Density of diagonalizable square matrices

Student: Daniel Cervone; Mentor: Saravanan Thiyagarajan University of Chicago VIGRE REU, Summer 2007.

For this entire paper, we will refer to V as a vector space over \mathbb{C} and L(V) as the set of linear operators $\{A | A : V \to V\}$. Recall the following definition: if A is a linear operator on a vector space V, and $\exists v \neq 0 \in V$ and $\lambda \in \mathbb{C}$ st $Av = \lambda v$, then v and λ are an *eigenvector* and *eigenvalue* of A, respectively.

Theorem 1: A matrix is called *diagonalizable* if it is similar to some diagonal matrix. If $A \in L(V)$ has distinct eigenvalues then A is diagonalizable.

Proof: Let $\mathbf{w}_1 \dots \mathbf{w}_n$ (assuming dimV = n) be the eigenvectors that correspond to each eigenvalue. Let W be the matrix that has $\mathbf{w}_1 \dots \mathbf{w}_n$ for each of its columns. A quick calculation will verify that:

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 \dots & \mathbf{w}_n \end{pmatrix} = \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 \dots & \mathbf{w}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & \lambda_n \end{pmatrix}$$

$$LHS = \begin{pmatrix} \dots & \dots & \\ A\mathbf{w}_1 & A\mathbf{w}_2 \dots & A\mathbf{w}_n \\ & \dots & \end{pmatrix} \text{ and } RHS = \begin{pmatrix} \lambda_1 \mathbf{w}_1 & \lambda_2 \mathbf{w}_2 \dots & \lambda_n \mathbf{w}_n \\ & \dots & \end{pmatrix} \text{ and } clearly A\mathbf{w}_i = \lambda_i \mathbf{w}_i.$$

And we know that W is invertible since the fact that the eigenvalues of A are distinct implies that $\mathbf{w}_1 \dots \mathbf{w}_n$ are linearly independent. Thus:

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 \dots & \mathbf{w}_n \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \lambda_n \end{pmatrix} \begin{pmatrix} \mathbf{w}_1 & \mathbf{w}_2 \dots & \mathbf{w}_n \end{pmatrix}^{-1}$$

This proves the theorem. \Box

Theorem 2: Suppose $T \in L(V)$ with nondistinct eigenvalues. Let $\lambda_1 \dots \lambda_m$ be the distinct eigenvalues of T, thus $m < \dim(V)$. Then \exists a basis of V with respect to which T has the form:

$$\begin{pmatrix} A_1 & 0 \\ \ddots & \\ 0 & A_n \end{pmatrix}$$
 where each A_j is an upper triangular matrix of the form:
$$\begin{pmatrix} \lambda_j & * & * \\ \ddots & * \\ 0 & \lambda_j \end{pmatrix}$$

Proof: $\forall 1 \le j \le m \text{ let } U_j$ be the subspace of generalized eigenvectors of T corresponding to λ_j : $\forall j, U_j = \{ \mathbf{v} \in \mathbf{V} : (\mathbf{T} - \lambda_j \mathbf{I})^k \mathbf{v} = 0 \text{ for some } k \in \mathbb{N} \}.$

It follows from this immediately that $\forall j$, $U_j = \text{null}(T - \lambda_j I)^k$, and that $(T - \lambda_j I)|_{U_j}$ is nilpotent. Note that if A is any linear operator on V, then null(A) is a subspace of V since it contains 0 and clearly satisfies closure under addition and scalar multiplication (these follow from A being linear). Before continuing, we need a crucial lemma: **Lemma 1**: If N is a nilpotent linear operator on a vector space X, then \exists a basis of X with respect to which

N has the form: $\begin{pmatrix} 0 & * & * \\ & \ddots & * \\ 0 & & 0 \end{pmatrix}$ (i.e. N has 0's on and below the diagonal).

Proof of Lemma: First note that N nilpotent on $X \implies \exists p \in \mathbb{N} \text{ st } N^p = [\mathbf{0}] \Longrightarrow X = null(N^p)$ Next, choose a basis $\{b_1, \dots, b_{k_1}\}$ of null(N) and extend this to a basis $\{b_1, \dots, b_{k_2}\}$ of null(N²), where $k_1 \le k_2 \le p$. We can do this because if $\mathbf{v} \in \text{null}(N)$, then $N\mathbf{v} = [\mathbf{0}]$, so clearly $N(N\mathbf{v}) = [\mathbf{0}]$. Thus $\text{null}(N) \subset \text{null}(N^2)$. And since b_1, \ldots, b_{k_1} are linearly independent vectors that span null(N), we can span null(N²) by b_1, \dots, b_{k_1} and 1 or more linearly independent vectors $b_{k_1+1}, \dots, b_{k_2}$ in null(N²) that do not depend on b_1, \dots, b_{k_1} . We can keep extending the basis of $null(N^2)$ to a basis of $null(N^3)$ and eventually $null(N^p)$. In doing so, we establish a basis $B = \{b_1, \dots, b_p\}$ of X, since B is a basis of null(N^p) = X. Now let us consider N with respect to this basis. We know that by changing the basis of N, we can write N with respect to B as the matrix: $[Nb_1 | Nb_2 | Nb_3 ... | Nb_p]$ where each column is the $(p \times 1)$ vector Nb_i . Since $b_1 \in \text{null}(N)$, the first column will be entirely 0. This is in fact true for each column through k_1 . The next column is Nb_{k_1+1} , where $Nb_{k_1+1} \in null(N)$ since $N^2b_{k_1+1} = 0$ (recall that $b_{k_1+1} \in null(N^2)$). $Nb_{k_1+1} \in null(N) \Rightarrow Nb_{k_1+1}$ is a linear combination of $b_1 \dots b_{k_1} \Rightarrow all$ nonzero entries in the $k_1 + 1$ column lie above the diagonal. This is in fact true for all columns from $k_1 \dots k_2$ where $b_1 \dots b_{k_2}$ span null(N²). Similarly, we can take the next column, $Nb_{k_{2}+1}$, which is in null(N²) since $b_{k_{2}+1}$ is a basis vector of null(N³). Thus N b_{k_2+1} depends on $b_1 \dots b_{k_2}$ and any nonzero entries in the $k_2 + 1$ column lie above the diagonal. We can continue this process through column p, thus confirming that N with respect to

the basis B is of the form: $\begin{pmatrix} 0 & * & * \\ & \ddots & * \\ 0 & & 0 \end{pmatrix}$. This proves the lemma.

We now continue the proof of the theorem. Recall that $\forall 1 \le j \le m (T - \lambda_j I)|_{U_j}$ is nilpotent. Thus, by the lemma we just proved, $\forall j \exists a \text{ basis } B_j$ of U_j st with respect to B_j :

$$(\mathbf{T} - \lambda_j \mathbf{I})\big|_{\mathbf{U}_j} = \begin{pmatrix} \mathbf{0} & \ast & \ast \\ & \ddots & \ast \\ \mathbf{0} & & \mathbf{0} \end{pmatrix}, \text{ and therefore } \mathbf{T}\big|_{\mathbf{U}_j} = \begin{pmatrix} \lambda_j & \ast & \ast \\ & \ddots & \ast \\ \mathbf{0} & & \lambda_j \end{pmatrix}.$$

Moreover, if B is the basis $\{B_1...B_m\}$ of U where $U = U_1 \oplus U_2 \oplus ... \oplus U_m$ then $T|_U$ with respect to B is in the form:

 $\begin{pmatrix} T_1 & 0 \\ & \ddots & \\ 0 & & T_m \end{pmatrix}$ where each T_j is an upper triangular matrix of the form: $\begin{pmatrix} \lambda_j & * & * \\ & \ddots & * \\ 0 & & \lambda_j \end{pmatrix}$

Note that this is the desired form corresponding to our theorem. However, we still need to show that this form is possible for T with respect to a basis of V. It suffices to show that V = U, then clearly a basis of U is a basis of V.

To do this, consider the linear operator $S \in L(V)$ where $S = \prod_{j=1}^{m} (T - \lambda_j I)^{\dim V}$. Our claim is that $S|_U = 0$.

To verify this, consider that $\operatorname{null}(T - \lambda_j I)^1 \subseteq \operatorname{null}(T - \lambda_j I)^2 \subseteq \ldots \operatorname{null}(T - \lambda_j I)^n$ for any n. We want to strengthen this statement into the following lemma:

Lemma 2: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{\dim V} =$ null $(T - \lambda_j I)^{\dim V+1} \dots =$ null $(T - \lambda_j I)^{\dim V+n}$ Proof: Suppose $\exists k$ st null $(T - \lambda_j I)^k =$ null $(T - \lambda_j I)^{k+1}$. If $\mathbf{x} \in$ null $(T - \lambda_j I)^{k+n+1}$ for $n \in \mathbb{N}$ then $(T - \lambda_j I)^{k+n+1} \mathbf{x} = 0$. $\Rightarrow (T - \lambda_j I)^{k+1} (T - \lambda_j I)^n \mathbf{x} = 0 \Rightarrow (T - \lambda_j I)^n \mathbf{x} \in$ null $(T - \lambda_j I)^{k+1} = (T - \lambda_j I)^k$. Thus null $(T - \lambda_j I)^{k+n+1} \subseteq$ null $(T - \lambda_j I)^{k+n} \Rightarrow$ null $(T - \lambda_j I)^{k+n+1} =$ null $(T - \lambda_j I)^{k+n}$. So null $(T - \lambda_j I)^k =$ null $(T - \lambda_j I)^{k+1} \Rightarrow$ null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{k} =$ null $(T - \lambda_j I)^{k+1}$. To prove this, assume the contrary, i.e.: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \ldots$ \subseteq null $(T - \lambda_j I)^{\dim V} \subseteq$ null $(T - \lambda_j I)^{\dim V+1}$. Since each null $(T - \lambda_j I)^i$ is a subspace of V, null $(T - \lambda_j I)^2 \subseteq$ null $(T - \lambda_j I)^{i+1} \Rightarrow$ dim $(null<math>(T - \lambda_j I)^{i} + 1 \le$ dim $(null<math>(T - \lambda_j I)^{i+1}$) since the term left of " \subsetneq " has a lower dim than the one to the right. But then dim $(null<math>(T - \lambda_j I)^{\dim V+1}$) > dim V, which is a contradiction since null $(T - \lambda_j I)^{\dim V+1}$ is a subspace of V. Therefore the following is true: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{\dim V+1}$ is a subspace of V. Therefore the following is true: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{\dim V+1}$ is a subspace of V. Therefore the following is true: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{\dim V+1}$ is a subspace of V. Therefore the following is true: null $(T - \lambda_j I)^1 \subseteq$ null $(T - \lambda_j I)^2 \subseteq$... null $(T - \lambda_j I)^{\dim V+1}$... = null $(T - \lambda_j I)^{\dim V+1}$. This completes the proof of lemma 2.

We again return to verifying that $S|_{U} = 0$. Now consider Su for some $u \in U$.

 $\mathbf{u} \in \mathbf{U} \Rightarrow \mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 \dots \mathbf{u}_m$ for $\mathbf{u}_i \in \mathbf{U}_i$. Since matrix multiplication is distributive, $\mathbf{Su} = \mathbf{Su}_1 + \mathbf{Su}_2 \dots \mathbf{Su}_m$. Moreover, we know that $\forall i, j \le m$, $(\mathbf{T} - \lambda_i \mathbf{I})^{\dim V}$ and $(\mathbf{T} - \lambda_j \mathbf{I})^{\dim V}$

are commutable (this is because their product in either direction consists of terms of T of some order and terms of TI or IT of some order. And clearly T commutes with T and I commutes with any matrix). So $S\mathbf{u}_i = (T - \lambda_1 I)^{\dim V} (T - \lambda_2 I)^{\dim V} \cdots (T - \lambda_{i-1} I)^{\dim V} (T - \lambda_{i+1} I)^{\dim V} \cdots (T - \lambda_i I)^{\dim V} \mathbf{u}_i$. Of course, $(T - \lambda_i I)^{\dim V} \mathbf{u}_i = 0$ since $\forall 1 \le i \le m (T - \lambda_i I)^{\dim V} \mathbf{u}_i$. Thus $S\mathbf{u} = 0$ and we have proven our claim that $S|_U = 0$, which gives $U \subseteq \text{null}(S)$. Yet suppose $\mathbf{u} \in \text{null}(S)$. Then $(\prod_{j=1}^{m} (T - \lambda_j I)^{\dim V})(\mathbf{u}) = 0$. Therefore for some $i \leq m$, $(T - \lambda_j I)^{\dim V})(\mathbf{u}) = 0$. $\Rightarrow \mathbf{u} \in U_i \Rightarrow \mathbf{u} \in U \Rightarrow \text{null}(S) \subseteq U \Rightarrow \text{null}(S) = U$. Now, we have shown that $\forall i, j \leq m$, $(T - \lambda_i I)^{\dim V}$ and $(T - \lambda_j I)^{\dim V}$ are commutable. From this it follows that S and T are commutable. For a vector $\mathbf{v} \in V$, of course $S(T\mathbf{v}) \in \text{Img}(S)$. Yet since T and S commute, $T(S\mathbf{v}) \in \text{Img}(S)$ (i.e. Img(S) is invariant over T). Let us assume that Img(S) $\neq 0$. Img(S) invariant over T $\Rightarrow \exists \mathbf{w} \in \text{Img}(S)$ where \mathbf{w} is an eigenvector for T. Moreover, $\mathbf{w} \in \text{Img}(S) \Rightarrow \exists \mathbf{x} \in V$ st S \mathbf{x} is an eigenvector of T. By definition, $S\mathbf{x} \neq 0$, thus $\mathbf{x} \notin \text{null}(S)$. But S \mathbf{x} is an eigenvector of T, so clearly SS $\mathbf{x} = 0$. Thus, null(S) $\subsetneq \text{null}(S^2)$.

This contradicts lemma 2, since null(S)
$$\subsetneq$$
 null(S²) \Rightarrow dim(null($\prod_{j=1}^{m} (T - \lambda_j I))^{\dim V}$) < dim(null($\prod_{j=1}^{m} (T - \lambda_j I))^{2\dim V}$).

Therefore Img(S)=0. If we apply the rank-nullity theorem to $S: V \to V$, we get:

 $\dim V = \dim(\operatorname{null}(S)) + \dim(\operatorname{Img}(S)).$

 $Img(S)=0 \Rightarrow dim(Img(S))=0$, so dimV = dim(null(S)). We showed earlier that U = null(S), so dimU=dimV. And U being a subspace of V and dimU=dimV \Rightarrow U=V.

Thus, a basis of U is also a basis of V. This proves the theorem. \Box

Theorem 3: $\exists A_n \text{ st } A_i \in L(V)$, A_i has distinct eigenvalues, and $A_n \to T$. **Proof**: Theorem 1 (in light of the recent observation) shows that $\exists T' \text{ st } T \sim T'$ and T'

can be written: $\begin{pmatrix} \lambda_1 & *_{T'} \\ & \ddots & \\ 0 & & \lambda_k \end{pmatrix}$ where λ_i are eigenvalues

but not necessarily distinct from one another $(i \neq j \text{ does not imply } \lambda_i \neq \lambda_j)$.

Now let
$$A_n$$
 be $\begin{pmatrix} \lambda_{i_n} & \lambda_{T'} \\ & \ddots & \\ 0 & & \lambda_{k_n} \end{pmatrix}$ where $\forall 1 \le i \le k \ \lambda_{i_n} \to \lambda_i$ and $\forall i, j \le k \ \lambda_{i_n} = \lambda_{j_n} \Leftrightarrow i = j$

(the eigenvalues of each A_n are distinct).

The fact that $\forall 1 \le i \le k \ \lambda_{i_n} \to \lambda_i \Longrightarrow A_n \to T'$ entrywise $\Longrightarrow A_n \to T'$.

But $T \sim T' \Rightarrow \exists$ nonsingular matrix P st $T = P^{-1}T'P$. Now $A_n \to T' \Rightarrow P^{-1}A_nP \to T$ since matrix multiplication is continuous (this is fairly easy to verify: if $\mathbf{v}_n \to \mathbf{v}$ then surely $A\mathbf{v}_n \to \mathbf{v}$ entrywise $\Rightarrow A\mathbf{v}_n \to A\mathbf{v}$. And if a sequence of matrices $X_n \to X$, then clearly the column vectors converge, thus $AX_n \to AX$. And since $A_n \sim P^{-1}A_nP$, the eigenvalues of $P^{-1}A_nP$ are equal to those of A_n . Thus $P^{-1}A_nP$ is a sequence of matrices with distinct eigenvalues and $P^{-1}A_nP \to T$. This proves the theorem. \Box

Observation: If $T \in L(V)$ and \exists a basis of V with respect to which T is triangular, this is equivalent to saying that $\exists T' \in L(V)$ st T' is triangular and T ~ T' (T is similar to T'), i.e. \exists nonsingular matrix P st T = P⁻¹T'P.

Corollary: Theorems 1, 2, and 3 imply that any square matrix is a limit point of a sequence of square matrices with distinct eigenvalues. By definition then, square matrices with distinct eigenvalues are *dense* in L(V). And Theorem 1 shows that any square matrix with distinct eigenvalues is diagonlizable, thus the diagonalizable matrices are also dense in L(V).

REFERENCES:

Axler, Sheldon. Linear Algebra Done Right. 1997.

http://planetmath.org