FORBIDDEN MINORS AND MINOR-CLOSED GRAPH

PROPERTIES

DAN WEINER

ABSTRACT. Kuratowski’s Theorem gives necessary and sufficient conditions for
graph planarity—that is, embeddability in R2. This motivates the question:
what are the conditions for embeddability on arbitrary surfaces? Is there a
“Kuratowski-type” theorem for every surface? This problem and a class of
similar problems are answered positively by the Graph Minor Theorem. We
introduce the concept of graph minors, then discuss the Robertson-Seymour
Theorem and derive the Graph Minor Theorem from it. We then discuss some
consequences of the Graph Minor Theorem.
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1. GRAPHS AND NOTIONS OF SUBGRAPHS

First, recall:

Definition 1.1. A graph is a pair G = (V, E). V is called the vertex set of G. E,
called the edge set of G, consists of 2-subsets of V.

For

our purposes, all graphs are finite (|V] < 00).
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Graphs are drawn with a collection of points representing the vertices and a line
segment connecting vertices u,v € V whenever {u,v} € E.
Some important graphs are:
Ky,: The complete graph has [V =n, E = {{u,v} :u#0veV}.
K} o2 The complete bipartite graph has V = KII L, |K| =k, |[L| = ¢, E =

Cp: A cycle has V = {uy,..

{{u,v} :ue K,ve L}.
Complete tripartite graphs Ky ¢, are defined similarly.

{{v1,vn}}.

Thanks to Masoud Kamgarpour and Laszlé Babai for their comments.
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FIGURE 1. A contraction: G = (V, E) ~ Cyuy(G) = (V', E").

P: The Petersen graph is pictured in Figure 2.
Now, consider a graph G = (V, E).
Intuitively, a contraction of an edge in a graph is simply “sliding” the vertices of
an edge together until they coincide, as in Figure 1. Of course, this definition can
be made rigorous:

Definition 1.2. The contraction of an edge {u, v} is the graph C\,,(G) = (V', E’),
where V/ = V' \ {u,v} U{uv} and B’ = E\ {{z,u}, {z,v} ;2 € V}U{{z,w} : z €
V, {z,u} € E or {z,v} € E}.

We define several other simple graph operations, whose intuitive definitions are
clear enough from their names:

Definition 1.3. The deletion of a vertez v € V is the graph D,(G) = (V', E'),
where V/ =V \ {v} and E' = E\ {{z,v} : 2 € V}.

The deletion of an edge {u,v} € E is the graph D,,(G) = (V, E’), where E' =
E\ {{u,v}}.
Definition 1.4. The subdivision of an edge {u,v} € E is the graph S,,(G) =
(V',E'), where V! =V U{uv} and E' = E\ {{u,v}} U {{u, uv}, {v,uv}}.

We now have three graph operations, namely, contraction, deletion, and subdi-
vision. These yield three notions of a graph being “contained” in another.

Definition 1.5. A graph G has a subgraph G’ (denoted “G’ < G”) if G’ is the
product of zero or more (vertex or edge) deletions.

Definition 1.6. A graph G has a topological subgraph G’ (denoted “G’' C G”) if
there exists a product of zero or more subdivisions G” = Sy, © -+ 0 Syu0, (G')
such that G” < G.

Definition 1.7. A graph G has a minor G’ if G’ (denoted “G’ < G”) if there
exists a product of zero or more contractions G = Cyy,p, 0+ - - 0 Cy, 4, (G) such that
G <G".

G’ is a proper minor of G (denoted “G' < G”) if G’ < G and G' # G.

Example 1.8.

VG, G = G.

va, 0 < G.

K3 = C4.

K5 < P (Figure 2).
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FIGURE 2. K5 = P, since K5 = Cyqr 0+ 0 Ceer (P).
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FIGURE 3. G’ X G but G' Z G.

G

Remark 1.9. G’ T G = G = G, since a subdivision can be reversed by a
contraction. However, the converse is not true; for instance, the contraction in
Figure 3 cannot be reversed by subdivisions.

2. KURATOWSKI’'S THEOREM AND WAGNER’S THEOREM

For our purposes, minors (“<X”) will be much more interesting than topological
subgraphs (“C”); however, the theorem motivating the exploration of minor-closed
properties was originally stated in topological subgraphs.

Definition 2.1. A graph is embeddable on a surface ¥ if it can be drawn on that
surface so that no two edges intersect.
A graph is planar if it is embeddable in R? (or, equivalently, S?).

Theorem 2.2 (Kuratowski). A graph G is planar < G 2 K5 and G 2 K3 3.

A similar (but not quite identical, due to Remark 1.9) result in graph minors is
also true:

Theorem 2.3 (Wagner). A graph G is planar < G} K5 and G K3 3.

We call K5 and K3 3 the forbidden minors for planar graphs.

What about embeddability on surfaces other than R? (or equivalently, 5?)? Note
that K5 is embeddable on RP? (Figure 4). However, there are other graphs not
embeddable on RP?; for instance, notice that the edges in Figure 4 divide the
projective plane into regions homeomorphic to the disk; thus, a second copy of K5
is not embeddable.

In the 1970’s, a set of 35 forbidden minors for embeddability on RP? was found
[8,9]. In 1989, it was proved that such a finite set of forbidden minors exists for
every non-orientable surface [3], and in 1990 for all surfaces [5].

This last discovery seemed amazingly general, but even it was superseded as a
special case of what was, until its recent proof [6], known as Wagner’s Conjecture:

Definition 2.4. A set of graphs P is said to be a minor-closed graph property if
VGeP, G =G = G eP.
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FIGURE 4. An embedding of K5 on RP2.

Theorem 2.5 (Graph Minor Theorem). Any minor-closed graph property P is
characterized by a finite set F(P) of forbidden minors.

That is,
(2.1) GeP < VFeF(P), FAG
and:
(2.2) |F(P)| < o0

This theorem is a direct consequence of the Robertson-Seymour Theorem, which
we will discuss before applying.
3. ROBERTSON-SEYMOUR THEOREM

Theorem 3.1 (Robertson and Seymour). For every infinite sequence of graphs
G1,Go, ..., 3 <jJ 1 G; jG]

The proof of this result is extremely long and difficult. The complete proof is
found in [6], and a thorough summary is found in [2].
An easy corollary will be needed to infer the Graph Minor Theorem:

Corollary 3.2. There are no infinite descending chains of proper minors, that is,
there exists no sequence {G,,} of graphs such that G; > Go > ....

Proof. Assume we had such a chain G1 >~ G2 > .... Then Vi < j, G; >~ Gy, so
G, £Gj, 4. O
4. INFERENCE OF THE GRAPH MINOR THEOREM

We're given a minor-closed graph property P. We must find F satisfying (2.1).

Claim 4.1. F(P) is the set of minimal (under taking proper minors) elements of
P; that is,

(4.1) F(P)={F:FeP,YH<F, HeP}CP

Proof of (2.1)_,. We're given G € P.

Assume 3F' € F(P) > FF < G. Since P is minor-closed, this implies F' € P, but
from (4.1), F € P, 4. v

Proof of (2.1) _. We're given G >VEF € F(P), F £ G.
Assume G ¢ P, that is, G € P.
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Case I (All of G’s proper minors are in P). By (4.1), G € F(P), 4.

Case II (3G’ : G = G’ € P). Then, again, G’ will fall under one of these two
cases; continue in this fashion for as long as we remain under Case II, building a
chain of proper minors.

If this process terminates, we have G = G’ = G" = ... = G, with G") € F(P)
falling under Case I, 4. Otherwise, G = G’ = G” = ..., which is an infinite
descending chain of proper minors, contradicting Corollary 3.2, 7. v

Proof of (2.2). By Theorem 3.1, if F(P) is infinite, then 3G1,G2 € F(P), G1 #
G2 2 G1 2 G2, . G < G2. But (4.1) says each element of F(P) has no proper
minors in P and thus certainly no proper minors in F(P). 4 v

5. CONSEQUENCES OF THE GRAPH MINOR THEOREM

The Graph Minor Theorem gives the existence of solutions for the entire class
of forbidden-minor problems; some of these have explicit lists of forbidden minors,
while others have little known about them other than what the Graph Minor The-
orem gives.

5.1. Minor-closed properties with known forbidden minors.
Cycle-free: Kj.
Embeddability on R?: K5, K3 3.
Linklessness in R3: There are 7 forbidden minors, including P and K.
Definition 5.1. A graph is linklessly embeddable if it can be embedded in

R3 so that no two cycles C,C’ < G pass through each other (as in Figure
5).

Embeddability on RP2?: There are 35 forbidden minors, including K5I K.
Hadwiger number < k: K1 (This is the very definition of Hadwiger num-
ber).

5.2. Minor-closed properties with unknown forbidden minors.

Tree-width < w: Tree-width is a key concept in Robertson and Seymour’s
proof [2,5,6]. It quantifies how “tree-like” a graph is (trees have tree-width
1), and one of its key properties is that every minor G’ < G has tree-width
< the tree-width of G.

Definition 5.2. A tree decomposition of a graph G = (V, E) is a tree
T = (V',E'), where each V; € V' is a subset V; C V, each edge e € FE is a
subset e C V; for some V; € V', and whenever V, lies on the path between
Veand V, in T, V, NV, C V..

The width of a tree decomposition T is maxy,cv {|V;|}.

The tree-width of a graph G is ming{ width of T'}, where T ranges over
all tree decompositions of G.

Forbidden minors are known for w = 1 (K3), w < 2 (K4), and w < 3
(there are four, including K5 and K322 [12]).

Embeddability on ¥7': Embeddability on non-orientable surfaces was known
to satisfy Wagner’s Conjecture years before Robertson and Seymour proved
the Graph Minor Theorem, due to the work of, among others, Archdeacon
and Huneke [3]. However, the explicit lists of forbidden minors remain
unknown except for RP?.
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FI1GURE 5. Linked cycles.

Embeddability on ¥,: As in the non-orientable case, Wagner’s Conjecture
for this special case was proven (by the very same Robertson and Seymour)
before Robertson and Seymour completed their proof.

Knotlessness in R3:

Definition 5.3. A graph is knotlessly embeddable in R3 if it can be em-
bedded in R? so that no cycle forms a nontrivial topological knot.

5.3. An algorithmic implication. Previously, it was not known whether or not
linkless embeddability (Definition 5.1) was even decidable, meaning no algorithm
guaranteed to terminate in any amount of time was known. However, a cubic-time
(O(n?)) algorithm checking for minors in a graph is known [1,2,10]!

We can simply apply this algorithm seven times, checking for each of the forbid-
den minors, thus deciding linklessness in 7 - O(n?®) = O(n?) time.

So the Graph Minor Theorem gives us not only decidability for linkless embed-
dability (and all minor-closed properties), but a theoretically “fast” c¢ - O(n3) =
O(n?) time algorithm. Unfortunately, the constant swallowed by the “O” notation
is large enough to make the algorithm completely impractical.
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