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For this entire paper, we will refer to V as a vector space

Density of diagonalizable square matrices

{ }
 over  and L(V) as the set of linear operators

A V V . Recall the following definition: if A is a linear operator on a vector space V, 
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 of A, respectively.

: A matrix is called  if it is similar to some diagonal matrix. If A L(V) has
distinct eigenvalues then A is diagonalizable. 
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alues of A are distinct implies that
 are linearly independent. Thus:
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This proves the theorem. 
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pose T L(V) with nondistinct eigenvalues.  Let  be the distinct eigenvalues of T,
thus m < dim(V). Then  a basis of V with respect to which T has the form:
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Note that if A is any linear operator on V, then null(A) is a subspace of V since it contains 0 and clearly
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Before continuing, we need a crucial lemma:
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Now let us consider N with respect to this basis. We know that by changing the basis of N, we can write
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the diagonal. We can continue this process through column , thus confirming that N with respect to
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Moreover, if B is the basis B ...B of U where U = U  U U  then T  with respect to B is in the form:
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Note that this is the desired form corresponding to our theorem. However, we still need to show
that this form is possible for T with respect to a basis of V. It suffices to show that V = U, 
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To do this, consider the linear operator S L(V) where S (T I) . Our claim is that S 0. 
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: Theorems 1, 2, and 3 imply that any square matrix is a limit point of a sequence of square matrices
with distinct eigenvalues. By definition then, square matrices with distinct eigenvalues a
Corollary

re  in L(V). And
Theorem 1 shows that any square matrix with distinct eigenvalues is diagonlizable, thus the diagonalizable matrices
are also dense in L(V).
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