Geodesics: REU 2006

Brian Taylor

August 11, 2006

Abstract

One of my main aims for the summer was to work into a subject with which I had no prior experience. This paper bears the fruits of that labor. I chose geodesics as a project because it's a particular aspect of geometry that I find interesting, and I believe that the theorem, while perhaps mainly useful as a tool for proving more complex theorems, is interesting itself. The aim of the paper is to introduce the reader to a few definitions, and move straight into the proof.

1 Definitions

Affine Connection 1 An affine connection ∇ on a differentiable manifold M is a mapping

$$\nabla: X(M) \times X(M) \longrightarrow X(M)$$

which is denoted by $(X, Y) \longrightarrow \nabla_X Y$ and which satisfies the following properties:

- 1. $\nabla_{fX+qY}Z = f\nabla_X Z + g\nabla_Y Z$
- 2. $\nabla_X(Y+Z) = \nabla_X Y + \nabla_X Z$
- 3. $\nabla_X(fY) = f\nabla_X Y + X(f)Y$

in which $X, Y, Z \in X(M)$ and $f, g \in D(M)$ where X(M) is the set of all vector fields of class C^{∞} on M and D(M) is the ring of real-valued functions of class C^{∞} defined on M.

Geodesic 1 A parametrized curve $\gamma : I \longrightarrow M$ is a geodesic at $t_0 \in I$ if $\frac{D}{dt}(\frac{d\gamma}{dt}) = 0$ at the point t_0 ; if γ is a geodesic at t, for all $t \in I$, we say that γ is a geodesic. If $[a,b] \subset I$ and $\gamma : I \longrightarrow$ is a geodesic, the restriction of γ to [a,b] is called a geodesic segment joining $\gamma(a)$ to $\gamma(b)$.

Tangent Bundle 1 A tangent bundle TM on a manifold M is the set of pairs $(q, v), q \in M, v \in T_q M$. If (U, \mathbf{x}) is a system of coordinates on M, then any vector in $T_q M, q \in \mathbf{x}(U)$, can be written as $\sum_{i=1}^n y_i(\frac{\partial}{\partial x_i})$

Coderivative 1 We'll define *coderivative* by a proposition:

Let M be a differentiable manifold with an affine connection ∇ . There exists a unique correspondence which associates to a vector field V along the differentiable curve $c : I \longrightarrow M$ another vector field $\frac{DV}{dt}$ along c, called the covariant derivative of V along c, such that:

1. $\frac{D}{dt}(V+W) = \frac{DV}{dt} + \frac{DW}{dt}$, where W is a vector field along c and f is a differentiable function on I.

2.
$$\frac{D}{dt}(fV) = \frac{df}{dt}V + f\frac{DV}{dt}$$

3. If V is induced by a vector field $Y \in X(M)$, i.e. V(t) = Y(c(t)), then $\frac{DV}{dt} = \nabla_{\frac{dc}{dt}} Y$.

Proof. Let us suppose initially that there exists a correspondence satisfying items 1, 2, and 3 of the definition. Let $\mathbf{x} : U \subset \mathbb{R}^n \longrightarrow M$ be a system of coordinates with $c(I) \cap x(U) \neq \emptyset$ and let $(x_1(t), \ldots, x_n(t))$ be the local expression of $c(t), t \in I$. Let $X_i = \frac{\partial}{\partial x_i}$. Then we can express the field V locally as $V = \sum_j v^j X_j, j = 1, \ldots, n$ where $v^j = v^j(t)$ and $X_j = X_j c(t)$. By properties 1 and 2, we have

$$\frac{DV}{dt} = \sum_{j} \frac{dv^{j}}{dt} X_{j} + \sum_{j} v^{j} \frac{DX_{j}}{dt}.$$

By property 3 and by the first property of the definition of affine connection,

$$\frac{DX_j}{dt} = \nabla_{\frac{dc}{dt}} X_J = \nabla_{\sum \frac{dx_i}{dt} X_i} X_j = \sum_i \frac{dx_i}{dt} \nabla_{X_i} X_j, \quad i, j = 1, \dots, n.$$

Therefore,

$$\frac{DV}{dt} = \sum_{j} \frac{dv^{j}}{dt} X_{j} + \sum_{i,j} \frac{dx_{i}}{dt} v^{j} \nabla_{X_{i}} X_{j}.$$

The above expression shows that if there is a correspondence that satisfies the conditions given, then such a correspondence is unique. To show existence, define $\frac{DV}{dt}$ in x(U) as above. If y(W) is another coordinate neighborhood, with $y(W) \cap x(U) \neq \emptyset$ and we define $\frac{DV}{dt}$ in y(W) as above, then the definitions agree in $y(W) \cap x(U)$, by the uniqueness of $\frac{DV}{dt}$ in x(U). It follows from this fact that the definition can be extended over all of M, and this concludes the proof. \Box

2 Theorems

Proposition 1 Given $p \in M$, there exist an open set $V \subset M, p \in V$, numbers $\delta > 0$ and $\varepsilon_1 > 0$ and a C^{∞} mapping

$$\gamma: (-\delta, \delta) \times U \longrightarrow M, U = \{(q, v); q \in V, v \in T_q M, |v| < \varepsilon_1\}$$

such that the curve $t \longrightarrow \gamma(t, q, v), t \in (-\delta, \delta)$ is the unique geodesic of M which, at the instant t=0, passes through q with velocity v, for each $q \in V$ and for each $v \in T_q M$ with $|v| < \varepsilon_1$.

This proposition asserts that if $|v| < \varepsilon_1$, then the geodesic exists in some interval and is unique. Its proof follows from the following lemma.

Lemma: Homogeneity of a geodesic 1 If the geodesic $\gamma(t, q, v)$ is defined on the interval $(-\delta, \delta)$, then the geodesic $\gamma(t, q, av), a \in \mathbb{R}, a > 0$, is defined on the interval $(-\frac{\delta}{a}, \frac{\delta}{a})$ and

$$\gamma(t, q, a\upsilon) = \gamma(at, q, \upsilon).$$

Proof. Let $h: (-\frac{\delta}{a}, \frac{\delta}{a}) \longrightarrow M$ be a curve given by $h(t) = \gamma(at, q, v)$. Then h(0) = q and $\frac{dh}{dt}(0) = av$. In addition, since $h'(t) = a\gamma'(at, q, v)$,

$$\frac{D}{dt}(\frac{dh}{dt}) = \nabla_{h'(t)}h'(t) = a^2 \nabla_{\gamma'(at,q,\upsilon)}\gamma'(at,q,\upsilon) = 0,$$

where, for the first equality, we extend h'(t) to a neighborhood of h(t) in M. Therefore, h is a geodesic passing through q with velocity av at the instant t = 0. By uniqueness,

$$h(t) = \gamma(at, q, v) = \gamma(t, q, av).\Box$$

Proposition 1 with the above lemma allows us to extend the definition of a geodesic from that of an interval to a uniformly large neighborhood of p.

Proposition 2 Given $p \in M$, there exist a neighborhood V of p in M, a number $\varepsilon > 0$ and a \mathcal{C}^{∞} mapping $\gamma : (-2,2) \times \mathcal{U} \longrightarrow M, \mathcal{U} = \{(q,w) \in TM; q \in V, w \in T_qM, |w| < \varepsilon\}$ such that $t \longrightarrow \gamma(t,q,w), t \in (-2,2)$, is the unique geodesic of M which, at the instant t=0, passes through q with velocity w, for every $q \in V$ and for every $w \in T_qM$, with $|w| < \varepsilon$.

Proof. The geodesic $\gamma(t, q, v)$ in Proposition 1 is defined for $|t| < \delta$ and for $|v| < \varepsilon_1$. From the lemma of homogeneity, $\gamma(t, q, \frac{\delta v}{2})$ is defined for |t| < 2. Taking $\varepsilon < \frac{\delta \varepsilon_1}{2}$, we obtain that the geodesic $\gamma(t, q, w)$ is defined for |t| < 2 and $|w| < \varepsilon$. \Box