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For this entire paper, we will refer to V as a vector space over C and L(V) as the set of linear operators
{A| A:V o> V}. Recall the following definition: if A is a linear operator on a vector space V,

and3v=0eVand 1 e C st Av = A1v, then v and A are an eigenvector and eigenvalue of A, respectively.

Theorem 1. A matrix is called diagonalizable if it is similar to some diagonal matrix. If A € L(V) has
distinct eigenvalues then A is diagonalizable.
Proof: Let w,...w, (assuming dimV = n) be the eigenvectors that correspond to each eigenvalue.
Let W be the matrix that has w, ...w, for each of its columns. A quick calculation will verify that:
8, ... &, A 0
oW, W W[ S W, W, W .
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LHS=| Aw, Aw,... Aw, |andRHS=| 4w, A4w,... A w, |and clearly Aw, = Aw,.

And we know that W is invertible since the fact that the eigenvalues of A are distinct implies that
w, ...w, are linearly independent. Thus:
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This proves the theorem. [

Theorem 2: Suppose T € L(V) with nondistinct eigenvalues. Let 4, ... 4, be the distinct eigenvalues of T,
thus m < dim(V). Then 3 a basis of V with respect to which T has the form:

A 0 yox
where each A, is an upper triangular matrix of the form: LLo*
0 A, 0 A

Proof : V1< j<mletU, be the subspace of generalized eigenvectors of T corresponding to 4, :
Vj,U; = {veV: (T-4"v=0forsomekeNj.

It follows from this immediately that Vj, U;=null(T - 4, I)*, and that (T — A I)|Uj is nilpotent.

Note that if A is any linear operator on V, then null(A) is a subspace of V since it contains 0 and clearly
satisfies closure under addition and scalar multiplication (these follow from A being linear).

Before continuing, we need a crucial lemma:



Lemma 1: If N is a nilpotent linear operator on a vector space X, then 3 a basis of X with respect to which

0o * *
N has the form: . *| (i.e. N has 0's on and below the diagonal).
0 0

Proof of Lemma: First note that N nilpotent on X = dp e N st N* =[0] = X = null(N")

Next, choose a basis {bl,...,bkl} of null(N) and extend this to a basis {bl,...,bkz} of null(N?), where k, <k, < p.
We can do this because if v € null(N), then Nv = [0], so clearly N(Nv) = [0]. Thus null(N) < null(N?).
And since b;, ..., b, are linearly independent vectors that span null(N), we can span null(N?) by

b,...,b, and 1 or more linearly independent vectors by, _,,...,b, in null(N?) that do not depend on S O
We can keep extending the basis of null(N?) to a basis of null(N*) and eventually null(N®). In doing so,

we establish a basis B = {bl,...,bp} of X, since B is a basis of null(N") = X.

Now let us consider N with respect to this basis. We know that by changing the basis of N, we can write

N with respect to B as the matrix: [Nbl\ Nb2| Nb, . Nb, ] where each column is the (p x1) vector Nb;.

Since b, € null(N), the first column will be entirely 0. This is in fact true for each column through k; .

The next column is Nb, ,,, where Nb, ,; € null(N) since N*b, ., =0 (recall that b, ,, € null(N?)).

Nb, ,, € null(N) = Nb, ,, is a linear combination of b, ...b, = all nonzero entries in the k; +1 column

lie above the diagonal. This is in fact true for all columns fromk; ...k, where b, ...b, span null(N?).
Similarly, we can take the next column, Nb, ., which is in null(N?) since b, ., is a basis vector of

null(N®). Thus Nb, ., dependson b, ...b_ and any nonzero entries in the k, +1 column lie above

the diagonal. We can continue this process through column p, thus confirming that N with respect to

0o * *
the basis B is of the form: -, *|. This proves the lemma.
0 0

We now continue the proof of the theorem. Recall that V1< j<m (T -4, I)\Uj is nilpotent. Thus,
by the lemma we just proved, Vj 3 a basis B; of U; st with respect to B;:

0o * * 1 * *
J
(T_ﬂ’jl)‘ui = -, * |, and therefore T‘Uj = x|
0 o 0 4

]



Moreover, if B is the basis {B,...B, }of UwhereU=U, ® U, ®...® U, then T|U with respect to B is in the form:

T, 0 Aox
- where each T; is an upper triangular matrix of the form: L
0 T 0 2

m ]
Note that this is the desired form corresponding to our theorem. However, we still need to show
that this form is possible for T with respect to a basis of V. It suffices to show that V = U,
then clearly a basis of U is a basis of V.

To do this, consider the linear operator S € L(V) where S= H (T-4, D™ Our claim is that S\Uz 0.

j=1
. . . 1 2 n i
To verify this, consider that null(T — 4;1)" < null(T - 4,1)” =...null(T - 4;1)" for any n. We want to strengthen this
statement into the following lemma:
Lemma 2: null(T - 4,1)' < null(T - 2,1)* < ...null(T — 2,)™™ = null(T = 2,)"™"* . = null(T — 2,1)*™"*"
. k k+1 k+n+1 k+n+1
Proof: Suppose 3k st null(T — 4;1)" = null(T — 2,1)*". If x e null(T — 4;1) forne N then (T—2,1)"""x=0.
= (T-24,D) (T =A4)"x=0= (T—4,))"x e null(T = 2,1)"* = (T -4, )".
Thus null(T - A" < null(T = 2,)“" = null(T — 4,)*"™* = null(T — 2,1)"".
So null(T - 4;1)" = null(T - 2,)*"* =
1 2 k k+1 k+n
null(T - 4;1)" < null(T - 4,1)° <...null(T = A;1)° = null(T = 2,1)" ... = null(T - 2,1)"".
Now we want to show that null(T — 2,)*™ = null(T — 2, 1)"™*"*. To prove this, assume the contrary, i.e.:
1 2 dimVv dimV+1 H [
null(T — 2;1)" & null(T = 2;1)" ... & null(T = 2;)™™ ¢ null(T - 2;1) . Since each null(T — 4;1)’ is a
subspace of V, null(T — 4;1)" & null(T - 4, D™ = dim(null(T - A1) +1<dim(null(T - 4, ")
since the term left of " C. " has a lower dim than the one to the right. But then dim(null(T - 2, ™) > dimV,

dimV+1

which is a contradiction since null(T — 4;1) is a subspace of V. Therefore the following is true:

null(T — 4,1 < null(T = 4;1)* < ...null(T = A,)*™ = null(T = 2,)"™** ... = null(T — 4, )™ This
completes the proof of lemma 2.

We again return to verifying that S|U =0. Now consider Su for some u € U.

ueU=u=u, +u,...u, foru, eU,.Since matrix multiplication is distributive, Su=Su, +Su, ...Su,,.
Moreover, we know that Vij<m, (T - 41" and (T — 2,)*"

are commutable (this is because their product in either direction consists of terms of T of some order

and terms of Tl or IT of some order. And clearly T commutes with T and | commutes with any matrix).

So Su;, = (T =AD" (T = 4,0 oo (T = A_, D™ (T = A, D™ - (T = A1)V u,. Of course, (T-A1)"™u, =0

since V1<i<m (T - A1) u,. Thus Su =0 and we have proven our claim that S|, =0, which gives U < null(S).



Yet suppose u € null(S). Then (] J(T — 2, )(u)=0. Therefore for some i <m, (T —,))*™)(u)=0.
j=1
= uelU, =ueU=null(S)c U= null(S)=U.

Now, we have shown that i,j<m, (T - A1) and (T —4,1)"™ are commutable. From this it follows that

Sand T are commutable. For a vector v € V, of course S(Tv) € Img(S). Yet since T and S commute,
T(Sv) € Img(S) (i.e. Img(S) is invariant over T). Let us assume that Img(S) = 0. Img(S) invariant over T
= 3w e Img(S) where w is an eigenvector for T. Moreover, w € Img(S) = 3x € V st Sx is an eigenvector of T.

By definition, Sx = 0, thus x & null(S). But Sx is an eigenvector of T, so clearly SSx = 0. Thus, null(S) ¢ null(S?).

This contradicts lemma 2, since null(S) & null(S?) = dim(nuII(H(I' — 4 )™ < dim(nuII(H(T — 4 1))24mV),
=1 j=1

Therefore Img(S)=0. If we apply the rank-nullity theorem to S:V — V, we get:

dimV = dim(null(S)) + dim(Img(S)).

Img(S)=0 = dim(Img(S))=0, so dimV = dim(null(S)). We showed earlier that U = null(S), so dimU=dimV.

And U being a subspace of V and dimU=dimV = U=V.

Thus, a basis of U is also a basis of V. This proves the theorem. [

Theorem 3: 3 A, stA, € L(V), A, has distinct eigenvalues, and A, — T.
Proof: Theorem 1 (in light of the recent observation) shows that 3T st T~ T"and T’

AT

can be written: where 4, are eigenvalues
0 4

but not necessarily distinct from one another (i = j does notimply 4, = 4;).
A

Now let A, be where VI<i<k 4 — 4 andVi,j<sk4 =4, <i=]
0 2

n

(the eigenvalues of each A are distinct).

Thefactthat Vi<i<k 4 — 4 = A, > T'entrywise => A, > T'.

But T ~ T’ = 3 nonsingular matrix P st T =P*T'P. Now A, - T’ = P*A P — T since matrix multiplication is
continuous (this is fairly easy to verify: if v, — v then surely Av, — v entrywise = Av, — Av. And if a sequence
of matrices X, — X, then clearly the column vectors converge, thus AX, — AX. And since A, ~ P*A P, the
eigenvalues of P*A P are equal to thoseof A . Thus P*A_P is a sequence of matrices with distinct eigenvalues and

P*A P — T. This proves the theorem. [
Observation: If T € L(V) and 3 a basis of V with respect to which T is triangular, this is equivalent to saying

that 3 T' e L(V) st T'is triangular and T ~ T’ (T is similar to T"), i.e. 3 nonsingular matrix P st T = P*T'P.



Corollary: Theorems 1, 2, and 3 imply that any square matrix is a limit point of a sequence of square matrices
with distinct eigenvalues. By definition then, square matrices with distinct eigenvalues are dense in L(V). And
Theorem 1 shows that any square matrix with distinct eigenvalues is diagonlizable, thus the diagonalizable matrices

are also dense in L(V).
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