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1. ABSTRACT

This paper describes the construction of the universal covering group Spin(n), n > 2, as
a group of homotopy classes of paths starting from the identity in O(n) to a reader unfa-
miliar with the theory of Lie groups, and outlines an explicit connection between rotation
paths in O(3), the physical meaning of SO(3), and quantum mechanics.

2. PRELIMINARIES

I assume some familiarity with some aspects of the classical groups O(n,R) and SO(n,R),
particularly their aspects as matrix groups. I also assume familiarity with basic topological
concepts such as paths and homotopy.

Through this paper I make occasional references to the “physical world.” It is not clear,
even to physicists, what the physical world actually is. For simplicity’s sake, I assume the
physical world is R3. This is the subspace of all spatial dimensions in the special rela-
tivistic description of space-time (as opposed to the time dimension or other hypothesized
dimensions), and the study of R3 suffices to explain almost all physical phenomena that are
not on an extremely large or extremely small (sub-quantum) scale, and where relativistic
effects are not present.

The notion of what it means to rotate something in R3, or any other metric space, can
be rigorously defined. Physical rotation is not the same as applying an automorphism in
the rotation group. If a physical object is rotated, it does not instantly take on its new
configuration, but rather passes through a continuous series of intermediate configurations.
Furthermore, there exist some objects that are not invariant under a rotation of 2π. To
give a mathematically intuitive description of physical rotation, I introduce the notion of a
rotation path, which is a path in O(3), and introduce some formalism on rigid bodies and
rotations applied continuously to them. I conclude by outlining a link between rotation
paths and quantum physics.

I have sometimes seen the notion of a rotation path used to explain the existence of the
group Spin(3), but I am unsure if they have been explicitly linked to physics as they are in
this paper.

3. ROTATIONS IN SPACE

To talk about paths in O(3), it must first be established that it has a topology.

Definition 3.1. A Lie group is a group that is also a smooth manifold, and in which group
operations are a smooth map.

Lie groups have important properties, both as topological spaces and as groups.

Definition 3.2. The general linear group GLn(R), abbreviated as GL(n), is the group of
all automorphisms on the real finite-dimensional vector space Rn.
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Since an invertible n×n matrix is an automorphism on the vector space of n×1 column
vectors, GL(n) is isomorphic to the group of n×n matrices with nonzero determinant.

Definition 3.3. The orthogonal group O(n) is the set of all automorphisms of Rn that
preserve the Euclidean metric.

Theorem 3.4. GL(n) is a Lie group that is not connected.

Proof. The set Mn(R) of all n× n matrices is a real vector space of dimension n2. The
standard Euclidean metric gives a smooth topology on Rn2

, and this topology therefore
extends naturally to Mn(R). Matrix multiplication is a polynomial map from Rn2

to itself,
and inversion is a continuous rational map whenever a matrix is invertible, and so GL(n)
is Lie. Finally, the determinant map

det : GL(n)→ R

is a homomorphism of groups and a continuous map from GL(n) to R×, a manifold with
two connected components. Therefore GL(n) itself consists of at least two connected com-
ponents. �

Theorem 3.5. O(n) is a Lie group that is not connected.

As before, consider O(n) as a matrix group acting on column vectors. The only matrices
that preserve the Euclidean metric are those with determinant ±1, so the determinant map
is again a continuous map to a (discrete) topological space. It then follows, as with GL(n),
that O(n) is not connected.

In fact, GL(n) and O(n) have precisely two connected components, but this does not
hold in generalized orthogonal groups when the Euclidean metric is replaced. For exam-
ple, the space-time metric in special relativity causes the orthogonal group to have four
components [1].

Definition 3.6. The special orthogonal group, SO(n), is the identity component of O(n).

SO(3) is sometimes called the rotation group, and elements of SO(3) are sometimes
called rotations.

4. ROTATION PATHS

Definition 4.1. A body in Rnis a set of (distinct) points B together with a set of functions
C ⊂ { f : B →Rn}. C is called the configuration space of B . The elements of C are called
configurations of B .

The structure of a body is determined by its configuration space.

Definition 4.2. A rigid body B is a body such that, for any two f ,g∈ C and any two points
b1,b2 ∈ B , | f (b2)− f (b1)|= |g(b2)−g(b1)|.

A rigid body can be characterized physically as a set of points in space such that the
distance between any two points is fixed. In basic three-dimensional classical mechanics;
for example, all objects are assumed to be rigid bodies in R3, typically with configuration
space SO(3).

Definition 4.3. A rigid body with fixed point bo is a rigid body B such that, for for
any two f ,g ∈ C , f (b0) = g(b0). An initial configuration is a fixed, possibly arbitrary,
configurationI ∈ C .



ROTATIONS, ROTATION PATHS, AND QUANTUM SPIN 3

Sometimes one speaks of an automorphism f:Rn → Rn used as a configuration. Here
it is meant that the configuration is f acting on some initial configurationI, giving the

configuration f ◦ I : B I→R3 f→R3. If the configuration space is a group of automorphisms
on Rn, then I is the identity automorphism. This abuse of notation will be used throughout
this paper.

A wheel on a fixed axle is a rigid body with a fixed point. Also, the Euclidean spaceR3

together with its isometric automorphisms is a rigid body, with fixed point 0 and configu-
ration space O(3).

When is it that the configuration space of a rigid body is O(3)?

Theorem 4.4. For a rigid body B in Rn, with fixed point the origin, if the configuration
I(B) contains a basis, the configuration space of a rigid body with a fixed point is a subset
of O(n). The largest possible configuration space is preciselyO(n).

This follows from the fact that O(n) is the set of all isometric automorphisms of Rn. To
see every element in O(n) is a unique configuration: Any isometric automorphism (in fact,
any automorphism at all) of Rn is determined completely by its action on a basis, and thus
determined completely by its action on I(B). Therefore, there can be no two elements of
O(n) that give the same configuration of B .

Configuring a rigid body fixing a point bo is equivalent to choosing the origin 0 = bo
and then applying an isometric configuration in O(n). The same result can be achieved by
translating bo to 0, rotating, and then translating it back to bo.

Corollary 4.5. For a rigid body with fixed point bo, the configuration space is a subset of
the set { f : B → Rn | f (b) = bo +O(I(b)−bo)}.

The reader might notice that in these definitions, I am allowing as configurations the
improper rotations in O(n), that is, elements that are not in SO(n), to be configurations of
rigid bodies. However, I will show that only rotations in SO(n) are, in a sense, physically
valid configurations of rigid bodies.

Definition 4.6. A (proper) rotation in Rn is an element of SO(n). SO(3) (or more generally
SO(n)) is sometimes called the rotation group.

This definition would seem to completely describe what it means to rotate a rigid body
in space. SO(n) contains all oriented isometric automorphisms of Rn. Therefore, the
spatial configuration of a rigid body with a fixed point in R3 can completely be described
in terms of a fixed configuration rotated by SO(3).

However, there are two problems with this. The first is that it does not adequately
explain why non-oriented isometries of physical space, the so-called improper rotations
that are elements of O(3) but not SO(3), are not allowed in physics. The second is that it is
sometimes noted in math and science texts that a “rotation” of 2π is not homotopic to the
identity, and this is sometimes cited as a somewhat unconvincing justification for the fact
that the spin of quantum particles change sign under a rotation of 2π. However, it makes
no sense to speak of homotopies of rotations since rotations are points, not paths.

This calls for a new definition. If one were to pick up, say, a pencil, and rotate it in
space, the pencil’s direction varies continuously from its initial configuration to its final
configuration. The same is true of any other rotation. There appears to be no such thing as
“instantly” rotating something; to rotate an object from one configuration to another, one
must continuously pass it through a path of intermediate rotations.

Definition 4.7. A rotation path is a (continuous) path in O(n) starting from the identity.
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It immediately follows that a rotation path must be contained in SO(n), the identity
component of O(n).

Lemma 4.8. Choose a basis B in Rn. A map γ : [0,1] → O(n) is a (continuous) rotation
path if, and only if, for all x ∈ B, the function γx : [0,1]→ Rn defined by γx(t) 7→ γ(t)(x) is
a path.

Proof. From the above isomorphism between automorphisms of real vector spaces and
n× n matrices acting on column vectors, we see that the action of a matrix on a vector is
a polynomial map. Fix any basis B = (x1 · · ·xn) and let ιB : O(n)→ Mn(R) be an isomor-
phism of vector spaces mapping elements in O(n) to matrices in Mn(R) with respect to the
basis B. Consider the function γ′ = ιB ◦ γ, which is simply γ in matrix form relative to the
basis B. Specifically, consider the i-th component of the action of γ′ on the column vector
x j. The action of γ′ on the vector x j is continuous if and only if it is continuous for each
component of x j. each of which is determined completely by γ′i, j. (Specifically, γ′i, j is the
function defined by γ′i, j(t) = (γ′(t))i, j.) This is true if and only if γ′ must be a continuous
path in Mn(R), which is true if and only if γ is a continuous path in GL(n) (and thus O(n)
by definition of continuous rotation path). �

The next theorem follows immediately:

Theorem 4.9. For a rigid body B with fixed point the origin and initial configuration I,
consider a function of the form f : B × [0,1] → Rn. If, for any set S in B such that I(S)
is a basis, the restriction of f to any x ∈ I(S) is a continuous path in Rn, then f (B, t) =
γ(t)(I(B)) where γ : [0,1]→ O(n) is a rotation path.

This gives the physical meaning of a rotation path.
It is easy to see that the effect of any rotation path on a rigid body can be characterized

in terms of its endpoint in SO(n). The purpose of introducing rotation paths thus kills
two birds with one stone: It explains why improper rotations in O(n) are not physically
allowed, and describes all the ways to continuously rotate an object, or Rn.

Rotation paths can be formed into a group in several ways. The most useful such for-
mulation is concerned not with the paths themselves but rather their homotopy classes.

5. THE UNIVERSAL COVERING GROUP Spin(n)

Definition 5.1. For a topological space X , a (topological) cover is a topological space C,
the covering space, together with a continuous map ϕ : C → X , the covering map, such that
for each x ∈ X there exists an open neighborhood of x, N(x), such that each component of
ϕ−1(N(x)) is mapped homeomorphically onto N(x). A topological space is said to cover
another if a covering map exists from the former to the latter. A cover is a double cover if
each fiber over x ∈ X has cardinality 2. For n ∈ Z+, a cover is an n-cover if each fiber has
cardinality n.

The cardinality of every fiber over x is the same for all x. A cover is like a home-
omorphism, where the condition that ϕ−1(x) be a continuous bijection with the weaker
condition that ϕ−1(x) be the union of several continuous bijections in a neighborhood of x.
All covering maps are locally homeomorphic.

Definition 5.2. For a topological space X , the universal cover ϕ : U → X is a cover such
that, for any cover g : D → X , there exists a cover f : U → D such that g ◦ f = ϕ. The
universal cover, if it exists, is unique up to homotpy.
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Example 5.3. For any n ∈ Z+, the map pn : C× → C× given by pn(z) = zn is an n-fold
cover. For the circle group T, the map ϕ : R→T, ϕ(x) 7→ cos(x)+ isin(x)), is the universal
cover.

The existence of the universal cover is given by construction.

Theorem 5.4. For any compact manifold X, and a fixed point xo, let U be the set of all
homotopy classes [γ], where γis any path with γ(0) = xo. Then U is the universal cover of
X.

We can construct a base on this topology as follows. For a homotopy class of paths
[γ] ∈ U and an open neighborhood D ∈ X where γ(1) ∈ D, define [γ,D] to be the set of
all paths homotopic to any path formed by γ concatenated to some path contained entirely
in D. Roughly, two paths αand β are close to each other if α(1) is close to β(1). This
construction is rather clearly a base; a rigirous proof can be found in [3].1

The universal cover is unique up to homeomorphism and simply connected. An intuitive
justification for this is given by the fact that, for any path in X , its endpoint can be smoothly
moved backwards along the path until it reaches its starting point. Its uniqueness follows
from the fact that a local homeomorphism of simply connected groups must be a global
homeomorphism as well. Proofs can be found in [3].

Theorem 5.5. If X is a connected Lie group, then so is its universal cover, U. U is then
called the universal covering group, and can be constructed with the above construction
with xo = e, the identity. Multiplication in U is defined by [α][β] = [αβ] where (αβ)(x) =
α(x)β(x).

The proof that U is Lie rests on the fact that smooth operations on elements of X are
also smooth on the points of paths in U .[2]

The universal covering group U is unique up to an isomorphism of Lie groups. (Kolk,
p.62-68) gives an alternate construction of the universal covering group by means of quo-
tients of path groups, together with a proof that this is isomorphic as a Lie group to the
group I just described, and a proof of uniqueness.

Note that the above construction does not work for X not connected. However, there
does exist a universal cover for most topological spaces–any path-connected, locally con-
nected, semi-locally simply connected space has a universal cover. Though the universal
cover is unique to homeomorphism, the universal covering group of a non-connected Lie
group is generally not unique up to isomorphism.

The universal cover of SO(n) gives, up to homotopy, all rotation paths in O(n). Further-
more, it defines a group operation on these paths.

Definition 5.6. For n > 2, the spin group Spin(n) is defined as the universal cover of
SO(n).

Spin(n) is always a double cover when n > 2 [1]. The restriction n > 2 is necessary
because, in 1 and 2 dimensions, Spin(n) is defined as a double cover, but it is not the
universal cover.

Finally, we consider the topology of SO(3) and Spin(3).

Definition 5.7. The real projective space, RPn, is any space homeomorphic to the space
formed by taking the usual n-sphere, {x∈Rn+1 | |x|= 1}, and identifying antipodal points.

1The cited text deals with Riemann surfaces, but its discussion of the universal cover holds for all manifolds,
often by simply substituting “manifold” for “surface”.
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Theorem 5.8. SO(3)is diffeomorphic to the real projective space RP3.

Proof. Every rotation x ∈ SO(3) has an eigenvector with eigenvalue 1 in R3. As x must
preserve magnitude of vectors orientation of vector triples, it can therefore be completely
described in terms of this eigenvector and the angle by which vectors orthogonal to it are
rotated. Consider a closed 3-disc, D, with radius π. We then have a map D → SO(3),
sending the vector z to a rotation with z as its fixed eigenvector and |z| its magnitude of
rotation, and sending 0 to the identity. This map sends ∂D to 0 and identifies each vector
with its antipode. All 3-dimensional smooth manifolds homeomorphic to each other are
also diffeomorphic [6], so SO(3)' RP3. �

Theorem 5.9. The universal covering group of SO(3), Spin(3), is a double cover diffeo-
morphic to S3.

Proof. This follows from the diffeomorphism SO(3)' RP3, and the fact that S3 is a simply
connected cover of RP3. �

It is interesting to note that, as I write this (8/15/06), the New York Times is publishing
an article announced that mathematicians claim to have completed and verified the proof
of the Poincare conjecture, which suffices to prove that Spin(3)' S3.

The construction of the universal cover gives Spin(n) as the group of all rotation paths,
up to homotopy, of a rigid body with a point fixed. It follows that Spin(n) is the group of
all continuous rotation paths, up to homotopy, of a rigid body with a point fixed. So we
have a complete description, up to homotopy and up to a fixed point, of all the ways to
rotate a rigid body, bundled up in the group Spin(n). Since Rn itself can be considered to
be a rigid body, we also have all the ways, up to homotopy, to rotate Rn about the origin.

6. SPIN

I conclude by making explicit the connection between the spin group, constructed as a
group of rotation paths, and quantum physics.

In 1927 Wolfgang Pauli formulated the theory of so-called spin 1/2 particles in R3.
Paul Dirac, in 1928, extended the theory to relativistic space-time.

In classical mechanics, a rotating object possess an angular momentum vector. If one
imagines ones self looking at the vector head-on, the object spins counter-clockwise about
this vector, and the magnitude of the vector is equal to the object’s angular momentum. For
example, if this page were spinning counterclockwise, its angular momentum vector would
be pointed at you. Angular momentum is proportional to both the speed of the rotation and
the rotational inertia of the object.. Rotations in SO(3) act upon this vector just as they act
upon any other object in physical space.

In quantum mechanics in R3, a spinning2 object posses instead a spinor. The introduc-
tion of spinors, rather than vectors, to describe angular momentum, is motivated by the fact
that one simply cannot have a particle literally spinning along some axis in quantum me-
chanics. First, the uncertainty principle demands that the angular momentum of a particle
not have a definite direction. Second, quantum particles are believed to be point particles
with no diameter.

I state a series of definitions and facts that explain the connection between rotation
paths, spin and spinors. These facts should be familiar to those who have studied quantum
mechanics. Those not so fortunate can verify this information in texts such as [5].

2Spinning is just an adjective. Quantum particles, as far as physicists know, do not rotate at all, and posess an
angular momentum intrinsic to the particle itself.
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Definition 6.1. A spinor is a complex 2×1 column vector, denoted ψ =
(

ψ1
ψ2

)
.

Spinors form a 2-dimensional complex vector space.

Fact 6.2. Spinors form a representation of the group Spin(3).

This is already an important connection between Spin(3) and physics, but not the con-
nection we are aiming for.

Definition 6.3. The anuglar momentum vector of a particle is the vector such that, when
the component of angular momentum along that vector is measured, the result is always
~/2, where ~ is the important physical constant Planck’s constant.

It may not be clear what I mean by measuring a component of angular momentum.
A classical particle rotating has three components of angular momentum, which are the
components of the angular momentum vector in some orthonormal basis. The uncertainty
principle demands that certain components of angular momentum of a quantum spinning
particle not have a definite value. The anuglar momentum vector of a quantum particle is
the component of angular momentum that always has a definite (positive) value.

Fact 6.4. There exists a 2:1 continuous map sending normed spinors to angular momentum
vectors.

This map is typically described using the Pauli matricies, which can be used to generate
Spin(3) ' SU(2). SU(2) is the complex matrix group analogous to SO(2), and is the
group generated by all matricies X such that det(X) = 1 and X t∗ = X−1 , where X t∗ is the
transpose conjugate of X .

Fact 6.5. The element in Spin(3) that is a rotation of 2π flips the sign of a spinor, but
leaves the angular momentum vector invariant.

It now immediately follows:

Theorem 6.6. Action on spinors is described completely by Spin(3), the group of rotation
paths in O(3). Furthermore, each rotation path in Spin(3) has precisely the same effect
on a particle’s angular momentum vector as it does on the angular momentum vector of a
classically spinning object.

The spin group, Spin(3), considered as homotopy classes of rotation paths, elegantly
describes mathematically the behavior of spin 1/2 particles under rotation.
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