \in E \cap \Omega(C^+)$. Then

$$y' = f(y), \quad y(0) = y_{\alpha}$$
 (3.2)

⁴Ibid. ⁵Ibid. has at least one solution $y = y_{\alpha}(t)$ on a maximal interval (θ_{-}, θ_{+}) such that $y_{\alpha}(t) \in \Omega(C^{+})$ for $t \in (\theta_{-}, \theta_{+})$. In particular, when C^{+} has a compact closure in E, then $C_{\alpha} : y = y_{\alpha}(t)$ exists on $(-\infty, \infty)$ and $C_{\alpha} \cup A(C_{\alpha}) \cup \Omega(C_{\alpha}) \subset \Omega(C^{+})$.

Proof. Let $t_0 < t_1 < \ldots$ and $t_n \to \infty$, $y_n \to y_\alpha$ as $n \to \infty$, where $y_n = y_\beta(t_n)$. Then $y_n(t) = y_\beta(t + t_n)$ is a solution of

$$y' = f(y) \quad y(0) = y_n.$$
 (3.3)

Using Theorem 3, above, letting $f_n(t, y) = f(y)$ for $n = 1, 2, 3, \ldots$, such that I can assume the existence of a solution to (3.2), $y_{\alpha}(t)$ on a maximal interval (θ_{-}, θ_{+}) . Also, there exists a sequence of positive integers, $n_1 < n_2 < n_3 < \ldots$ such that

$$y_{\alpha}(t) = \lim_{k \to \infty} y_{n_k}(t) = \lim_{k \to \infty} y_{\beta}(t + t_{n_k})$$
(3.4)

holds uniformly on compact subintervals of (θ_-, θ_+) . Also, it is easily seen that $y_{\alpha}(t) \in \Omega(C^+)$ for $t \in (\theta_-, \theta_+)$. This proves the first part of the theorem.

The second part concerning existence on $(-\infty, \infty)$ follows at once from Theorem 2, which implies the existence of a right maximal interval, $[0, \theta_+)$ for $y = y_0(t)$ is either $[0, \infty)$ or $y_0(t) \to \partial E$ as $t \to \theta_+ < \infty$.

The last part of the theorem, that when C^+ has a compact closure in E, then $C_{\alpha} : y = y_{\alpha}(t)$ exists on $(-\infty, \infty)$ and $C_{\alpha} \cup A(C_{\alpha}) \cup \Omega(C_{\alpha}) \subset \Omega(C^+)$ follows immediately from (3.4) and the fact that $\Omega(C^+)$ is closed. ⁶ \diamond

Definition 3⁷ A closed, bounded line segment, L in E is called a *transversal* to (3.1) if $f(y) \neq 0$ for $y \in L$ and the direction of f(y) at points $y \in L$ are not parallel to L. All crossings of L by a solution y = y(t) of (3.1) are in the same direction (with respect to increasing t).

3.2 Poincaré-Bendixson

Theorem 5⁸ (Poincaré-Bendixson) Let $f(y) = f(y_1, y_2)$ be continuous on an open plane set E, and let $C^+ : y = y_\beta(t)$ be a solution of (3.1) for $t \ge t_0$ with a compact closure in E. In addition, suppose that $y_\beta(t_1) \ne y_\beta(t_2)$ for $0 < t_1 < t_2 < \infty$ and that $\Omega(C^+)$ contains no stationary points. Then

⁶Ibid.

⁷Ibid.

⁸Ibid.

 $\Omega(C^+)$ is the set of points $y = (y_1, y_2)$ on a periodic solution $C_p : y = y_p(t)$ of (3.1). Furthermore, if p > 0 is the smallest period of $y_p(t)$, then $y_p(t_1) \neq y_p(t_2)$ for $0 \leq t_1 < t_2 < p$; i.e., $J : y = y_p(t), \ 0 \leq t \leq p$ is a Jordan Curve.

Proof. This proof will be divided into sections 1-5.

1 Let $y_{\alpha} \in E$, $f(y_{\alpha}) \neq 0, L$ a transversal through y_{α} . Then Peano's Existence Theorem implies that there is a small neighborhood E_{α} of y_{α} ($E_{\alpha} \subset E$) and an $\epsilon > 0$ such that any solution $y = y_{\gamma}(t)$ of the initial value problem $y' = f(y), y(0) = y_{\gamma}$ for $y_{\gamma} \in E_{\alpha}$ exists for $|t| \leq \epsilon$ and crosses L exactly once for $|t| \leq \epsilon$. In fact, if $\delta > 0$ is arbitrary, E_{α} and ϵ can be chosen so that $y_{\gamma}(t)$ exists and differs from $y_{\gamma} + t \cdot f(y_{\alpha})$ by at most $\delta \cdot |t|$ for $|t| \leq \epsilon$. Thus if E_{α} is sufficiently small, $y = y_{\gamma}(t)$ crosses L at least once, but can cross L at most once for $|t| \leq \epsilon$ since crossings of L are in the same direction. In particular, it follows that if $y = y_{\gamma}(t)$ is a solution of y' = f on a closed, bounded interval, then $y = y_{\gamma}(t)$ has at most a finite number of crossings of L.

2 Let *L* be a transversal which (without loss of generality) can be supposed to be on y_2 -axis, where $y = (y_1, y_2)$. Suppose that $y = y_\beta(t)$ crosses *L* at *t*-values $t_1 < t_2 < \ldots$, then $y_{\beta,2}(t_n)$ is strictly monotone in *n*.

In order to see this, suppose (again, without loss of generality) that crossings of L occur with increasing y_1 (thus, I can say that y_1 changes from positive to negative as it crosses L). Consider the case that $y_{\beta,2}(t_1) < y_{\beta,2}(t_2)$. The set consisting of the arc $y = y_{\beta}(t)$, $t_1 < t < t_2$, and the line segment $y_{\beta,2}(t_1) < y_2 < y_{\beta,2}(t_2)$ on the y_2 -axis forms a Jordan curve, J. For all $t > t_2$, $y = y_{\beta}(t)$ is in the exterior of J or in the interior of J, by the assumption on $y_{\beta}(t)$ and the fact that crossings of L occur only in one direction. Thus, this argument can be iterated to show $y_{\beta,2}(t_2) < y_{\beta,2}(t_3)$, etc..

3 It will now be shown that if L is a transversal, $\Omega(C^+)$ contains at most one point on L. For if $y_{\alpha} \in L \cap \Omega(C^+)$, (1) implies that $y = y_{\beta}(t)$ crosses L infinitely many times (this occurs whenever $y_{\beta}(t)$ is near y_{α}). By (2), the intersections of $y_{\beta}(t)$ and L tend monotonically to y_{α} as $t \to \infty$. However, this implies that $L \cap \Omega(C^+)$ cannot contain any point other than y_{α} .

4 Since C^+ is bounded, $\Omega(C^+)$ is not empty. Let $y_{\alpha} \in \Omega(C^+)$. By Theorem 4, y' = f, $y(0) = y_{\alpha}$ has a solution, $C_{\alpha} : y = y_{\alpha}(t)$, $-\infty < t < \infty$,

contained in $\Omega(C^+)$; Thus, $\Omega(C_{\alpha}) \subset \Omega(C^+)$.

 $\Omega(C_{\alpha})$ is non-empty. Let $y_{\gamma} \in \Omega(C_{\alpha})$, so that y_{γ} is a regular point, since $\Omega(C^+)$ contains no stationary points (by assumption). Thus there is a transversal L_{γ} through y_{γ} and $y = y_{\alpha}(t)$ has infinitely many crossings of L_{γ} near y_{γ} , but y_{γ} and every such crossing is a point of $\Omega(C^+)$. By (3), these points coincide. In particular, there exist points $t_1 < t_2$ such that $y_{\gamma} = y_{\alpha}(t_1) = y_{\alpha}(t_2)$. It follows that (3.1) has a periodic solution, $y = y_p(t)$, of period $p = t_2 - t_1$ such that $y_p(t) = y_{\alpha}(t)$ for $t_1 < t < t_2$. Since $y_{\alpha}(t)$ is not constant on any t-interval, it can be supposed that $y_p(t_{\xi}) \neq y_p(t_0)$ for $0 \leq t_0 < t_{\xi} < p$.

5 It must also be shown that $\Omega(C^+)$ coincides with its subset $C_p : y = y_p(t), -\infty < t < \infty$. If not, $\Omega(C^+) - C_p \neq \emptyset$. Then C_p contains a point y_1 which is a cluster point of $\Omega(C^+) - C_p$, since $\Omega(C^+)$ is connected by Theorem 1. Let L_{ζ} be a transversal through y_{ζ} . Any small sphere about y_{ζ} contains points $y_{\omega} \in \Omega(C^+) - C_p$. For any such $y_{\omega}, y' = f$ has a solution $y = y_{\omega}(t), -\infty < t < \infty$, such that $y_{\omega}(0) = y_{\omega}$ and $y_{\omega}(t)$ is contained in $\Omega(C^+)$ by Theorem 4. If y_{ω} is sufficiently close to y_{ζ} , then $y_{\omega}(t)$ crosses the transversal L_{ζ} . The crossing is necessarily at the point y_{ζ} by part 3.

Since $y_{\omega} \notin C_p$, this is impossible when solutions of initial value problems belonging to (3.1) are unique. I will now show that it is also impossible in the general case.

Let $y_{\omega}(t_p) \in C_p$, while $y_{\omega}(t) \notin C_p$ for $t \in (0, t_p)$. Since $y_{\omega}(t_p)$ is a regular point, there is a transversal L_p through $y_{\omega}(t_p)$. Then a small translation of L_p in a suitable direction is a transversal, $L_{p_{\alpha}}$, which meets C_p and $y = y_{\omega}(t)$ in two distinct points, since $y_{\omega}(t) \notin C_p$ for $t \in (0, t_p)$. This contradicts part 3, and thus Poincaré-Bendixson is proved. ⁹ \diamond

⁹Ibid.