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1 Preliminaries

We will be dealing with outcomes resulting from random processes. An outcome
of the process will sometimes be denoted ω. Note that we will identify the set
A with the event that the random outcome ω belongs to A. Hence, A will mean
‘A occurs’, and A∪B means ‘either A or B occurs’, whereas A∩B means ‘both
A and B occur.’

For a sequence of events, A1, A2, . . ., note that

∞⋂
m=1

∞⋃
n=m

An

means that infinitely many of the An occur, or that An occurs infinitely often
(An i.o.).

The events A1, . . . , An are said to be independent if P (A1 ∩ · · · ∩ An) =
P (A1) · · ·P (An). An infinite collection of events is said to be independent if
every finite subcollection is independent.

2 The Infinite-Monkey Theorem

Before we state the infinite-monkey theorem, we will prove a useful lemma.
Consider the events A1, A2, . . ..

Lemma 2.1 (Borel-Cantelli). If
∑

n P (An) < ∞, then P (An i.o.) = 0. Fur-
thermore, if the events An are independent, then if

∑
n P (An) = ∞, we have

P (An i.o.) = 1.

Proof. Suppose that
∞∑

n=1

P (An) <∞. (2.1)

1



Then,

P

( ∞⋂
m=1

∞⋃
n=m

An

)
= lim

m→∞
P

( ∞⋃
n=m

An

)

≤ lim
m→∞

∞∑
n=m

P (An) (2.2)

and hence by (2.1), the limit in (2.2) must be 0.
For the converse, it is enough to show that

P

( ∞⋃
m=1

∞⋂
n=m

Ac
n

)
= 0

and so it is also enough to show that

P

( ∞⋂
n=m

Ac
n

)
= 0 (2.3)

Note that since 1− x ≤ e−x, and by independence,

P

( ∞⋂
n=m

Ac
n

)
≤ P

(
m+k⋂
n=m

Ac
n

)

=
m+k∏
n=m

(1− P (An))

≤ exp

(
−

m+k∑
n=m

P (An)

)
. (2.4)

But since, taking k → ∞, the last sum in (2.4) diverges, this establsihes (2.3),
thereby completing the proof.

Loosely speaking, the infinite-monkey theorem states that if a monkey hits
keys on a typewriter at random for an infinite amount of time, he will almost
surely produce the entire collected works of Shakespeare! Even better, he will
almost surely do this infinitely often! Here is the precise statement:

Theorem 2.2 (Infinite Monkey). Consider an infinite-length string produced
from a finite alphabet by picking each letter independently at random, uniformly
from the alphabet (say the alphabet has n letters). Fix a string S of length m
from the same alphabet. Let Ek be the event ‘the m-substring starting at position
k is the string S. Then, infinitely many of the Ek occur with probability 1.

Proof. Note that the events Emj+1 are independent for j = 0, 1, . . .. Further-
more, P (Ek) = ( 1

n )m. Hence,
∞∑

j=1

P (Emj+1) =
∞∑

j=1

(
1
n

)m

=∞,

so by Lemma 2.1, P (Emj+1 i.o.) = 1.
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3 Random Walks in Zd

Consider a Random Walk (a drunkard’s walk) in the d dimensional lattice Zd.
Suppose the that drunkard starts out at the origin, and at each step he moves to
any adjacent point with equal probability. The question is, what is the chance
that he will return to the origin? Actually, the question that we will consider
is, what is the chance that he will return to the origin infinitely often?

Let us fix some notation. Let Xn be the position of the drunkard after n
steps (n = 0, 1, . . .). Let Pi(·) denote the probability that an event occurs for
a random walk starting a position i. Let p

(n)
ij denote the probability that after

starting at position i, the walker is at position j after n steps. Let f
(n)
ij denote

the probability that after starting at position i, the walker reaches position j
for the first time after n stepts. Let fij denote the probability that the walker
eventually reaches j after starting out at i. So,

fij =
∞∑

n=1

f
(n)
ij .

Definition 3.1. A position i is recurrent if fii = 1. It is transient if fii < 1.

Lemma 3.2. Suppose a random walker starts out at position i. Then,

Pi(Xn = i i.o.) =
{

1 if i is recurrent
0 if i is transitive (3.1)

Proof. Let 1 ≤ n1 < · · · < nk. Let Aij
n1,...,nk

be the event that Xn1 = · · · =
Xnk

= j and Xt 6= j for the other t < nk. Then,

Pi(Aij
n1,...,nk

) = f
(n1)
ij f

(n2−n1)
jj · · · f (nk−nk−1)

jj

Now,
Ak :=

⋃
n1,...,nk

Aij
n1,...,nk

is the event that Xt = j at least k times. Also,

Pi(Ak) =
∑

1≤n1<···<nk

P (Aij
n1,...,nk

)

=
∞∑

n1=1

· · ·
∞∑

nk=nk−1+1

f
(n1)
ij f

(n2−n1)
jj · · · f (nk−nk−1)

jj

=
∞∑

n1=1

f
(n1)
ij

∞∑
n2=n1+1

f
(n2−n1)
jj · · ·

∞∑
nk=nk−1+1

f
(nk−nk−1)
jj

=
∞∑

n1=1

f
(n1)
ij

∞∑
n2=1

f
(n2)
jj · · ·

∞∑
nk=1

f
(nk)
jj

= fij(fjj)k−1 (3.2)
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Taking the limit as k →∞ in (3.2), we get

Pi(Xn = j i.o.) = Pi

( ∞⋂
k=1

Ak

)
= lim

k→∞
Pi(Ak)

=
{

fij if fjj = 1
0 if fjj < 1 (3.3)

Replacing j with i in (3.3), we obtain (3.1).

Before we answer the question posed at the beginning of the section, we
would like to have a Borel-Cantelli like lemma for the random walk. However,
the Xn are manifestly not independent. Still, the lemma will hold.

Lemma 3.3. The following hold:

(i) Pi(Xn = i i.o.) = 0⇐⇒
∑

n p
(n)
ii <∞.

(ii) Pi(Xn = i i.o.) = 1⇐⇒
∑

n p
(n)
ii =∞.

Proof. Note that under (3.1), (i) and (ii) are equivalent. We will prove (i). Note
that ⇐= follows from Lemma 2.1. We will here prove =⇒.

We can condition p
(n)
ij on the first t st Xt = j:

p
(n)
ij =

n−1∑
l=0

f
(n−l)
ij p

(l)
jj .

Hence,

n∑
k=1

p
(k)
ii =

n∑
k=1

k−1∑
l=0

f
(k−l)
ii p

(l)
ii

=
n−1∑
l=0

p
(l)
ii

n∑
k=l+1

f
(k−l)
ii

≤
n∑

l=0

p
(l)
ii fii

=

(
1 +

n∑
l=1

p
(l)
ii

)
fii

and therefore, (
n∑

k=1

p
(k)
ii

)
(1− fii) ≤ fii (3.4)
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Now, since fii < 1, (3.4) gives an upper bound for the partial sums of

∞∑
n=1

p
(n)
ii

thereby completing the proof.

The question that we posed at the beginning of the section was answered by
Polya in 1921.

Theorem 3.4 (Polya). If d = 1, 2, then the probability that the walker returns
to the origin infinitly often is 1. For d ≥ 3 the probability is 0.

This is proved by calculating the sum

∞∑
n=1

p
(n)
00

and applying Lemma 3.3. We will give a proof for the case d = 1, 2. First, recall
Stirling’s formula:

n! ∼
√

2πnn+1/2e−n

Therefore, (
2n

n

)
∼ 22n

√
πn

.

Also, recall (
2n

n

)
=

n∑
k=0

(
n

k

)(
n

n− k

)
Proof when d = 1. Note that p

(m)
00 = 0 if m is odd. If m = 2n, then every

particular walk of length 2n has probability (1/2)2n. If n of the steps are to the
right, and n are to the left, the walker will have returned to the origin. There
are

(
2n
n

)
ways of doing this. Therefore, p

(2n)
00 =

(
2n
n

)
(1/2)2n. Summing over all

n, we have
∞∑

n=1

p
(2n)
00 =

∞∑
n=1

(
2n

n

)
(1/2)2n ∼

∞∑
n=1

1√
πn

which diverges, and so we are done by Lemma 3.3.

Proof when d = 2. Now, the probability of any particular walk of length n is
(1/4)n. In order that we return to the origin, there must be the same number
of moves left as there are right, and there must be the same number of moves
down as there are up. Again, we have p

(m)
00 = 0 for odd m. If m = 2n, there are

n∑
k=0

(
2n

k k n− k n− k

)
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ways of making the same number of moves left and right and the same number
of moves up and down. Hence, we have

p
(2n)
00 =

(
1
4

)2n n∑
k=0

(
2n

k k n− k n− k

)

=
(

1
4

)2n n∑
k=0

(2n)!
k!k!(n− k)!(n− k)!

=
(

1
4

)2n n∑
k=0

(2n)!
n!n!

n!n!
k!k!(n− k)!(n− k)!

=
(

1
4

)2n(2n

n

) n∑
k=0

(
n

k

)(
n

n− k

)

=
(

1
4

)2n(2n

n

)2

∼ 1
πn

Summing over n, we find that
∑

n p
(2n)
00 diverges, and so we are done by Lemma

3.3.

For d ≥ 3, we will find that p
(2n)
00 = O

(
n−d/2

)
by some sort of inductive

proof.

4 Further Study

The following problem was proposed to me by Dr Laszlo Babai. Consider the
random walk in Z starting at the origin, where at each step the walker moves
either to the right or to the left, each with probability p, or he stays put with
probability 1−2p. It can easily be shown that the probabability of returning to
the origin in n steps is O(n−1/2), as above. Now, consider a ‘phased’ random
walk on Zd, where at step n, we move in the direction of dimension n mod d,
with the same probabilities as before. Then, it is trivial to prove that the
probability of return to the origin in n steps is O(n−d/2). Is it possible to find
an alternate proof to Polya’s Theorem by approximating the Random Walk on
Zd by the Phased Random Walk on Zd?
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