All Convex Polyhedra are Homeotopic to the Sphere

Beau Dabbs

10-12-07

Definitions and Assumptions

Define the following characteristics to be:
$\mathrm{V}(\mathrm{K})=$ the number of vertices within a graph K
$E(K)=$ the number of edges within a graph K
$F(K)=$ the number of faces a graph K separates the plane or surface into
Definition: A graph G is a tree if G is connected and has no simple cycles, i.e. a cycle with no repeated vertices besides the starting and ending vertex.

Assumptions:
Jordan Curve Theorem: Any simple closed curve separates the space it's contained within into two distinct parts

1 Lemma: Euler's Theorem in 2 Dimensions

Definition: The Euler characteristic for any graph K in 2 dimensions is defined by:

$$
\chi(K)=V(K)-E(K)
$$

Claim 1: \forall connected graphs $\mathrm{K} \chi(\mathrm{K}) \leq 1$
Claim 2: $\chi(\mathrm{K})=1 \Leftrightarrow \mathrm{~K}$ is a tree
Proof of Claim 1: Define G_{k} to be a connected graph with k edges. For G_{0} there are two possible graphs:
The graph consisting of a single vertex satisfying:

$$
\chi\left(G_{0}\right)=1-0=1
$$

And the Grapch consisting of no vertices satisfying:

$$
\chi\left(G_{0}\right)=0-0=0
$$

Thus for $\mathrm{k}=0, \chi\left(G_{k}\right) \leq 1$. Now we will induct on the number of edges in order to prove Claim 1.
Assume that $\chi\left(G_{n}\right) \leq 1$ with $\mathrm{V}\left(G_{n}\right)=l$ and $\mathrm{E}\left(G_{n}\right)=\mathrm{n}$. In order to create any
graph G_{n+1} there are only two possible methods for adding an additional edge: (1) Add an edge between v_{i} and v_{j} with $v_{i}, v_{j} \in G_{n}$. Thus:

$$
\begin{gathered}
V\left(G_{n+1}\right)=V\left(G_{n}\right)=l \\
E\left(G_{n+1}\right)=E\left(G_{n}\right)+1=n+1 \\
\chi\left(G_{n+1}\right)=V\left(G_{n+1}\right)-E\left(G_{n+1}\right)=l-(n+1)=(l-n)-1=\chi\left(G_{n}\right)-1<\chi\left(G_{n}\right)
\end{gathered}
$$

(2) Add an edge between v_{i} and v_{j} with $v_{i} \in G_{n}$ and $v_{j} \notin G_{n}$. Thus:

$$
\begin{aligned}
V\left(G_{n+1}\right) & =V\left(G_{n}\right)+1=l+1 \\
E\left(G_{n+1}\right) & =E\left(G_{n}\right)+1=n+1 \\
\chi\left(G_{n+1}\right)=V\left(G_{n+1}\right)-E\left(G_{n+1}\right) & =(l+1)-(n+1)=(l-n)+1-1=\chi\left(G_{n}\right)
\end{aligned}
$$

Hence $\forall \mathrm{k}, \chi\left(G_{k}\right) \leq 1 / /$
Lemma: Adding an edge to a connected graph G using method (1) creates a simple cycle.
Proof: G is connected $\Rightarrow \exists$ a path from v_{i} to v_{j} s.t. no vertex is repeated. If a new edge is added connecting v_{i} to v_{j}, this edge will add allow the path to extend from v_{i} to v_{i} without crossing any other vertices twice.//
Proof of claim 2: We shall assume that G_{0} with 0 vertices is not a tree, though it does make intuitive sense that the nonexistent vertices could have infinite cycles between nothingness. Thus our base case shall be G_{0} with $\mathrm{V}\left(G_{0}\right)=1$, and hence as shown above $\chi\left(G_{0}\right)=1$.
Assume G_{k} is a tree. $\Rightarrow G_{k}$ is generated from G_{0} solely by method(2) by the Lemma. Thus:

$$
\chi\left(G_{k}\right)=\chi\left(G_{k-1}\right)=\ldots=\chi\left(G_{1}\right)=\chi\left(G_{0}\right)=1
$$

Since method (1) preserves the Euler Characteristic.

Now assume $\chi\left(G_{k}\right)=1$. We shall also assume that G_{k} is generated by at least one edge of type (1).

$$
\begin{gathered}
\Rightarrow \chi\left(G_{k}\right)=\chi\left(G_{k-1}\right)=\ldots \chi\left(G_{j+1}<\chi\left(G_{j}\right)=\ldots=\chi\left(G^{\prime}\right)=\chi(G)=1\right. \\
\Rightarrow \chi\left(G_{k}\right)<1
\end{gathered}
$$

A contradiction of our initial assumption, thus all edges of G_{k} must be added by method $(2) \Rightarrow G_{k}$ is a tree.//

2 Proof of Euler's Theorem in 3 Dimensions

Definition: For any surface or solid K in 3 Dimensions the euler characteristic χ of K is denoted:

$$
\chi(K)=V(K)-E(K)+F(K)
$$

Definition: Let a net on a convex surface be defined as a graph of connected vertices and edges separating the surface into faces.

Claim: \forall nets P on a convex surface $\chi(\mathrm{N})=2$
Proof: Let P_{k} be a net with k edges, and P_{0} be a net on a surface consisting of a single vertex be the smallest possible net on a surface. Thus:

$$
\chi\left(P_{0}\right)=1-0+1=2
$$

Thus $\chi\left(P_{k}\right)=2$ for $\mathrm{k}=0$. We will now procede by induction on the edges. Assume P_{n} is a net with $\mathrm{V}\left(P_{n}\right)=l, \mathrm{E}\left(P_{n}\right)=n$, and $\mathrm{F}\left(P_{n}\right)=m$ and that $\chi\left(P_{n}\right)=2$. As in the previous section, in order to create P_{n+1} from P_{n} there are two methods for adding an additional edge, with the same consequences for the vertices and edges as above, with the addition that for method (1) creates a simple closed curve, and thus separates 1 of the existing faces into 2 distinct faces, though method (2) creates no additional faces. Thus the following is obtained by each method:
Method (1):

$$
\begin{gathered}
V\left(P_{n+1}\right)=V\left(P_{n}\right)=l \\
E\left(P_{n+1}\right)=E\left(P_{n}\right)+1=n+1 \\
F\left(P_{n+1}\right)=F\left(P_{n}\right)+1=m+1 \\
\chi\left(P_{n+1}\right)=V\left(P_{n+1}\right)-E\left(P_{n+1}\right)+F\left(P_{n+1}\right)=l-(n+1)+(n+1)=(l-n+m)-1+1=\chi\left(P_{n}\right)
\end{gathered}
$$

Method (2):

$$
\begin{gathered}
V\left(P_{n+1}\right)=V\left(P_{n}\right)+1=l+1 \\
E\left(G_{n+1}\right)=E\left(G_{n}\right)+1=n+1 \\
F\left(P_{n+1}\right)=F\left(P_{n}\right)=m \\
\chi\left(P_{n+1}\right)=V\left(P_{n+1}\right)-E\left(P_{n+1}\right)+F\left(P_{n+1}\right)=(l+1)-(n+1)+m=(l-n+m)+1-1=\chi\left(P_{n}\right)
\end{gathered}
$$

Using our inductive assumption we find that $\chi\left(P_{n+1}\right)=\chi\left(P_{n}\right)=2$.
Thus $\chi(\mathrm{P})=2$ for all nets on convex surfaces, and hence $\chi(\mathrm{P})=2$ for all polyhedra, a subset of those nets.//

3 Euler Characteristic an Homeotopy to the Sphere

For this section we will be showing the equivalency of 3 statements:
(1) $\chi(K)=2$
(2)Any embedded loop in K separates K into two distinct parts
(3)K is homeotopic to the sphere

Proof: $\mathbf{(3)} \Rightarrow \mathbf{(2)}$: First by the Jordan Curve Theorem we can say already that $(3) \Rightarrow(2)$ since the sphere has one surface, any closed curve would have to separate it.

Now we will show that $(2) \Rightarrow(1) \Rightarrow(3)$ to complete the proof. In doing this we will use the lemma stating that the euler characteristic of any tree is equal to 1.

To do this we will consider a closed combinatorial surface K , essentially a triangulation of the surface, or a net composed solely of triangles.
$\mathbf{(2)} \Rightarrow \mathbf{(1)}$: First create a maximal tree T, in K. Since the tree is maximal \Rightarrow

$$
V(T)=V(K)
$$

Then create a dual graph Γ with each face of K being a vertext of Γ, and adding an edge between every pair of vertices $v_{i}, v_{j} \in \Gamma$ s.t. the faces $f_{i}, f_{j} \in K$ corresponding to v_{i}, v_{j} satisfy:

$$
f_{i} \cap f_{j} \notin T
$$

Thus Γ will have the property

$$
F(K)=V(\Gamma)
$$

and the two graphs together will satisfy:

$$
E(K)=E(T)+E(\Gamma)
$$

Thus combining these results we obtain:

$$
\begin{gathered}
\chi(K)=V(K)-E(K)+F(K)=V(T)-[E(T)+E(\Gamma)]+V(\Gamma)= \\
{[V(T)-E(T)]+[V(\Gamma)-E(\Gamma)]=\chi(T)+\chi(\Gamma)}
\end{gathered}
$$

By the Lemma we know that $\chi(\mathrm{T})=1$ since T is a tree, so to show that $\chi(\mathrm{K})=2$, we simply need to show that $\chi(\Gamma)=1$, or that Γ is a tree.
Suppose Γ is a tree
$\Rightarrow \Gamma$ has an embedded loop
$\Rightarrow \Gamma$ separates K , and hence that T isn't connected, but T is connected, a contradiction. Thus Γ must be a tree, and $\chi(\mathrm{K})=2(\mathbf{1}) \Rightarrow \mathbf{(3)}$: Now K itself is composed of a neighborhood around T and a neighborhood around Γ, which we have just shown are both trees, and the neighborhood around a tree is homeomorphic to a disk. If we take the neighborhood around T and Γ and combine them together we obtain an area homeomorphic to a sphere.

4 All Convex Polyhedra are Homeomorphic to the sphere

Proof: In the previous two sections we found that:

1) $\chi(\mathrm{K})=2 \forall$ convex polyhedra
2) $\chi(\mathrm{K})=2 \Leftrightarrow$ All embedded loops in K separate $\Leftrightarrow \mathrm{K}$ is homeotopic to the sphere.

Thus we can now say that all convex polyhedra are homeomorphic to the sphere//

