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Abstract

One of my main aims for the summer was to work into a subject with which I had no prior experience.
This paper bears the fruits of that labor. I chose geodesics as a project because it’s a particular aspect
of geometry that I find interesting, and I believe that the theorem, while perhaps mainly useful as a tool
for proving more complex theorems, is interesting itself. The aim of the paper is to introduce the reader
to a few definitions, and move straight into the proof.

1 Definitions

Affine Connection 1 An affine connection V on a differentiable manifold M is a mapping
V:X(M)x X(M)— X(M)
which is denoted by (X,Y) — VxY and which satisfies the following properties:
1. VixygvZ = fVx Z+gVvZ
2.Vx(Y+2)=VxY +VxZ
5. Vx(fY) = fVx Y + X(f)Y

in which X,Y,Z € X(M) and f,g € D(M) where X (M) is the set of all vector fields of class C* on M and
D(M) is the ring of real-valued functions of class C* defined on M.

Geodesic 1 A parametrized curve v : I — M is a geodesic at ty € I if %(%’) = 0 at the point to; if v
is a geodesic at t, for all t € I, we say that v is a geodesic. If [a,b] C I and v : I — is a geodesic, the
restriction of vy to [a,b] is called a geodesic segment joining ~y(a) to y(b).

Tangent Bundle 1 A tangent bundle TM on a manifold M is the set of pairs (¢,v),q € M,v € T,M. If
(U,z) is a system of coordinates on M, then any vector in TyM,q € x(U), can be written as y ., yi(%)

Coderivative 1 We'll define coderivative by a proposition:

Let M be a differentiable manifold with an affine connection V. There exists a unique correspondence which
associates to a vector field V along the differentiable curve ¢ : I — M another vector field % along c,
called the covariant derivative of V' along c, such that:

1. %(V + W)= % + Dd—zv, where W is a vector field along ¢ and f is a differentiable function on I.
2. B(fvy=4y 4 LV

s : _ DV _
3. If Vis induced by a vector field Y € X (M), i.e. V(t)=Y(c(t)), then = = VY.



Proof. Let us suppose initially that there exists a correspondence satisfying items 1, 2, and 3 of the definition.
Let x : U C R® — M be a system of coordinates with ¢(I) Nz(U) # 0 and let (z1(t),...,z,(t)) be the local
expression of ¢(t), t € I. Let X; = B%i' Then we can express the field V locally as V = Ej vIX;i=1,...,n
where v/ = v’ (t)andX; = X;c(t). By properties 1 and 2, we have

DV dvj DX
= X Y tat'}
& 3%

By property 3 and by the first property of the definition of affine connection,

DX,
dt

dz;
=V Xy =V an o X; = Z Vx,X;, i,5=1,.

Therefore,

DV dv? dx;
i = X.
dt - dt = + 2; dt

The above expression shows that if there is a correspondence that satisfies the conditions given, then such

a correspondence is unique. To show existence, define % in z(U) as above. If y(WW) is another coordinate

neighborhood, with y(W) N z(U) 7é (D and we define BY in y(W) as above, then the definitions agree in

y(W)Nz(U), by the uniqueness of 2 W in z(U). It follows from this fact that the definition can be extended

over all of M, and this concludes the proof. OJ

2 Theorems

Proposition 1 Given p € M, there exist an open set V.C M,p € V, numbers 6 > 0 and €1 > 0 and a C*
mapping

v:(=0,0) x U — M,U ={(q,v);qg € V,u e T,M,|v| <e1}

such that the curve t — ~(t,q,v),t € (=9,0) is the unique geodesic of M which, at the instant t=0,
passes through q with velocity v, for each ¢ € V' and for each v € T,Mwith|v| < ;.

This proposition asserts that if |v| < e1, then the geodesic exists in some interval and is unique. Its proof
follows from the following lemma.

Lemma: Homogeneity of a geodesic 1 If the geodesic y(t,q,v) is defined on the interval (—9,9), then

the geodesic y(t,q,av),a € R,a > 0, is defined on the interval (—2 g) and

~(t, q,av) = v(at, g, v).
~2 g) — M be a curve given by h(t) = v(at,q,v). Then h(0) = ¢ and 4(0) = av. In
) (at7 q? U)?
D ,dh
— (=)=
dt " dt
where, for the first equality, we extend h’(t) to a neighborhood of h(t) in M. Therefore, h is a geodesic
passing through q with velocity av at the instant ¢ = 0. By uniqueness,

Proof. Let h: (
addition, since h’'(t

vh’(t)h ( ) - GQV"//(at,q,U)’yl(atv q, U) =0,

h(t) = y(at,q,v) = y(t,q,av).0

Proposition 1 with the above lemma allows us to extend the definition of a geodesic from that of an
interval to a uniformly large neighborhood of p.



Proposition 2 Given p € M, there exist a neighborhood V' of p in M, a number € > 0 and a C*>° mapping
v:(=2,2) xU — MU ={(qw) € TM;q € V,w e T,M,|w| <e} such that t— ~(t,q,w),t € (=2,2), is
the unique geodesic of M which, at the instant t=0, passes through q with velocity w, for every q € V and
for every w € T, M, with |w| < e.

Proof. The geodesic (¢, q,v) in Proposition 1 is defined for |t| < § and for |v| < &1. From the lemma of
homogeneity, v(, q, %”) is defined for [t| < 2. Taking ¢ < 5%, we obtain that the geodesic (¢, ¢, w) is defined
for |t| < 2 and |w| < .0



