All Convex Polyhedra are Homeotopic to the Sphere

Beau Dabbs

10 - 12 - 07

Definitions and Assumptions

Define the following characteristics to be: V(K) = the number of vertices within a graph K E(K) = the number of edges within a graph K F(K) = the number of faces a graph K separates the plane or surface into Definition: A graph G is a *tree* if G is connected and has no simple cycles, i.e. a cycle with no repeated vertices besides the starting and ending vertex.

Assumptions:

Jordan Curve Theorem: Any simple closed curve separates the space it's contained within into two distinct parts

1 Lemma: Euler's Theorem in 2 Dimensions

Definition: The Euler characteristic for any graph K in 2 dimensions is defined by:

 $\chi(K) = V(K) - E(K)$

Claim 1: \forall connected graphs K $\chi(K) \leq 1$

Claim 2: $\chi(K)=1 \Leftrightarrow K$ is a tree

Proof of Claim 1: Define G_k to be a connected graph with k edges. For G_0 there are two possible graphs:

The graph consisting of a single vertex satisfying:

$$\chi(G_0) = 1 - 0 = 1$$

And the Grapch consisting of no vertices satisfying:

$$\chi(G_0) = 0 - 0 = 0$$

Thus for k=0, $\chi(G_k) \leq 1$. Now we will induct on the number of edges in order to prove Claim 1.

Assume that $\chi(G_n) \leq 1$ with $V(G_n) = l$ and $E(G_n) = n$. In order to create any

graph G_{n+1} there are only two possible methods for adding an additional edge: (1) Add an edge between v_i and v_j with $v_i, v_j \in G_n$. Thus:

$$V(G_{n+1}) = V(G_n) = l$$

$$E(G_{n+1}) = E(G_n) + 1 = n + 1$$

$$\chi(G_{n+1}) = V(G_{n+1}) - E(G_{n+1}) = l - (n+1) = (l-n) - 1 = \chi(G_n) - 1 < \chi(G_n)$$

(2) Add an edge between v_i and v_j with $v_i \in G_n$ and $v_j \notin G_n$. Thus:

$$V(G_{n+1}) = V(G_n) + 1 = l + 1$$

$$E(G_{n+1}) = E(G_n) + 1 = n + 1$$

 $\chi(G_{n+1}) = V(G_{n+1}) - E(G_{n+1}) = (l+1) - (n+1) = (l-n) + 1 - 1 = \chi(G_n)$ Hence $\forall k, \chi(G_k) \leq 1//$

Lemma: Adding an edge to a connected graph G using method (1) creates a simple cycle.

Proof: G is connected $\Rightarrow \exists$ a path from v_i to v_j s.t. no vertex is repeated. If a new edge is added connecting v_i to v_j , this edge will add allow the path to extend from v_i to v_i without crossing any other vertices twice.//

Proof of claim 2: We shall assume that G_0 with 0 vertices is not a tree, though it does make intuitive sense that the nonexistent vertices could have infinite cycles between nothingness. Thus our base case shall be G_0 with $V(G_0)=1$, and hence as shown above $\chi(G_0)=1$.

Assume G_k is a tree. $\Rightarrow G_k$ is generated from G_0 solely by method(2) by the Lemma. Thus:

$$\chi(G_k) = \chi(G_{k-1}) = \dots = \chi(G_1) = \chi(G_0) = 1$$

Since method (1) preserves the Euler Characteristic.

Now assume $\chi(G_k)=1$. We shall also assume that G_k is generated by at least one edge of type (1).

$$\Rightarrow \chi(G_k) = \chi(G_{k-1}) = \dots \chi(G_{j+1} < \chi(G_j) = \dots = \chi(G') = \chi(G) = 1$$
$$\Rightarrow \chi(G_k) < 1$$

A contradiction of our initial assumption, thus all edges of G_k must be added by method (2) \Rightarrow G_k is a tree.//

2 Proof of Euler's Theorem in 3 Dimensions

Definition: For any surface or solid K in 3 Dimensions the euler characteristic χ of K is denoted:

$$\chi(K) = V(K) - E(K) + F(K)$$

Definition: Let a net on a convex surface be defined as a graph of connected vertices and edges separating the surface into faces.

Claim: \forall nets P on a convex surface $\chi(N)=2$

Proof: Let P_k be a net with k edges, and P_0 be a net on a surface consisting of a single vertex be the smallest possible net on a surface. Thus:

$$\chi(P_0) = 1 - 0 + 1 = 2$$

Thus $\chi(P_k)=2$ for k=0. We will now proceed by induction on the edges. Assume P_n is a net with $V(P_n)=l$, $E(P_n)=n$, and $F(P_n)=m$ and that $\chi(P_n)=2$. As in the previous section, in order to create P_{n+1} from P_n there are two methods for adding an additional edge, with the same consequences for the vertices and edges as above, with the addition that for method (1) creates a simple closed curve, and thus separates 1 of the existing faces into 2 distinct faces, though method (2) creates no additional faces. Thus the following is obtained by each method:

Method (1):

$$\begin{split} V(P_{n+1}) &= V(P_n) = l \\ E(P_{n+1}) &= E(P_n) + 1 = n + 1 \\ F(P_{n+1}) &= F(P_n) + 1 = m + 1 \\ \chi(P_{n+1}) &= V(P_{n+1}) - E(P_{n+1}) + F(P_{n+1}) = l - (n+1) + (n+1) = (l - n + m) - 1 + 1 = \chi(P_n) \end{split}$$
 Method (2):

$$V(P_{n+1}) = V(P_n) + 1 = l + 1$$

 $E(G_{n+1}) = E(G_n) + 1 = n + 1$
 $F(P_{n+1}) = F(P_n) = m$

 $\chi(P_{n+1}) = V(P_{n+1}) - E(P_{n+1}) + F(P_{n+1}) = (l+1) - (n+1) + m = (l-n+m) + 1 - 1 = \chi(P_n) + 1 - 1 = (l-n+m) + (l-n+m)$

Using our inductive assumption we find that $\chi(P_{n+1})=\chi(P_n)=2$. Thus $\chi(\mathbf{P})=2$ for all nets on convex surfaces, and hence $\chi(\mathbf{P})=2$ for all polyhedra, a subset of those nets.//

3 Euler Characteristic an Homeotopy to the Sphere

For this section we will be showing the equivalency of 3 statements: $(1)\chi(K)=2$

(2) Any embedded loop in K separates K into two distinct parts

(3)K is homeotopic to the sphere

Proof: $(3) \Rightarrow (2)$: First by the Jordan Curve Theorem we can say already that $(3) \Rightarrow (2)$ since the sphere has one surface, any closed curve would have to separate it.

Now we will show that $(2) \Rightarrow (1) \Rightarrow (3)$ to complete the proof. In doing this we will use the lemma stating that the euler characteristic of any tree is equal to 1.

To do this we will consider a closed combinatorial surface K, essentially a triangulation of the surface, or a net composed solely of triangles.

(2) \Rightarrow (1): First create a maximal tree T, in K. Since the tree is maximal \Rightarrow

$$V(T) = V(K)$$

Then create a dual graph Γ with each face of K being a vertext of Γ , and adding an edge between every pair of vertices $v_i, v_j \in \Gamma$ s.t. the faces $f_i, f_j \in K$ corresponding to v_i, v_j satisfy:

$$f_i \cap f_i \notin T$$

Thus Γ will have the property

$$F(K) = V(\Gamma)$$

and the two graphs together will satisfy:

$$E(K) = E(T) + E(\Gamma)$$

Thus combining these results we obtain:

$$\chi(K) = V(K) - E(K) + F(K) = V(T) - [E(T) + E(\Gamma)] + V(\Gamma) = [V(T) - E(T)] + [V(\Gamma) - E(\Gamma)] = \chi(T) + \chi(\Gamma)$$

By the Lemma we know that $\chi(T)=1$ since T is a tree, so to show that $\chi(K)=2$, we simply need to show that $\chi(\Gamma)=1$, or that Γ is a tree.

Suppose Γ is a tree

 $\Rightarrow \Gamma$ has an embedded loop

 \Rightarrow Γ separates K, and hence that T isn't connected, but T is connected, a contradiction. Thus Γ must be a tree, and $\chi(K)=2$ (1) \Rightarrow (3): Now K itself is composed of a neighborhood around T and a neighborhood around Γ , which we have just shown are both trees, and the neighborhood around a tree is homeomorphic to a disk. If we take the neighborhood around T and Γ and combine them together we obtain an area homeomorphic to a sphere.

4 All Convex Polyhedra are Homeomorphic to the sphere

Proof: In the previous two sections we found that: $1)\chi(K)=2 \forall$ convex polyhedra $2\chi(K)=2 \Leftrightarrow$ All embedded loops in K separate \Leftrightarrow K is homeotopic to the sphere.

Thus we can now say that all convex polyhedra are homeomorphic to the sphere//