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Abstract

One of my main aims for the summer was to work into a subject with which I had no prior experience.
This paper bears the fruits of that labor. I chose geodesics as a project because it’s a particular aspect
of geometry that I find interesting, and I believe that the theorem, while perhaps mainly useful as a tool
for proving more complex theorems, is interesting itself. The aim of the paper is to introduce the reader
to a few definitions, and move straight into the proof.

1 Definitions

Affine Connection 1 An affine connection ∇ on a differentiable manifold M is a mapping

∇ : X(M)×X(M) −→ X(M)

which is denoted by (X,Y) −→ ∇XY and which satisfies the following properties:

1. ∇fX+gY Z = f∇X Z + g∇Y Z

2. ∇X(Y + Z) = ∇XY +∇XZ

3. ∇X(fY ) = f∇X Y + X(f)Y

in which X,Y,Z ∈ X(M) and f, g ∈ D(M) where X(M) is the set of all vector fields of class C∞ on M and
D(M) is the ring of real-valued functions of class C∞ defined on M .

Geodesic 1 A parametrized curve γ : I −→ M is a geodesic at t0 ∈ I if D
dt (

dγ
dt ) = 0 at the point t0; if γ

is a geodesic at t, for all t ∈ I, we say that γ is a geodesic. If [a,b] ⊂ I and γ : I −→ is a geodesic, the
restriction of γ to [a,b] is called a geodesic segment joining γ(a) to γ(b).

Tangent Bundle 1 A tangent bundle TM on a manifold M is the set of pairs (q, v), q ∈ M, v ∈ TqM . If
(U,x) is a system of coordinates on M , then any vector in TqM, q ∈ x(U), can be written as

∑n
i=1 yi( ∂

∂xi
)

Coderivative 1 We’ll define coderivative by a proposition:
Let M be a differentiable manifold with an affine connection ∇. There exists a unique correspondence which
associates to a vector field V along the differentiable curve c : I −→ M another vector field DV

dt along c,
called the covariant derivative of V along c, such that:

1. D
dt (V + W ) = DV

dt + DW
dt , where W is a vector field along c and f is a differentiable function on I.

2. D
dt (fV ) = df

dtV + f DV
dt

3. If V is induced by a vector field Y ∈ X(M), i.e. V(t)=Y(c(t)), then DV
dt = ∇ dc

dt
Y.
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Proof. Let us suppose initially that there exists a correspondence satisfying items 1, 2, and 3 of the definition.
Let x : U ⊂ Rn −→ M be a system of coordinates with c(I) ∩x(U) 6= ∅ and let (x1(t), . . . , xn(t)) be the local
expression of c(t), t ∈ I. Let Xi = ∂

∂xi
. Then we can express the field V locally as V =

∑
j υjXj , j = 1, . . . , n

where υj = υj(t)andXj = Xjc(t). By properties 1 and 2, we have

DV

dt
=

∑

j

dυj

dt
Xj +

∑

j

υj DXj

dt
.

By property 3 and by the first property of the definition of affine connection,

DXj

dt
= ∇ dc

dt
XJ = ∇P dxi

dt Xi
Xj =

∑

i

dxi

dt
∇XiXj , i, j = 1, . . . , n.

Therefore,
DV

dt
=

∑

j

dυj

dt
Xj +

∑

i,j

dxi

dt
υj∇Xi

Xj .

The above expression shows that if there is a correspondence that satisfies the conditions given, then such
a correspondence is unique. To show existence, define DV

dt in x(U) as above. If y(W ) is another coordinate
neighborhood, with y(W ) ∩ x(U) 6= ∅ and we define DV

dt in y(W ) as above, then the definitions agree in
y(W )∩x(U), by the uniqueness of DV

dt in x(U). It follows from this fact that the definition can be extended
over all of M , and this concludes the proof. ¤

2 Theorems

Proposition 1 Given p ∈ M , there exist an open set V ⊂ M, p ∈ V , numbers δ > 0 and ε1 > 0 and a C∞

mapping

γ : (−δ, δ)× U −→ M,U = {(q, v); q ∈ V, υ ∈ TqM, |υ| < ε1}
such that the curve t −→ γ(t, q, υ), t ∈ (−δ, δ) is the unique geodesic of M which, at the instant t=0,

passes through q with velocity υ, for each q ∈ V and for each υ ∈ TqMwith|υ| < ε1.

This proposition asserts that if |υ| < ε1, then the geodesic exists in some interval and is unique. Its proof
follows from the following lemma.

Lemma: Homogeneity of a geodesic 1 If the geodesic γ(t, q, υ) is defined on the interval (−δ, δ), then
the geodesic γ(t, q, aυ), a ∈ R, a > 0, is defined on the interval (− δ

a , δ
a ) and

γ(t, q, aυ) = γ(at, q, υ).

Proof. Let h : (− δ
a , δ

a ) −→ M be a curve given by h(t) = γ(at, q, υ). Then h(0) = q and dh
dt (0) = aυ. In

addition, since h′(t) = aγ′(at, q, υ),

D

dt
(
dh

dt
) = ∇h′(t)h

′(t) = a2∇γ′(at,q,υ)γ
′(at, q, υ) = 0,

where, for the first equality, we extend h’(t) to a neighborhood of h(t) in M. Therefore, h is a geodesic
passing through q with velocity av at the instant t = 0. By uniqueness,

h(t) = γ(at, q, υ) = γ(t, q, aυ).¤

Proposition 1 with the above lemma allows us to extend the definition of a geodesic from that of an
interval to a uniformly large neighborhood of p.
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Proposition 2 Given p ∈ M , there exist a neighborhood V of p in M , a number ε > 0 and a C∞ mapping
γ : (−2, 2)× U −→ M,U = {(q, w) ∈ TM ; q ∈ V, w ∈ TqM, |w| < ε} such that t−→ γ(t, q, w), t ∈ (−2, 2), is
the unique geodesic of M which, at the instant t=0, passes through q with velocity w, for every q ∈ V and
for every w ∈ TqM , with |w| < ε.

Proof. The geodesic γ(t, q, υ) in Proposition 1 is defined for |t| < δ and for |υ| < ε1. From the lemma of
homogeneity, γ(t, q, δυ

2 ) is defined for |t| < 2. Taking ε < δε1
2 , we obtain that the geodesic γ(t, q, w) is defined

for |t| < 2 and |w| < ε.¤
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