Density of diagonalizable square matrices

Student: Daniel Cervone; Mentor: Saravanan Thiyagarajan
University of Chicago VIGRE REU, Summer 2007.

For this entire paper, we will refer to V as a vector space over \mathbb{C} and $\mathrm{L}(\mathrm{V})$ as the set of linear operators $\{\mathrm{A} \mid \mathrm{A}: \mathrm{V} \rightarrow \mathrm{V}\}$. Recall the following definition: if A is a linear operator on a vector space V , and $\exists \mathbf{v} \neq 0 \in \mathrm{~V}$ and $\lambda \in \mathbb{C}$ st $\mathrm{A} \mathbf{v}=\lambda \mathbf{v}$, then \mathbf{v} and λ are an eigenvector and eigenvalue of A , respectively.

Theorem 1: A matrix is called diagonalizable if it is similar to some diagonal matrix. If $A \in L(V)$ has distinct eigenvalues then A is diagonalizable.
Proof: Let $\mathbf{w}_{1} \ldots \mathbf{w}_{\mathrm{n}}$ (assuming $\operatorname{dimV}=\mathrm{n}$) be the eigenvectors that correspond to each eigenvalue.
Let W be the matrix that has $\mathbf{w}_{1} \ldots \mathbf{w}_{\mathrm{n}}$ for each of its columns. A quick calculation will verify that:
$\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, n} \\ \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, n}\end{array}\right)\left(\begin{array}{lll}\mathbf{w}_{1} & \mathbf{w}_{2} \ldots & \mathbf{w}_{\mathrm{n}}\end{array}\right)=\left(\begin{array}{lll} & & \\ \mathbf{w}_{1} & \mathbf{w}_{2} \ldots & \mathbf{w}_{\mathrm{n}}\end{array}\right)\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{\mathrm{n}}\end{array}\right)$
LHS $=\left(\begin{array}{ccc} & \ldots \\ \mathrm{Aw}_{1} & \mathrm{~A} \mathbf{w}_{2} \ldots & \mathrm{~A} \mathbf{w}_{\mathrm{n}} \\ \ldots & \end{array}\right)$ and RHS $=\left(\begin{array}{lll}\lambda_{1} \mathbf{w}_{1} & \lambda_{2} \mathbf{w}_{2} \ldots & \lambda_{\mathrm{n}} \mathbf{w}_{\mathrm{n}}\end{array}\right)$ and clearly $\mathrm{A} \mathbf{w}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathbf{w}_{\mathrm{i}}$.
And we know that W is invertible since the fact that the eigenvalues of A are distinct implies that $\mathbf{w}_{1} \ldots \mathbf{w}_{\mathrm{n}}$ are linearly independent. Thus:
$\left(\begin{array}{ccc}a_{1,1} & \ldots & a_{1, n} \\ \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, n}\end{array}\right)=\left(\begin{array}{lll}\mathbf{w}_{1} & \mathbf{w}_{2} \ldots & \mathbf{w}_{\mathrm{n}}\end{array}\right)\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{\mathrm{n}}\end{array}\right)\left(\begin{array}{lll} & & \\ \mathbf{w}_{1} & \mathbf{w}_{2} \ldots & \mathbf{w}_{\mathrm{n}}\end{array}\right)^{-1}$
This proves the theorem.

Theorem 2: Suppose $\mathrm{T} \in \mathrm{L}(\mathrm{V})$ with nondistinct eigenvalues. Let $\lambda_{1} \ldots \lambda_{m}$ be the distinct eigenvalues of T , thus $\mathrm{m}<\operatorname{dim}(\mathrm{V})$. Then \exists a basis of V with respect to which T has the form:
$\left(\begin{array}{lll}A_{1} & & 0 \\ & \ddots & \\ 0 & & A_{n}\end{array}\right)$ where each A_{j} is an upper triangular matrix of the form: $\left(\begin{array}{ccc}\lambda_{j} & * & * \\ & \ddots & * \\ 0 & & \lambda_{j}\end{array}\right)$

Proof : $\forall 1 \leq \mathrm{j} \leq \mathrm{m}$ let U_{j} be the subspace of generalized eigenvectors of T corresponding to λ_{j} : $\forall \mathrm{j}, \mathrm{U}_{j}=\left\{\mathbf{v} \in \mathrm{V}:\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}} \mathbf{v}=0\right.$ for some $\left.\mathrm{k} \in \mathbb{N}\right\}$.
It follows from this immediately that $\forall \mathrm{j}, \mathrm{U}_{j}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k}$, and that $\left.\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)\right|_{\mathrm{U}_{\mathrm{j}}}$ is nilpotent.
Note that if A is any linear operator on V , then null(A) is a subspace of V since it contains 0 and clearly satisfies closure under addition and scalar multiplication (these follow from A being linear).
Before continuing, we need a crucial lemma:

Lemma 1: If N is a nilpotent linear operator on a vector space X , then \exists a basis of X with respect to which N has the form: $\left(\begin{array}{lll}0 & * & * \\ & \ddots & * \\ 0 & & 0\end{array}\right)$ (i.e. N has 0's on and below the diagonal).
Proof of Lemma: First note that N nilpotent on $X \Rightarrow \exists \mathrm{p} \in \mathbb{N}$ st $\mathrm{N}^{\mathrm{p}}=[\mathbf{0}] \Rightarrow \mathrm{X}=\operatorname{null}\left(\mathrm{N}^{\mathrm{p}}\right)$
Next, choose a basis $\left\{b_{1}, \ldots, b_{k_{1}}\right\}$ of null(N) and extend this to a basis $\left\{b_{1}, \ldots, b_{k_{2}}\right\}$ of null(N^{2}), where $k_{1} \leq k_{2} \leq p$. We can do this because if $\mathbf{v} \in \operatorname{null}(\mathrm{N})$, then $\mathrm{Nv}=[\mathbf{0}]$, so clearly $\mathrm{N}(\mathrm{Nv})=[\mathbf{0}]$. Thus null $(\mathrm{N}) \subset \operatorname{null}\left(\mathrm{N}^{2}\right)$. And since $b_{1}, \ldots, b_{k_{1}}$ are linearly independent vectors that span null(N), we can span null(N^{2}) by $b_{1}, \ldots, b_{k_{1}}$ and 1 or more linearly independent vectors $b_{k_{1}+1}, \ldots, b_{k_{2}}$ in null(N^{2}) that do not depend on $b_{1}, \ldots, b_{k_{1}}$. We can keep extending the basis of null $\left(\mathrm{N}^{2}\right)$ to a basis of null $\left(\mathrm{N}^{3}\right)$ and eventually null $\left(\mathrm{N}^{\mathrm{p}}\right)$. In doing so, we establish a basis $\mathrm{B}=\left\{b_{1}, \ldots, b_{p}\right\}$ of X , since B is a basis of $\operatorname{null}\left(\mathrm{N}^{\mathrm{p}}\right)=\mathrm{X}$.
Now let us consider N with respect to this basis. We know that by changing the basis of N , we can write N with respect to B as the matrix: $\left[\mathrm{N} b_{1}\left|\mathrm{~N} b_{2}\right| \mathrm{N} b_{3} \ldots \mid \mathrm{N} b_{p}\right]$ where each column is the $(p \times 1)$ vector $\mathrm{N} b_{i}$. Since $b_{1} \in \operatorname{null}(\mathrm{~N})$, the first column will be entirely 0 . This is in fact true for each column through k_{1}. The next column is $\mathrm{N} b_{k_{1}+1}$, where $\mathrm{N} b_{k_{1}+1} \in \operatorname{null}(\mathrm{~N})$ since $\mathrm{N}^{2} b_{k_{1}+1}=0$ (recall that $b_{k_{1}+1} \in \operatorname{null}\left(\mathrm{~N}^{2}\right)$). $\mathrm{N} b_{k_{1}+1} \in \operatorname{null}(\mathrm{~N}) \Rightarrow \mathrm{N} b_{k_{1}+1}$ is a linear combination of $b_{1} \ldots b_{k_{1}} \Rightarrow$ all nonzero entries in the $k_{1}+1$ column lie above the diagonal. This is in fact true for all columns from $k_{1} \ldots k_{2}$ where $b_{1} \ldots b_{k_{2}}$ span null(N^{2}). Similarly, we can take the next column, $\mathrm{N} b_{k_{2}+1}$, which is in $\operatorname{null}\left(\mathrm{N}^{2}\right)$ since $b_{k_{2}+1}$ is a basis vector of null $\left(\mathrm{N}^{3}\right)$. Thus $\mathrm{N} b_{k_{2}+1}$ depends on $b_{1} \ldots b_{k_{2}}$ and any nonzero entries in the $k_{2}+1$ column lie above the diagonal. We can continue this process through column p, thus confirming that N with respect to the basis B is of the form: $\left(\begin{array}{ccc}0 & * & * \\ & \ddots & * \\ 0 & & 0\end{array}\right)$. This proves the lemma.
We now continue the proof of the theorem. Recall that $\forall 1 \leq \mathrm{j} \leq\left.\mathrm{m}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)\right|_{\mathrm{U}_{\mathrm{j}}}$ is nilpotent. Thus, by the lemma we just proved, $\forall \mathrm{j} \exists$ a basis B_{j} of U_{j} st with respect to B_{j} :
$\left.\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)\right|_{\mathrm{U}_{\mathrm{j}}}=\left(\begin{array}{ccc}0 & * & * \\ & \ddots & * \\ 0 & & 0\end{array}\right)$, and therefore $\left.\mathrm{T}\right|_{\mathrm{U}_{\mathrm{j}}}=\left(\begin{array}{ccc}\lambda_{j} & * & * \\ & \ddots & * \\ 0 & & \lambda_{j}\end{array}\right)$.

Moreover, if B is the basis $\left\{B_{1} \ldots B_{m}\right\}$ of U where $U=U_{1} \oplus U_{2} \oplus \ldots \oplus U_{m}$ then $\left.T\right|_{U}$ with respect to B is in the form: $\left(\begin{array}{lll}\mathrm{T}_{1} & & 0 \\ & \ddots & \\ 0 & & \mathrm{~T}_{m}\end{array}\right)$ where each T_{j} is an upper triangular matrix of the form: $\left(\begin{array}{ccc}\lambda_{j} & * & * \\ & \ddots & * \\ 0 & & \lambda_{j}\end{array}\right)$
Note that this is the desired form corresponding to our theorem. However, we still need to show that this form is possible for T with respect to a basis of V. It suffices to show that $V=U$, then clearly a basis of U is a basis of V .

To do this, consider the linear operator $S \in L(V)$ where $S=\prod_{j=1}^{m}\left(T-\lambda_{j} I\right)^{\text {dimV }}$. Our claim is that $S_{U}=0$.
To verify this, consider that null $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{1} \subseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{2} \subseteq \ldots \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{n}}$ for any n . We want to strengthen this statement into the following lemma:
Lemma 2: $\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{1} \subseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{2} \subseteq \ldots \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}+1} \ldots=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV} \mathrm{V}+\mathrm{n}}$
Proof: Suppose $\exists \mathrm{k}$ st null $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}+1}$. If $\mathbf{x} \in \operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+n+1}$ for $\mathrm{n} \in \mathbb{N}$ then $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+n+1} \mathbf{x}=0$.
$\Rightarrow\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+1}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{n}} \mathbf{x}=0 \Rightarrow\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{n}} \mathbf{x} \in \operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+1}=\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}}$.
Thus null $\left(T-\lambda_{j} \mathrm{I}\right)^{k+n+1} \subseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}+\mathrm{n}} \Rightarrow \operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}+\mathrm{n}+1}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+n}$.
So $\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}+1} \Rightarrow$
$\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{1} \subseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{2} \subseteq \ldots \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{k}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+1} \ldots=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{k+n}$.
Now we want to show that null($\left.\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}+1}$. To prove this, assume the contrary, i.e.: $\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{1} \varsubsetneqq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{2} \ldots \nsubseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}} \nsubseteq \operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}+1}$. Since each null($\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{i}}$ is a subspace of V , $\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{i}} \nsubseteq \operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{i}+1} \Rightarrow \operatorname{dim}\left(\operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{i}}\right)+1 \leq \operatorname{dim}\left(\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{i}+1}\right)$ since the term left of " \ddagger " has a lower dim than the one to the right. But then $\operatorname{dim}\left(n u l l\left(T-\lambda_{j} I\right)^{\operatorname{dimV}+1}\right)>\operatorname{dim} V$, which is a contradiction since null $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{dim} \mathrm{V}+1}$ is a subspace of V . Therefore the following is true: $\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{1} \subseteq \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{2} \subseteq \ldots \operatorname{null}\left(\mathrm{~T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}}=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}+1} \ldots=\operatorname{null}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimV}+\mathrm{n}}$. This completes the proof of lemma 2.
We again return to verifying that $\left.S\right|_{U}=0$. Now consider Su for some $\mathbf{u} \in U$.
$\mathbf{u} \in \mathrm{U} \Rightarrow \mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2} \ldots \mathbf{u}_{\mathrm{m}}$ for $\mathbf{u}_{\mathrm{i}} \in \mathrm{U}_{\mathrm{i}}$. Since matrix multiplication is distributive, $\mathrm{S} \mathbf{u}=\mathrm{S} \mathbf{u}_{1}+\mathrm{S} \mathbf{u}_{2} \ldots \mathrm{~S} \mathbf{u}_{\mathrm{m}}$. Moreover, we know that $\forall \mathrm{i}, \mathrm{j} \leq \mathrm{m},\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right)^{\mathrm{dimV}}$ and $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{dimV}}$
are commutable (this is because their product in either direction consists of terms of T of some order and terms of TI or IT of some order. And clearly T commutes with T and I commutes with any matrix).
So $S \mathbf{u}_{\mathrm{i}}=\left(\mathrm{T}-\lambda_{1} \mathrm{I}\right)^{\operatorname{dimV}}\left(\mathrm{T}-\lambda_{2} \mathrm{I}\right)^{\operatorname{dimV}} \cdots\left(\mathrm{T}-\lambda_{\mathrm{i}-1} \mathrm{I}\right)^{\operatorname{dimV}}\left(\mathrm{T}-\lambda_{i+1} \mathrm{I}\right)^{\operatorname{dimV}} \cdots\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right)^{\operatorname{dimV}} \mathbf{u}_{\mathrm{i}}$. Of course, $\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right)^{\operatorname{dimV}} \mathbf{u}_{\mathrm{i}}=0$ since $\forall 1 \leq \mathrm{i} \leq \mathrm{m}\left(\mathrm{T}-\lambda_{\mathrm{i}} \mathrm{I}\right)^{\operatorname{dimv}} \mathbf{u}_{\mathrm{i}}$. Thus $\mathrm{S} \mathbf{u}=0$ and we have proven our claim that $\left.\mathrm{S}\right|_{\mathrm{U}}=0$, which gives $\mathrm{U} \subseteq$ null(S).

Yet suppose $\mathbf{u} \in \operatorname{null}(S)$. Then $\left(\prod_{j=1}^{\mathrm{m}}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimv}}\right)(\mathbf{u})=0$. Therefore for some $\left.\mathrm{i} \leq \mathrm{m},\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\operatorname{dimv}}\right)(\mathbf{u})=0$.
$\Rightarrow \mathbf{u} \in \mathrm{U}_{\mathrm{i}} \Rightarrow \mathbf{u} \in \mathrm{U} \Rightarrow \operatorname{null}(\mathrm{S}) \subseteq \mathrm{U} \Rightarrow \operatorname{null}(\mathrm{S})=\mathrm{U}$.
Now, we have shown that $\forall \mathrm{i}, \mathrm{j} \leq \mathrm{m},\left(\mathrm{T}-\lambda_{i} \mathrm{I}\right)^{\mathrm{dimV}}$ and $\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)^{\mathrm{dimV}}$ are commutable. From this it follows that S and T are commutable. For a vector $\mathbf{v} \in V$, of course $S(T v) \in \operatorname{Img}(S)$. Yet since T and S commute, $T(S \mathbf{v}) \in \operatorname{Img}(S)$ (i.e. $\operatorname{Img}(S)$ is invariant over $T)$. Let us assume that $\operatorname{Img}(S) \neq 0 \operatorname{Img}(S)$ invariant over T $\Rightarrow \exists \mathbf{w} \in \operatorname{Img}(S)$ where \mathbf{w} is an eigenvector for T. Moreover, $\mathbf{w} \in \operatorname{Img}(S) \Rightarrow \exists \mathbf{x} \in \mathrm{V}$ st $S \mathbf{x}$ is an eigenvector of T. By definition, $S \mathbf{x} \neq 0$, thus $\mathbf{x} \notin \operatorname{null}(S)$. But $S \mathbf{x}$ is an eigenvector of T, so clearly $S S \mathbf{x}=0$. Thus, $\operatorname{null}(S) \nsubseteq \operatorname{null}\left(S^{2}\right)$.
This contradicts lemma 2 , since $\operatorname{null}(S) \nsubseteq \operatorname{null}\left(\mathrm{S}^{2}\right) \Rightarrow \operatorname{dim}\left(\operatorname{null}\left(\prod_{j=1}^{\mathrm{m}}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)\right)^{\operatorname{dimv}}\right)<\operatorname{dim}\left(\operatorname{null}\left(\prod_{j=1}^{\mathrm{m}}\left(\mathrm{T}-\lambda_{j} \mathrm{I}\right)\right)^{2 \operatorname{dimv}}\right)$.
Therefore $\operatorname{Img}(S)=0$. If we apply the rank-nullity theorem to $\mathrm{S}: \mathrm{V} \rightarrow \mathrm{V}$, we get:
$\operatorname{dimV}=\operatorname{dim}(n u l l(S))+\operatorname{dim}(\operatorname{Img}(S))$.
$\operatorname{Img}(S)=0 \Rightarrow \operatorname{dim}(\operatorname{Img}(S))=0$, so $\operatorname{dimV}=\operatorname{dim}(n u l(S))$. We showed earlier that $U=$ null(S), so $\operatorname{dimU}=\operatorname{dimV}$.
And U being a subspace of V and $\operatorname{dimU}=\operatorname{dimV} \Rightarrow \mathrm{U}=\mathrm{V}$.
Thus, a basis of U is also a basis of V . This proves the theorem.

Theorem 3: $\exists A_{n}$ st $A_{i} \in L(V), A_{i}$ has distinct eigenvalues, and $A_{n} \rightarrow T$.
Proof: Theorem 1 (in light of the recent observation) shows that $\exists \mathrm{T}^{\prime}$ st $\mathrm{T} \sim \mathrm{T}^{\prime}$ and T^{\prime}
can be written: $\left(\begin{array}{lll}\lambda_{1} & & *_{\mathrm{T}^{\prime}} \\ & \ddots & \\ 0 & & \lambda_{k}\end{array}\right)$ where λ_{i} are eigenvalues
but not necessarily distinct from one another ($\mathrm{i} \neq \mathrm{j}$ does not imply $\lambda_{i} \neq \lambda_{j}$).
Now let A_{n} be $\left(\begin{array}{ccc}\lambda_{1_{n}} & & *_{\mathrm{T}^{\prime}} \\ & \ddots & \\ 0 & & \lambda_{k_{n}}\end{array}\right)$ where $\forall 1 \leq \mathrm{i} \leq \mathrm{k} \lambda_{i_{n}} \rightarrow \lambda_{i}$ and $\forall \mathrm{i}, \mathrm{j} \leq \mathrm{k} \lambda_{i_{n}}=\lambda_{j_{n}} \Leftrightarrow \mathrm{i}=\mathrm{j}$
(the eigenvalues of each A_{n} are distinct).
The fact that $\forall 1 \leq \mathrm{i} \leq \mathrm{k} \lambda_{i_{n}} \rightarrow \lambda_{i} \Rightarrow \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{T}^{\prime}$ entrywise $\Rightarrow \mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{T}^{\prime}$.
But $T \sim T^{\prime} \Rightarrow \exists$ nonsingular matrix P st $T=P^{-1} T^{\prime} P$. Now $A_{n} \rightarrow T^{\prime} \Rightarrow P^{-1} A_{n} P \rightarrow T$ since matrix multiplication is continuous (this is fairly easy to verify: if $\mathbf{v}_{\mathrm{n}} \rightarrow \mathbf{v}$ then surely $\mathrm{A} \mathbf{v}_{\mathrm{n}} \rightarrow \mathbf{v}$ entrywise $\Rightarrow \mathrm{A} \mathbf{v}_{\mathrm{n}} \rightarrow \mathrm{Av}$. And if a sequence of matrices $X_{n} \rightarrow X$, then clearly the column vectors converge, thus $A X_{n} \rightarrow A X$. And since $A_{n} \sim P^{-1} A_{n} P$, the eigenvalues of $\mathrm{P}^{-1} \mathrm{~A}_{n} \mathrm{P}$ are equal to thoseof A_{n}. Thus $\mathrm{P}^{-1} \mathrm{~A}_{\mathrm{n}} \mathrm{P}$ is a sequence of matrices with distinct eigenvalues and $\mathrm{P}^{-1} \mathrm{~A}_{\mathrm{n}} \mathrm{P} \rightarrow \mathrm{T}$. This proves the theorem.
Observation: If $T \in L(V)$ and \exists a basis of V with respect to which T is triangular, this is equivalent to saying that $\exists \mathrm{T}^{\prime} \in \mathrm{L}(\mathrm{V})$ st T^{\prime} is triangular and $\mathrm{T} \sim \mathrm{T}^{\prime}\left(\mathrm{T}\right.$ is similar to T^{\prime}), i.e. \exists nonsingular matrix P st $\mathrm{T}=\mathrm{P}^{-1} \mathrm{~T}^{\prime} \mathrm{P}$.

Corollary: Theorems 1, 2, and 3 imply that any square matrix is a limit point of a sequence of square matrices with distinct eigenvalues. By definition then, square matrices with distinct eigenvalues are dense in $\mathrm{L}(\mathrm{V})$. And Theorem 1 shows that any square matrix with distinct eigenvalues is diagonlizable, thus the diagonalizable matrices are also dense in $\mathrm{L}(\mathrm{V})$.

REFERENCES:

Axler, Sheldon. Linear Algebra Done Right. 1997.
http://planetmath.org

