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1. Introduction

Anyone who has listened to a piece of music and tried to anticipate the next
few measures understands that music is full of recognizable patterns. For centuries,
theorists have attempted to analyze these patterns in order to better appreciate
musical works. Only in the last century, however, has music theory been signifi-
cantly extended into the world of mathematics.

One of the primary figures behind this development, David Lewin connected
music theory with abstract algebra by creating the Generalized Interval System,
or GIS. The GIS forms an excellent basis for analysis because it incorporates the
notions of pitch classes and pitch-class intervals which are so fundamental to music
theory. At the same time, the GIS provides mathematic structure by rendering the
musical notions of transposition and inversion as mathematical group actions on
the musical space associated with a GIS. The following sections will formally define
the Generalized Interval System, and then provide examples of both the musical
and mathematical importance of this construct.

2. Generalized Interval Systems

Definition 2.1. A generalized interval system (GIS) is an ordered triple (S, G, int),
where the set S is the musical space of the GIS, the group G = (G, ∗) is the group of
intervals, and a function int : S × S //G , called the interval function, satisfying
the following two conditions:

• For all r, s, t ∈ S, int(r, s) ∗ int(s, t) = int(r, t),
• For all s ∈ S and g ∈ G, there exists a unique t ∈ S which lies the interval

g from s. In other words, there exists a unique t ∈ S such that int(s, t) = g
[2].

Example 2.2. The most common example of a GIS seen in music represents the
chromatic scale starting on C. In this GIS, the set Z12 represents the pitch classes
C=0, C]=1, B=2, etc. It should be noted that a pitch class consists of all pitches
with a given letter name. This means that the pitches A at 440Hz and A at 880Hz
are both in the same pitch class. We define the operation +12 such that if r, s ∈ Z12

then r +12 s = r + s mod 12. For simplicity, +12 shall henceforward be denoted
simply +. We further define an interval function by int(x, y) = (−x) + y for all
x, y ∈ Z12. With these definitions, the triple (Z12, (Z12,+), int) clearly represents
a GIS. In fact, this particular interval system provides the starting point for all
of atonal analysis because it represents the basic scale of which all other western
scales are subsets, and incorporates the standard notion of pitch-class intervals.
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3. Group Actions

An important characteristic of a GIS is that it is equivalent to a simply transitive
group action. This is an important mathematical fact, and to prove it shall require
some definitions:

Definition 3.1. If G is a group and X is a set, then a (left) group action of G on
X is a binary function G×X //X (where the image of g ∈ G and x ∈ X is
written g · x), which satisfies the following two axioms:

• (g ∗ h) · x = g · (h · x) for all g, h ∈ G and x ∈ X.
• e · x = x for every x ∈ X.

Definition 3.2. A group homomorphism is a map f : G //H between two
groups G and H such that f(g1 ∗ g2) = f(g1) ∗ f(g2) for all g1, g2 ∈ G

Remark 3.3. If f is a group homomorphism from G into H, then:

f(eG) = f(eG ∗ eG) = f(eG) ∗ f(eG) ⇒ eH = f(eG).

Lemma 3.4. A group action of group G on set S is the same as a group homo-
morphism G //Sym(S) where Sym(S) is the symmetric group on S.

Proof. (⇒) Given a group action of G on S, we define a function ρ : G //Sym(S)
by ρ : g 7→ Fg where Fg(s) = g · s.
• Fg ∈ SY M(S) for all g ∈ G.

- If there exist g ∈ G and r, s ∈ S for which Fg(r) = Fg(s), then:

g · r = g · s
g−1 · (g · r) = g−1 · (g · s)
(g−1 ∗ g) · r = (g−1 ∗ g) · s

e · r = e · s
r = s.

This means that ρ is injective.
- Suppose that there exist s ∈ S and g ∈ G such that g · r 6= s for

all r ∈ S. Consider that g−1 · s = t for some t ∈ S.

g · (g−1 · s) = (g ∗ g−1) · s = e · s = s.

This contradicts the assumption that g ·r 6= s for all r. Therefore
ρ is surjective.

We thus have that Fg is a bijection from S into S for all g ∈ G.
This means that Fg is a permutation of S and therefore an element of
SY M(S).

• Given g, h ∈ G and s ∈ S,

(ρ(g ∗ h))(s) = Fg∗h(s) = (g ∗ h) · s = g · (h · s) = (Fg ◦ Fh)(s) = (ρ(g) ◦ ρ(h))(s).

So ρ is a group homomorphism.
(⇐) If ρ : G //Sym(S) is a group homomorphism, then define g·s = (ρ(g))(s).
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– For all g, h ∈ G, s ∈ S,
(g ∗ h) · s = (ρ(g ∗ h))(s)

= (ρ(g) ∗ ρ(h))(s)

= (ρ(g) ◦ ρ(h))(s)

= (ρ(g))((ρ(h))(s))

= (ρ(g))(h · s)
= g · (h · s).

– for all s ∈ S,

eG · s = (ρ(eG))(s) = (eSym(S))(s) = id(s) = s.

�

Definition 3.5. A group action is transitive if for every x, y ∈ X, there exists some
g ∈ G such that g · x = y.

Definition 3.6. A group action is free or simple if for all g, h ∈ G with g 6= h and
all x ∈ X, g ·x 6= h ·x. Or, equivalently, if g ·x = h ·x for some x ∈ X and g, h ∈ G,
then g = h.

Definition 3.7. A group action is simply transitive if it is both transitive and free.
This means that given x, y ∈ X, there exists a unique g ∈ G such that g · x = y.

Example 3.8. Any group acts upon itself on the left.

Proof. Given a group, (G, ∗), consider the map G×G //G defined by (g, x) 7→
g ∗ x:

• The first axiom of a group action follows from the associativity of the group
operation:

g · (h · x)) = g ∗ (h ∗ x) = (g ∗ h) ∗ x = (g · h) · x.

• The second axiom follows from the definition of the identity:

e · x = e ∗ x = x.

�

Example 3.9. The left action of a group onto itself is simply transitive.

Proof. We again have the map G×G //G such that (g, x) 7→ g ∗ x.
• Given x ∈ G, let g = (y ∗ x−1). We know g ∈ G because G is a group, and:

g · x = g ∗ x = (y ∗ x−1) ∗ x = y ∗ (x−1 ∗ x) = y ∗ e = y.

Therefore the action is transitive.
• Suppose there exist g, h ∈ G such that g · x = h · x. In this case, we have:

g ∗ x = g · x =h · x = h ∗ x

g ∗ x ∗ x−1 =h ∗ x ∗ x−1

g =h.

Therefore, f is both free and transitive, or simply transitive. �

Definition 3.10. Given GIS (S, G, int) and g ∈ G, we define transposition by g as
the map Tg : S //S such that int(s, Tg(s)) = g for all s ∈ S.
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Example 3.11. Recall the GIS (Z12, Z12, int) from example 2.2. For all n, m, p ∈
Z12,

(Tm(n) = p) ⇔ (int(n, p) = m) ⇔ (−n + p = m) ⇔ (n + m = p).
Therefore, in (Z12, Z12, int), Tm(n) = n + m.

Lemma 3.12. Th∗g = Tg ◦ Th.

Proof. Given GIS (S, G, int), Th∗g(s) is defined by int(s, Th∗g(s)) = h ∗ g for all
s ∈ S. By definition of Tg and Th, int(s, Th(s)) = h and int(Th(s), Tg(Th(s))) = g
for all s ∈ S. Finally, by definition of int,

int(s, Th(s)) ∗ int(Th(s), Tg(Th(s))) = int(s, Tg(Th(s))) = h ∗ g.

Therefore, Tg ◦ Th = Th∗g. �

Definition 3.13. A group isomorphism is a map F : G //H between two groups
G and H defined such that:

• f is a group homomorphism, and
• f is bijective.

Definition 3.14. A group anti-homomorphism is a map f : G //H between
two groups G and H defined such that f(g1) ∗ f(g2) = f(g2 ∗ g1).

Definition 3.15. A group anti-isomorphism is a bijective group anti-homomorphism.

Theorem 3.16. The transposition group TRANS = {Tg : g ∈ G} is anti-isomorphic
to G.

Proof. Consider the map f : G //TRANS defined by f(g) = Tg.
• For all g, h ∈ G,

f(g ∗ h) = Tg∗h = Th ◦ Tg = f(h) ∗ f(g).

Thus, f is a group anti-homomorphism.
• Consider σ : TRANS //G defined by σ(Tg) = g. We know that σ is

well-defined because Tg is generated uniquely by the interval function. For
all g ∈ G we have,

(σ ◦ f)(g) = σ(f(g)) = σ(Tg) = g,

and
(f ◦ σ)(Tg) = f(σ(Tg)) = f(g) = Tg.

This means that σ is both a left and right inverse of f , so f is a bijection
and an isomorphism.

�

Theorem 3.17. Every GIS (S, G, int) gives rise to a simply transitive group action
on S.

Proof. Given a GIS (S, (G, ∗), int), define a group action TRANS × S //S by
(Tg, s) 7→ Tg(s) for all g ∈ G and s ∈ S.

1. This defines a group action.
– Given g, h ∈ G and s ∈ S,

(g · (h · s) = Tg(Th(s)) = (Tg ◦ Th)(s) = (Tg ∗ Th)(s) = (Tg ∗ Th) · s.
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– For all s ∈ S:

e · s = Te(s) ⇒ int(s, Te(s)) = e.

Choose arbitrary t ∈ S and let int(t, s) = α. In this case, Tα(t) = s.

int(t, Te(s)) = int(t, s) ∗ int(s, Te(s)) = α ∗ e = α.

Therefore, Tα(t) = Te(s). But remember that s = Tα(s) because α
was chosen that way. Therefore, e · s = Te(s) = s.

2. This is simply transitive.
– Transitivity of f follows from the fact that the interval function is

defined for all elements of S. Given s, t ∈ S there must exist some
g ∈ G such that int(s, t) = g. By definition, g · s = Tg(s) = t.

– To show that f is free, suppose that g · s = h · s for some s ∈ S and
g, h ∈ G.

g · s = Tg(s) = Th(s) = h · s
This implies that:

int(s, Tg(s)) = int(s, Th(s))

But intervals are unique by definition, so g = h.

We now have that TRANS gives rise to a simply transitive group action on S, so,
by Theorem 3.16, G does so as well because it is anti-isomorphic to TRANS. �

Theorem 3.18. Every simply transitive group action of a group G on a set S gives
rise to a GIS.

4. Hindemith

Turning now to an excerpt of Ludus Tonalis by composer Paul Hindemith, we
shall examine the GIS constructed by the transposed and inverted forms of a re-
peated theme. But first, we must define inversion.

Definition 4.1. We define inversion about n for some n ∈ Z12 as the function
In : Z12

//Z12 such that In(x) = −x + n.

Definition 4.2. A pitch-class segment or pcseg is an ordered subset of Z12, denoted
〈x1, x2, . . . , xn〉, which represents a series of musical pitch classes.

Example 4.3. At the end of the second measure of Hindemith’s “Fuga Tertia in
F” from Ludus Tonalis one finds the notes 〈E[,D,C],A〉 in the treble clef (Note:
this and other pcsegs referenced in examples can be found circled on the attached
copy of “Fuga Tertia.”). These notes form a pcseg, which is denoted 〈3, 2, 1, 9〉 in
the standard Z12 notation described previously.

Definition 4.4. The dihedral group of order 2n (where n ∈ N) is defined as
〈σ, τ | σn = 1, τ2 = 1, τστ = σ−1〉.

Lemma 4.5. The dihedral group of order 24 is isomorphic to the group of all trans-
positions Tn and inversions In where n ∈ Z12 and the group operation is function
composition. The dihedral group shall therefore be denoted T/I henceforward.
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Proof. Consider that T/I = 〈T1, I0〉. Given GIS (S,G,int), then for all s ∈ S:

T 12
1 (s) = (T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1 ◦ T1)(s) = s + 12 = s.

I2
0 (s) = (I0 ◦ I0)(s) = −(−s) = s.

(I0 ◦ T1 ◦ I0)(s) = −(−s + 1) = s− 1 = T−1
1 (s).

�

Remark 4.6. Both Tn and In can be extended so that they map pitch-class segments
to pitch-class segments by defining Tn(〈x1, x2, . . . , xm〉) = 〈Tn(x1), Tn(x2), . . . , Tn(xm)〉
and In(〈x1, x2, . . . , xm〉) = 〈In(x1), In(x2), . . . , In(xm)〉.

Theorem 4.7. Given a pcseg 〈x1, x2, . . . , xm〉 which contains any interval not equal
to 0 or 6, then T/I acts simply transitively on the set S of transposed and inverted
forms of 〈x1, x2, . . . , xm〉.

Proof. We define a group homomorphism ρ : T/I //Sym(S) by ρ(Tn)(〈x1, x2, . . . , xm〉) =
〈Tn(x1), Tn(x2), . . . , Tn(xm)〉 and ρ(In)(〈x1, x2, . . . , xm〉) = 〈In(x1), In(x2), . . . , In(xm)〉.
Tn and In are permutations of S for all n ∈ Z12. Therefore, the dihedral group is a
subgroup of Sym(S) by Lemma 4.5. As a result, the embedding id : T/I //Sym(S)
is a group homomorphism because for all g, h ∈ T/I:

id(g ∗ h) = id(g ◦ h) = g ◦ h = id(g) ◦ id(h) = id(g) ∗ id(h).

By Lemma 3.4, this is equivalent to a group action of T/I on S.
This group action is transitive because S was defined as the collection of trans-

posed and inverted forms of a given pcseg, and T/I is a group, so given r, s ∈ S, one
may simply compose appropriate elements and inverse elements of T/I to achieve
g ∈ T/I such that g · r = s.

This group action is also free because g · s is obtained by adding some element
of Z12 to s or by adding −s to some element of Z12. Therefore, the properties of
addition tell us that only with the same element of Z12 will g · s = h · s. �

Example 4.8. Considering the same pcseg introduced in Example 4.3, its set of
transposed and inverted forms is as follows:

Transposed Forms Inverted Forms
〈3, 2, 1, 9〉 〈9, 10, 11, 3〉
〈4, 3, 2, 10〉 〈10, 11, 12, 4〉
〈5, 4, 3, 11〉 〈11, 0, 1, 5〉
〈6, 5, 4, 0〉 〈0, 1, 2, 6〉
〈7, 6, 5, 1〉 〈1, 2, 3, 7〉
〈8, 7, 6, 2〉 〈2, 3, 4, 8〉
〈9, 8, 7, 3〉 〈3, 4, 5, 9〉
〈10, 9, 8, 4〉 〈4, 5, 6, 10〉
〈11, 10, 9, 5〉 〈5, 6, 7, 11〉
〈0, 11, 10, 6〉 〈6, 7, 8, 0〉
〈1, 0, 11, 7〉 〈7, 8, 9, 1〉
〈2, 1, 0, 8〉 〈8, 9, 10, 2〉
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Definition 4.9. Given S, the collection of transposed and inverted forms of a pcseg
〈x1, x2, . . . , xn〉, let K : S //S be the function that maps a pcseg to its inverted
form with the first two pitch classes reversed (i.e. 〈x2, x1, . . . , yn−1, yn〉). This is
known as a type of contextual inversion.

Theorem 4.10. The contextual inversion, K, commutes with all T/I operations
[1].

Example 4.11. Turning back to “Fuga Tertia in F,” we find, in the treble clef
of measure 25, the series of pitches 〈F],G, A[, C〉. In Z12 notation, this pcseg is
denoted 〈6, 7, 8, 0〉, and the intervals within the pcseg are two minor seconds and a
major third. These intervals appear again in the next two measures, where the pc-
segs 〈9, 10, 11, 3〉 and 〈0, 1, 2, 6〉 appear. One can immediately see that these pcsegs
are a minor third apart from one another. This means that repeated application of
T3 allows one to obtain the second and third pcsegs from the first:

〈6, 7, 8, 0〉 T3 //〈9, 10, 11, 3〉 T3 //〈0, 1, 2, 6〉.

In addition to this example of transposition, one notices that beginning in the bass
clef of measure 25 is the pcseg 〈7, 6, 5, 1〉. This pcseg happens to be K(〈6, 7, 8, 0〉), as
one can see from the following table of transposed and inverted forms of 〈6, 7, 8, 0〉.

Transposed Forms Inverted Forms
〈6, 7, 8, 0〉 〈6, 5, 4, 0〉
〈7, 8, 9, 1〉 〈7, 6, 5, 1〉
〈8, 9, 10, 2〉 〈8, 7, 6, 2〉
〈9, 10, 11, 3〉 〈9, 8, 7, 3〉
〈10, 11, 0, 4〉 〈10, 9, 8, 4〉
〈11, 0, 1, 5〉 〈11, 10, 9, 5〉
〈0, 1, 2, 6〉 〈0, 11, 10, 6〉
〈1, 2, 3, 7〉 〈1, 0, 11, 7〉
〈2, 3, 4, 8〉 〈2, 1, 0, 8〉
〈3, 4, 5, 9〉 〈3, 2, 1, 9〉
〈4, 5, 6, 10〉 〈4, 3, 2, 10〉
〈5, 6, 7, 11〉 〈5, 4, 3, 11〉

Hindemith also transposes this chord twice by a minor third; however, in this case
he transposes down. This is equivalent to T−3 = T9, and we get:

〈6, 5, 4, 0〉 T9 //〈3, 2, 1, 9〉 T9 //〈0, 11, 10, 6〉 .

In this example, Hindemith applies K and then T9 to 〈6, 7, 8, 0〉, but Theorem 4.10
tells use that, as the following diagram shows, these two functions can be applied
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in either order.

onmlhijk〈6, 7, 8, 0〉 K //

T9

��

onmlhijk〈7, 6, 5, 1〉

T9

��

onmlhijk〈3, 4, 5, 9〉
K

//onmlhijk〈4, 3, 2, 10〉

Definition 4.12. Given S, the set of transposed and inverted forms of a pcseg
〈x1, x2, . . . , xm〉, define K ′ : S //S such that K ′ maps a pcseg to its inverted
form with the last two pitch classes switched (i.e. 〈y1, y2, . . . , ym−2, xm, xm−1〉).
This is an alternate type of contextual inversion.

Theorem 4.13. The function K ′ commutes with all T/I operations [1].

Example 4.14. Hindemith uses this second type of contextual inversion later on
in “Fuga Tertia,” when, in measure 32, the pcseg 〈7, 11, 0, 1〉 appears. As in the
previous example, Hindemith transposes the pcseg by a minor third to obtain the
notes for the next two measures.

〈7, 11, 0, 1〉 T3 //〈10, 2, 3, 4〉 T3 //〈1, 5, 6, 7〉

Hindemith also uses a contextual inversion to obtain a pcseg for use in the treble
clef. In this case, the inversion is not K but K ′, which generates 〈6, 2, 1, 0〉, as
evidenced by the following table.

Transposed Forms Inverted Forms
〈7, 11, 0, 1〉 〈5, 1, 0, 11〉
〈8, 0, 1, 2〉 〈6, 2, 1, 0〉
〈9, 1, 2, 3〉 〈7, 3, 2, 1〉
〈10, 2, 3, 4〉 〈8, 4, 3, 2〉
〈11, 3, 4, 5〉 〈9, 5, 4, 3〉
〈0, 4, 5, 6〉 〈10, 6, 5, 4〉
〈1, 5, 6, 7〉 〈11, 7, 6, 5〉
〈2, 6, 7, 8〉 〈0, 8, 7, 6〉
〈3, 7, 8, 9〉 〈1, 9, 8, 7〉
〈4, 8, 9, 10〉 〈2, 10, 9, 8〉
〈5, 9, 10, 11〉 〈3, 11, 10, 9〉
〈6, 10, 11, 0〉 〈4, 0, 11, 10〉

Again, this contextually inverted form is transposed twice by a major sixth over
the course of measures 34 and 35.

〈6, 2, 1, 0〉 T9 //〈3, 11, 10, 9〉 T9 //〈0, 8, 7, 6〉
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. In this case, as with K, we see that K ′ commutes with T9.

wvutpqrs〈7, 11, 0, 1〉 T9 //

K′

��

wvutpqrs〈4, 8, 9, 10〉

K′

��

wvutpqrs〈6, 2, 1, 0〉
T9

//wvutpqrs〈3, 11, 10, 9〉

It is important to note that while Examples 4.11 and 4.14 may be mathematically
quite similar, by starting with a pcseg in the treble clef for Example 4.11 and in
the bass clef for Example 4.14, Hindemith creates two very distinct sounds. In the
former case, the pitches begin close together and move apart, whereas in the second
example the pitches begin far away and move together. This difference creates two
quite distinct musical effects.

5. Conclusion

Having thus explored the nature of the GIS, its equivalency to a group homo-
morphism, and the importance of the T/I group in analyzing contextual inversion,
one begins to understand the mathematical nature of music and the importance of
the GIS. The implications of the GIS go far beyond those touched on here, however,
and the interested scholar will find much to be learned in the work of Lewin and
his contemporaries.
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